Logo

Oft gesucht

Nichts gefunden?

Teilen Sie uns mit, welche Inhalte Sie auf unseren Seiten vermissen.

The multiplicity of the smallest positive eigenvalue of the Laplacian on the Klein Quartic

This thesis discusses various ideas related to the proof of the statement the multiplicity $m_1(K)$ of the smallest positive eigenvalue $\lambda_1(K)$ of the Laplacian on the hyperbolic surface called the Klein Quartic is equal to 8. First, we take a look at how the Selberg Trace Formula can be used to obtain bounds for $m_1(K)$. Second, we show the existence of a representation whose decomposition into irreducible summands implies an integer equation for the multiplicity $m_1(K)$ of $\lambda_1(K)$. Third, we investigate the conditions under which a polyhedron and its reflection group provides a tessellation of hyperbolic space. Finally, we study the macro structure of the proof of the statement $m_1(K) = 8$ and how the different strategies are combined to prove the desired result. This work contains no original results.

Zurück zur Liste

Jahr: 2023

Autor : Benno Wendland

Betreuer:
Prof. Dr. Beatrice Pozzetti