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Abstract. This thesis discusses various ideas related to the proof of the statement the
multiplicity m1(K) of the smallest positive eigenvalue λ1(K) of the Laplacian on the
hyperbolic surface called the Klein Quartic is equal to 8. The statement was proven
a few years ago in the paper [1]. First, we take a look at how the Selberg Trace
Formula can be used to obtain bounds for m1(K). Second, we show the existence of
a representation whose decomposition into irreducible summands implies an integer
equation for the multiplicity m1(K) of λ1(K). Third, we investigate the conditions
under which a polyhedron and its reflection group provides a tessellation of hyperbolic
space. Finally, we study the macro structure of the proof of the statement m1(K) = 8
and how the different strategies are combined to prove the desired result. This work
contains no original results.

Zusammenfassung. In dieser Bachelorarbeit werden einige Aussagen behandelt die
für den Beweis der Aussage Die Multiplizität m1(K) des kleinsten positiven Eigenwerts
λ1(K) des Laplace-Operators auf der hyperbolischen Fläche die den Namen Kleinsche
Quartic trägt ist gleich 8 von Relevanz sind. Dieser Satz wurde in dem Paper [1]
bewiesen. Das soeben erwähnte Paper ist die primäre Quelle der Arbeit.
Wir beschäftigen uns zuerst kurz mit der Selbergschen Spurformel und beschreiben
eine Strategie wie aus der Formel Abschätzungen fürm1(K) gewonnen werden können.
Im darauffolgenden Abschnitt beschreiben wir eine Darstellung der Isometriengruppe
der Kleinschen Quartik und erläutern wie aus dieser eine Gleichung aus natürlichen
Zahlen für die Zahl m1(K) zustande kommt. Daraufhin betrachten wir Kachelungen
des hyperbolischen Raums welche aus einem Polytop und dessen Translaten gegeben
sind. Der letzte Abschnitt enthält eine Liste der Ergebnisse welche für die Bestimmung
von m1(K) benötigt werden und eine Erklärung dessen wie die partiellen Aussagen
zusammengesetzt werden können um m1(K) zu berechnen.
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1 Notation

• λ1(M) and m1(M) refer to the smallest positive eigenvalue and its multiplicity of the Laplacian on
a Riemannian manifold M , respectively.

• Let X be a metric space. For any x ∈ X, r > 0, the expression Br(x) denotes the open ball of radius
r around x. Analogously, Sr(x) is the distance sphere of radius r.

• For any r > 0 and n ∈ N, Sn
r ⊂ Rn+1 denotes the Riemannian manifold that is the sphere of radius

r centered around 0 endowed with the induced metric.

• The interior of a subset S of a topological space X is denoted by either int(S) or S̊.

• The symbol Hn denotes n dimensional hyperbolic space. The Poincare ball model of Hn is denoted
by Bn.
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2 Introduction

This thesis concerns itself primarily with the multiplicity of the smallest positive eigenvalue of the Laplacian
△ on the Klein Quartic, but some of the techniques are applicable to other closed connected Riemannian
surfaces S of genus g ≥ 2 endowed with a hyperbolic metric. The operator we want to study is defined by

△ : C2(S,R) −→ C0(S,R)
f 7→ −div(grad(f)).

It is a fact that the set of eigenvalues of the Laplacian is countable, contained in [0,∞) ⊂ R and does not
have any accumulation points, so that the eigenvalues can be sorted in increasing order

0 ≤ λ0(S) ≤ λ1(S) ≤ . . . .1

In the paper [1], the authors show that the multiplicity m1(K) of the smallest positive eigenvalue on
the Klein Quartic K is 8. Furthermore, they show that this is the maximal value for m1(S) amongst all
closed hyperbolic surfaces S of genus g = 3 [ibid Theorem 1.2]. This thesis describes some ideas which are
more or less directly relevant to the determination of m1(K).

One way of describing the Klein Quartic is as the quotient of the hyperbolic plane by a subgroup
of the reflection group of the hyperbolic triangle with interior angles π

2
, π
3
, π
7
. This description leads to

a fundamental domain of the group’s action on the hyperbolic plane which e.g. can be useful for the
construction of some closed geodesics. One section of this thesis deals with the proof of the statement
that certain polyhedra in hyperbolic space Hn are fundamental domains for their induced reflection groups.
In other words, in certain circumstances, the translates of a polyhedron by the isometries in the induced
reflection group form a tiling of the space Hn.

The other sections of this text deal with two different approaches to the goal of obtaining upper and
lower bounds on the multiplicity m(λ) of eigenvalues λ of the Laplacian on a compact connected hyperbolic
surface S. First, we discuss the Selberg trace formula. The formula comes up in this context because
it relates a series of values which are summed over the multiset σ(S) of eigenvalues of the Laplacian to
a different quantity. This other quantity involves summation over the closed geodesics in the surface S.
Therefore, we spend some time proving the fact that there are only countably many closed geodesics in such
a surface - this statement obviously requires the exclusion of constant paths as well as an identification of
geodesics which differ only by a reparameterization. At this point, it is worth emphasizing the distinction
between geodesics γ : [a, b] → S which form a loop in the sense that γ(a) = γ(b) and geodesics which are
closed in the sense that γ(a) = γ(b) and γ̇(a) = γ̇(b). The argument for the countability of the set of
closed geodesics proceeds by establishing a correspondence between the conjugacy classes of the group of
deck transformations and certain equivalence classes of closed geodesics. It works in the general case of a
compact, connected Riemannian manifold with strictly negative sectional curvature. The compactness and
connectedness assumption implies that any deck transformation leaves the image of some geodesic invariant.
The curvature assumption guarantees the uniqueness (up to reparameterisation) of such a geodesic for any
fixed deck transformation.

The second approach involved in determining the multiplicity m1(S) of the smallest positive eigenvalue
has its starting point in the observation that the isometry group Iso(S) acts on the eigenspace Eλ: any
isometry h induces a linear map

Lh : Eλ −→ Eλ

f 7→ f ◦ h−1.

1See, for example, [3, chapter 7].
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Using the basic result from the representation theory of finite groups which states that any representation
decomposes into a sum of irreducible representations, one quickly arrives at the equation

m1(S) = n1d1 + n2d2 + · · ·+ nkdk,

where k is the cardinality of the collection of irreducible representations of the finite group, d1, . . . , dk are
the dimensions of these irreducible representations and n1, . . . , nk ∈ N0 are some natural numbers. It is at
first glance an entirely useless equation, since the trivial representation is an irreducible representation of
dimension 1. However, in the case of the specific representation we are concerned with, the one-dimensional
irreducible representations do not occur in the representation’s direct sum decomposition [1, Corollary
5.2.].
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3 Bounds on the Multiplicities of Eigenvalues of the Lapla-
cian Derived From the Selberg Trace Formula

We want to count - with multiplicities - the eigenvalues of the Laplacian which lie in a certain interval
[a, b] ⊂ R. Let σ(M) denote the multiset whose elements are the eigenvalues of the Laplacian on M , each
occurring according to its multiplicity, i.e. the dimension of the associated eigenspace. The approach for
finding an upper and lower bound is based on expressions of the form∑

λ∈σ(M)

f(λ)

for certain special functions f . For example, suppose that f is bounded from below on the interval [a, b] by
a constant c and non-negative on R \ [a, b]. Then we have the inequality

c ·#σ(M) ∩ [a, b] =
∑

λ∈σ(M)∩[a,b]

c ≤
∑

λ∈σ(M)∩[a,b]

c+
∑

λ∈σ(M)∩(R\[a,b])

f(λ) ≤
∑

λ∈σ(M)

f(λ).

Analogously, if we assume f to be bounded from above by a constant c on the interval [a, b] and be non-
positive on R \ [a, b], we obtain a lower bound for the number of eigenvalues counting multiplicity in the
interval [a, b]:

c ·#σ(M) ∩ [a, b] =
∑

λ∈σ(M)∩[a,b]

c ≥
∑

λ∈σ(M)∩[a,b]

c+
∑

λ∈σ(M)∩(R\[a,b])

f(λ) ≥
∑

λ∈σ(M)

f(λ).

The difficulty lies in finding a useful way to bound a sum of the form∑
λ∈σ(M)

f(λ),

as well as functions which satisfy the conditions under which such a bound holds. A useful expression for
the sum

∑
λ∈σ(M) f(λ) is given by the Selberg trace formula. One method for proving the existence of

appropriate functions uses interval arithmetic, which we will not discuss here.
The Selberg trace formula involves a series where the summation index is the set of closed geodesics.

Since attempting to add uncountably many (non-zero) real numbers is not a sensible idea, the trace formula
can only be plausible if there are at most countably many closed geodesics.

3.1 Deck Transformations and Closed Geodesics

In this section, (M, g) is a compact connected Riemannian manifold with negative sectional curvature and
(M̃, g̃, π) is its universal Riemannian cover. Note that M̃ is a simply connected, complete Riemannian man-
ifold with non-positive sectional curvature. Such manifolds are sometimes referred to as Cartan-Hadamard
manifolds.

We show that the set of closed geodesics in M is countable by relating the closed geodesics to deck
transformations of the universal cover M̃ . As mentioned in the introduction, this requires the exclusion of
the constant geodesics and an identification of closed geodesics which are reparameterizations of each other.
The main ingredient is the statement, which holds given the above assumptions, that any non-trivial deck
transformation of the Riemannian universal cover leaves exactly one geodesic invariant [6, Lemmas 12.21
and 12.22]. We use the result without proof.

Definition 3.1 (closed geodesics). A closed geodesic is a geodesic γ : [a, b] → M with the property
γ(a) = γ(b) and γ̇(a) = γ̇(b). It is sometimes convenient to interpret closed geodesics as smooth maps
S1 → M . This, for one thing, has the consequence that reparamerisations to different constant speeds are
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not possible, which would be the case if we allowed intervals in R. Furthermore, the description of a change
of the point at which the closed geodesic is based is simplified.

Define C(M) as the set of equivalence classes of oriented non-trivial closed geodesics of M up to changes
of the base point. More precisely:

C(M) := { γ : S1 → M | γ is not a constant map and γ is a closed geodesic } / ∼

where the equivalence relation ∼ is given by

γ ∼ τ ⇐⇒ ∃c ∈ S1∀t ∈ S1 : γ(t) = τ(t+ c).

Definition 3.2. A deck transformation Φ : M̃ → M̃ is a continuous map which satisfies π = π ◦ Φ. The
group of deck transformations is denoted by A(M̃). With ∼ denoting the equivalence relation where two
maps are equivalent if they are conjugate, the set of conjugacy classes is denoted by A(M̃)/ ∼.

An axis for a deck transformation Φ is a geodesic γ : R → M̃ for which there exists a constant c ∈ R\{ 0 }
such that Φ ◦ γ(t) = γ(t+ c) for all t ∈ R.

Lemma 3.3. Let Φ ∈ A(M̃) be a non-trivial deck transformation. Then Φ has an axis γ which is unique
up to reparameterisation. These reparameterisations are of the form t 7→ ±ct + a for some a ∈ R and
c ∈ R \ { 0 }. If γ is an axis of Φ, then the constant

c ∈ R \ { 0 } with γ(t+ c) = Φ(γ(t)) for all t ∈ R (1)

depends on the parameterisation of γ, but is unique once a parameterisation is fixed. The axes of the trivial
deck transformation, that is the identity on M̃ , are exactly the constant paths.

Proof. The first statement is the content of [6, Lemmas 12.21 and 12.22].
The latter two statements are immediate consequences of the fact that the non-constant geodesics of

Cartan-Hadamard manifolds do not self-intersect. This holds, because the injectivity radius is infinite [6,
Prop. 12.9]:

Let γ be a non-constant geodesic which is an axis for Φ and suppose c1, c2 ∈ R \ { 0 } satisfy γ(t+ c1) =
Φ(γ(t)) = γ(t+ c2). Then the fact that γ does not have any self-intersections implies c1 = c2.

Any axis γ of the identity map must satisfy γ(t+ c) = γ(t) for a non-zero constant c ∈ R, whence γ has
a self-intersection and must be a constant geodesic.

Let γ be an axis for Φ. The previous theorem guarantees the existence and uniqueness (up to reparam-
eterisation) of such geodesics. We will subsequently denote the axis of Φ by γΦ. It is worth noting that the
constant c in the above lemma distinguishes between different deck transformations which have the same
axis. More precisely, if γ is an axis for two deck transformations Φ and Ψ, then the constants cΦ, cΨ for
which Equation (1) holds are the same if and only if Φ is equal Ψ. This follows from Part (1) of the next
lemma, which consists of a few properties concerning deck transformations and closed geodesics which we
will need in order to show that there is a correspondence between the two.

Lemma 3.4. 1. A deck transformation Φ of M̃ is uniquely determined by its value at any one point,
i.e. (

Φ,Ψ ∈ A(M̃) and ∃p ∈ M̃ : Φ(p) = Ψ(p)
)

=⇒ Φ = Ψ.

2. Let γΦ : R → M̃ be an (up to reparameterisation unique) axis of Φ ∈ A(M̃) \ { Id }. Let c ∈ R \ { 0 }
be the unique constant by which Φ translates γΦ. If c < 0, then we switch to the reparameterization
of γΦ given by t 7→ γΦ(−t) to ensure that c > 0. In particular, we have Φ(γΦ(0)) = γΦ(c). Define

τΦ : [0, c] → M, t 7→ π ◦ γΦ(t).

Then τΦ is a closed geodesic which is uniquely determined up to constant speed orientation preserving
reparameterisations and a different choice of starting point.
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3. The associated closed geodesics τΦ, τΨ are the same if and only if the deck transformations are
conjugate, i.e.

τΦ = τΨ ⇐⇒ ∃η ∈ A(M̃) : Φ = η ◦Ψ ◦ η−1.

4. For any closed geodesic γ : [0, b] → M ∈ C(M) there exists at least one deck transformation Φ ∈ A(M̃)
such that γ = τΦ. One such deck transformation is obtained by choosing a lift γ̃ of γ and defining Φ
via Φ(γ̃(0)) = γ̃(b).

Proof. Part 1: Let p ∈ M̃ and Φ ∈ A(M̃). Let U be an evenly covered neighborhood of π(p) in M ,
and denote the components of π−1({π(p) }) which contain p and Φ(p) by Vp and VΦ(p), respectively. By
continuity of Φ, there exists a neighborhood W ⊂ Vp of p which is mapped into VΦ(p). Since Φ is a deck
transformation, it follows that

Φ∣∣W =

(
π∣∣VΦ(p)

)−1

◦ π∣∣W . (2)

Suppose Ψ is a deck transformation which satisfies Ψ(p) = Φ(p). Then the above equation shows that
the two maps agree on a neighborhood of p. Since p was arbitrary, the set of points in M̃ on which Ψ
agrees with Φ is open. It is also closed, since both maps are continuous. Due to the connectedness of M̃ ,
this suffices to conclude that Φ = Ψ. Note that the above formula also implies that deck transformations
are isometries, because π is a local isometry.

Part 2: Let γΦ be a parameterisation of the axis of Φ such that the translation constant c is positive.
Then any version of τΦ is given by

t 7→ π ◦ γΦ(at+ b)

for some constants a > 0 and b ∈ R, because those are the only admissible reparameterisations of γΦ. The
translation constant for t 7→ γΦ(at+ b) is given by c

a
> 0, so that the domain of this version of τΦ is given

by [0, c
a
].

The fact that τΦ is a closed geodesic follows directly from the local representation of Φ stated in Equation
(2).

Part 3: First, we show that conjugate deck transformations induce the same closed geodesic. For this
purpose, let Φ, η ∈ A(M̃) and c > 0 with γΦ(t + c) = Φ ◦ γΦ(t) for all t ∈ R. Then η ◦ γΦ is an axis of
Ψ := η ◦ Φ ◦ η−1 whose translation constant is also given by c. To see this, note that, for all t ∈ R,

Ψ(η ◦ γΦ(t)) = η ◦ Φ ◦
(
η−1 ◦ η

)
◦ γΦ(t) = η ◦ γΦ(t+ c).

Consequently, the curves π ◦ γΦ and π ◦ γΨ restricted to the domain [0, c] are specific representatives of the
equivalence classes τΦ and τΨ, respectively. For these parameterisations, we therefore have

τΦ = π ◦ γΦ∣∣[0,c] = (π ◦ η) ◦ γΦ∣∣[0,c] = π ◦ (η ◦ γΦ)∣∣[0,c] = π ◦ γΨ∣∣[0,c] = τΨ.

Suppose τΦ is equal to τΨ. We want to show that Ψ agrees with a conjugate of Φ at the point γΨ(0)
and apply Part (1) to deduce that Ψ is a conjugate of Φ.

Our assumption means, in particular, that domains of τΦ and τΨ are the the same. The domain is
the interval [0, c] for some c > 0. By construction, we can choose parameterisations of the axes γΦ and
γΨ such that γΦ restricted to [0, c] is a lift of τΦ and γΨ restricted to [0, c] is a lift of τΨ. Furthermore, it
holds that Φ(γΦ(0)) = γΦ(c) and Ψ(γΨ(0)) = γΨ(c). Let η be the deck transformation which maps γΦ(0)
onto γΨ(0). We know that such a deck transformation exists, because M̃ is simply connected. See for
example [2, p. 148]. We conclude that γΨ and η ◦ γΦ are two lifts of the same path which start at the same
point, whence they are equal. In particular, η−1(γΨ(0)) = γΦ(0) and γΨ(c) = η(γΦ(c)). Combining these
observations, we obtain

η ◦ Φ ◦ η−1(γΨ(0)) = η ◦ Φ(γΦ(0)) = η(γΦ(c)) = γΨ(c).

We conclude that η ◦ Φ ◦ η−1 and Ψ are the same deck transformation.
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Part 4: Let γ : [0, b] → M be a closed geodesic with a lift γ̃. Let Φ be the unique deck transformation
with Φ(γ̃(0)) = γ̃(b). We claim that the extension of γ̃ to R is an axis for Φ. More specifically, it holds that
γ̃(kb + t) = Φ ◦ γ̃((k − 1)b + t) for all k ∈ Z and t ∈ [0, b]. This can be shown by induction. We have, for
example,

Φ−1 ◦ γ̃(b+ t) = γ̃(t)

for t ∈ [0, b], which holds as the curves on the left and right side of the equality are geodesics with the same
starting point and the same initial velocity. The latter statement about the velocities is a consequence of
the relationship between the derivative of γ̃ when approaching 0 from above and the derivative of γ̃ when
approaching b from below, which stems from the fact that γ′(0) = γ′(b). More precisely, one can compute

(
Φ−1 ◦ γ̃

)′
(b) = dγ̃(b)Φ

−1(γ̃′(b)) = d

(
π∣∣V0

)−1(
dπ∣∣Vb

(γ̃′(b))

)
= d

(
π∣∣V0

)−1(
(π∣∣Vb

◦ γ̃)′(b)
)

= d

(
π∣∣V0

)−1

(γ′(b)) = d

(
π∣∣V0

)−1

(γ′(0)) = d

(
π∣∣V0

)−1(
(π∣∣V0

◦ γ̃)′(0)
)

= γ̃′(0)

for appropriate neighborhoods Vb of γ̃(b) and V0 of γ̃(0).

Lemma 3.5. There exists a bijection between the non-trivial conjugacy classes of the group of deck trans-
formations of M̃ and the set of equivalence classes of non-constant closed geodesics in M , i.e.(

A(M̃)/ ∼
)
\ { [IdM̃ ] }

set∼= C(M).

Since the group of deck transformations is countable, this implies

#C(M) = #A(M̃)/ ∼= #N.

Proof. We claim that the two maps

C(M) →
(
A(M̃)/ ∼

)
\ { [IdM̃ ] }

γ 7→ [Φ] where Φ is any deck transformation with τΦ = γ

and (
A(M̃)/ ∼

)
\ { [IdM̃ ] } → C(M)

[Φ] 7→ τΦ.

are well defined and each others inverses.
To show that the first map is well defined, we need to prove that there exists a non-trivial deck transfor-

mation associated to any closed geodesic in C(M) and that any two such deck transformations are conjugate.
The existence is part (4) of lemma (3.4), the uniqueness up to conjugacy is part (3) of the same lemma.

It remains to be seen that the deck transformation specified in Part (4) is not the trivial one. Given
the formula for Φ specified in the lemma, it is clear that the associated deck transformation is trivial if
and only if the closed geodesic is null-homotopic. Therefore, we must show that C(M) does not contain
null-homotopic closed geodesics. This is a consequence of M̃ being a Cartan-Hadamard manifold. We
claim that the only null-homotopic closed geodesics in M are the constant paths themselves; these are not
contained in the set C(M). To see this, note that a null-homotopic closed geodesic γ in M lifts to a geodesic
γ̃ in M̃ whose start and end points are the same. The only self-intersecting geodesics in a Cartan-Hadamard
manifold are the constant paths, whence γ̃ must be constant. Consequently, γ is constant, and we conclude
that all null-homotopic closed geodesics in M are constant paths.
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To show that the second map is well defined, we need to note three things. First, the closed geodesic τΦ
induced by a non-trivial deck transformation Φ is uniquely defined up to orientation preserving reparame-
terisation. This is the reason why we exclude the conjugacy class of the identity: it does not have a unique
axis, since all constant paths qualify for the position. Second, τΦ is not constant because it lifts to a path
between the distinct points p and Φ(p), where p is any element of the fiber π−1({ τΦ(0) }). Here we use the
fact that a deck transformation which is not the identity map on M̃ has no fixed points, a consequence of
the previous lemma’s part (1). Third, the conjugate deck transformations induce the same closed geodesic
by part (3) of the aforementioned lemma.

The fact that the maps are inverse to each other is obvious.
The cardinality of the group of deck transformations can be bounded using part (1). Let p ∈ M̃ . Since

any deck transformations is determined by the image of p, the evaluation map

A(M̃) → π−1({π(p) })
Φ 7→ Φ(p)

is an injection. The codomain is a countable set, since the preimage of an evenly covered neighborhood
U of π(p) under π is the union of a collection of disjoint open sets indexed by π−1({π(p) }). Since the
universal cover is a manifold, and as such is a second countable topological space, it follows that the set
π−1({π(p) }) is countable. It is worth mentioning that there exists an isomorphism between the group of
deck transformations and the fundamental group, so the above cardinality statement simply amounts to
the statement that the fundamental group is countable, which is true for topological manifolds in general.
We implicitly used this fact when we said that the universal cover is second countable.

3.2 The Selberg Trace Formula and Bounds on The Multiplicity of Eigen-
values of the Laplacian

In this subsection, M is a compact Riemannian manifold of dimension 2, genus g ≥ 2 and constant negative
sectional curvature equal −1.

Definition 3.6 (Two notions of length for closed geodesics). For any geodesic γ, the expression γn, is
inductively defined to be the concatenation of the curve γn−1 with γ1 := γ. For any non-trivial closed
geodesic γ, the set

{n ∈ N | ∃ : η closed geodesic : γ = ηn }
is nonempty, as it contains 1. We define l(γ) as the length of γ. Let m be the maximum of

{n ∈ N | ∃ : η closed geodesic : γ = ηm } .2

Define Λ(γ) as the length of η, where η is uniquely determined by the condition ηm = γ. If m = 1, then γ
is called a primitive closed geodesic.

2From the discussion in the subsection on closed geodesics, we know that there are no null-homotopic geodesics
in M other than the constant paths. Therefore, given a non-constant closed geodesic γ : [0, b] → M , there exists a
lower bound ϵ > 0 for the set { t ∈ [0, b] | γ(0) = γ(t) } of times t at which γ returns to its starting point. It follows
that any geodesic η with γ = ηn satisfies l(ηm) = ml(η) > mϵ > l(γ) for sufficiently large m ∈ N.

We obtain a lower bound as follows: Let p ∈ M̃ such that π(p) = γ(0) and let γ̃ be the lift of γ starting at
p. We know that γ̃ is not a constant geodesic, since γ is not null-homotopic, which implies that the endpoints
af γ̃ are distinct. Because M̃ is a Cartan-Hadamard manifold, γ̃ has no self-intersections. Let U be an evenly
covered neighborhood of p and Vp the component of π−1(U) which contains p. Then there exists an ϵ > 0 such that
Bϵ(p) ⊂ Vp. Since π is injective on Vp, it follows that γ does not self intersect on the interval [0, ϵ

c
], where c is the

constant speed of γ.
As a sidenote, a version of the argument above should also be usable to prove that the Lebesgue number l of a

cover of M by evenly covered balls
(
(Bϵ(p)(p)

)
p∈M

should be a lower bound for the lengths of non-constant closed

geodesics in M .
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We need to introduce some additional definitions in order to formulate the Selberg trace formula. Define
a map

τ : [0,∞) → R ∪ i[0,
1

2
]

λ 7→

i
√

1
4
− λ if 0 ≤ λ < 1

4√
λ− 1

4
else

.

Define the Fourier transform f̂ : D → C of an integrable map f : R → C by the expression

f̂(ξ) :=
1√
2π

∫ ∞

−∞
f(x)e−iξxdx,

where D is the subset of C for which the integral is defined.

Theorem 3.7 (Selberg Trace Formula). Let f : R → C be a function with the following properties:

1. f is integrable

2. f is even

3. there exists an ϵ > 0 such that Fourier transform f̂ of f defines a holomorphic map on the set
{ ξ ∈ C | |Imξ| < 1

2
+ ϵ } and f̂ = O((1 + |ξ|2)−(1+ϵ)).

Then the equation∑
λ∈σ(M)

f̂(τ(λ)) = 2(g − 1)

∫ ∞

0

rf̂(r) tanh(πr)dr +
1√
2π

∑
γ∈C(M)

Λ(γ)

2 sinh
(

l(γ)
2

)f(l(γ))
holds. The series on both sides of the equality converge absolutely.

The formulation of the theorem was taken from [[1]]. For the proof, they refer to [[3]].
What is the idea behind the Selberg trace formula? One uses f to define an integral kernel on M and

then evaluates the kernel’s trace in two different ways. One computation of the integral is based on an
expansion of the kernel by eigenfunctions of the Laplacian. This is how the spectrum of the Laplacian gets
involved.

From the Selberg trace formula we can obtain a formula for both a lower and an upper bound on the
number of eigenvalues counting multiplicities which lie in certain intervals.

Lemma 3.8. [Upper bound formula [1, Lemma 3.2]] Assume f satisfies the conditions required for the
Selberg trace formula to hold. Assume f̂ ◦ τ is bounded from below on the interval [a, b] by a constant c and
non-negative on (b,∞). Here, we additionally assume that 0 < a ≤ λ1(M) and a < b. Finally, assume
f(l(γ)) is non-positive for all γ ∈ C(M). Let N be an arbitrary subset of C(M).

Then we have the upper bound

#σ(M) ∩ [a, b] ≤ 1

c

2(g − 1)

∫ ∞

0

rf̂(r) tanh(πr)dr +
1√
2π

∑
γ∈N

Λ(γ)

2 sinh
(

l(γ)
2

)f(l(γ))− f̂(τ(0))

 .

Proof. Given our assumptions, the argument from the beginning of this chapter is almost applicable. We
just need to deal with the eigenvalue 0, since this eigenvalue is (the only one which is) not in the set R\[a, b].
The modified inequalities are

c ·#σ(M) ∩ [a, b] + f̂(τ(0)) =
∑

λ∈σ(M)∩[a,b]

c+ f̂(τ(0))

≤
∑

λ∈σ(M)∩[a,b]

c+
∑

λ∈σ(M)∩(R\({ 0 }∪[a,b])

f̂(τ(λ)) + f̂(τ(0)) ≤
∑

λ∈σ(M)

f̂(λ),

11



which gives us the inequality

#σ(M) ∩ [a, b] ≤ 1

c

 ∑
λ∈σ(M)

f̂(λ)− f̂(τ(0))

 .

The Selberg trace formula immediately delivers the inequality∑
λ∈σ(M)

f̂(τ(λ)) ≤ 2(g − 1)

∫ ∞

0

rf̂(r) tanh(πr)dr +
1√
2π

∑
γ∈N

Λ(γ)

2 sinh
(

l(γ)
2

)f(l(γ)),
since the fact that f̂(l(γ)) is non-positive implies that we obtain an upper bound by leaving out some terms
from the sum

1√
2π

∑
γ∈C(M)

Λ(γ)

2 sinh
(

l(γ)
2

)f(l(γ)).
By combining the two inequalities, we arrive at the desired upper bound.

There is an analogous formula which provides a lower bound for the number of eigenvalues in a compact
interval counting mulitplicities, see [1, Lemma 5.9].
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4 An Approach Based on a Representation of the Surface’s
Isometry Group

All representations in this section are assumed to be finite dimensional.
Associated to each eigenvalue λ of the Laplacian on a Riemannian manifold (M, g), there is a representa-

tion of the isometry group Iso(M) on the eigenspace Eλ. This has to do with the fact that the composition
of an eigenvector of the Laplacian with an isometry of M is again an eigenvector of the Laplacian. Our
first goal is to prove said statement.

Lemma 4.1. Let A be a covariant k-tensor field, h : M −→ M be a diffeomorphism, and V ∈ X (M) be a
vector field. Then

L
h−1
∗ V

h∗A = h∗LV A.

Remark. This is in a sense analogous to the formula

h∗[X,Y ] = [h∗X,h∗Y ]

for the Lie derivative of vector fields, where h : M −→ M is a diffeomorphism and X,Y ∈ X (M) are vector
fields. We prove the lemma by reducing it to this statement.

Proof. We verify the equality using the formula(
LV A

)
(X1, . . . , Xk) = V

(
A(X1, . . . , Xk)

)
+
∑
i

A(X1, . . . , Xi−1, [V,Xi], Xi+1, . . . , Xk),

which holds for any covariant k-tensor field A and vector fields X1, . . . , Xk on M .3 Showing that two
covariant k-tensor fields are the same is equivalent to checking that the pairing of the tensor fields with any
ordered tuple of vector fields X1, . . . , Xk produces the same real valued function.

Note that we have(
h∗LV A

)
(X1, . . . , Xk)(p) =

(
LV A

)
h(p)

(dph(X1(p)), . . . , dph(Xk(p)))

=
(
LV A

)
h(p)

(h∗X1(h(p)), . . . , h∗Xk(h(p))),

for all points p ∈ M , which globally can be written as an equality of real valued functions on M :(
h∗LV A

)
(X1, . . . , Xk) =

(
LV A

)
(h∗X1, . . . , h∗Xk) ◦ h.

This is a useful description, because we now have a pairing of the Lie derivative of a covariant tensor field
with vector fields on the right hand side, so that we can use the formula for the Lie derivative stated above.
Simply inserting into said formula gives us the two expressions(

h∗LV A
)
(X1, . . . , Xk) =

(
LV A

)
(h∗X1, . . . , h∗Xk) ◦ h

=V
(
A(h∗X1, . . . , h∗Xk)

)
◦ h

+
∑
i

A(h∗X1, . . . , h∗Xi−1, [V, h∗Xi], h∗Xi+1, . . . , h∗Xk) ◦ h,

and (
L

h−1
∗ V

h∗A
)
(X1, . . . , Xk) =h−1

∗ V
(
(h∗A)(X1, . . . , Xk)

)
+
∑
i

(h∗A)(X1, . . . , Xi−1, [h
−1
∗ V,Xi], Xi+1, . . . , Xk).

3See, for example, [7, Corollary 12.33].
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We claim that the i-th summand in the formula for
(
h∗LV A

)
(X1, . . . , Xk) agrees with the i-th summand

in the formula for
(
L

h−1
∗ V

h∗A
)
(X1, . . . , Xk). First, we consider the first summand evaluated at a point

p ∈ M . The computation is mostly an exercise in inserting the definition of the push forward of a vector
field:

V
(
A(h∗X1, . . . , h∗Xk)

)
◦ h(p) = Vh(p)

(
A(h∗X1, . . . , h∗Xk)

)
=Vh(p)

(
A(dh(X1) ◦ h−1, . . . , dh(Xk) ◦ h−1)

)
= Vh(p)

(
(h∗A)(X1, . . . , Xk) ◦ h−1)

chain rule
= dh(p)h

−1(Vh(p))
(
(h∗A)(X1, . . . , Xk)

)
= h−1

∗ V
(
(h∗A)(X1, . . . , Xk)

)
(p).

Second, we consider the (i+ 1)-th summand

A(h∗X1, . . . , h∗Xi−1, [V, h∗Xi], h∗Xi+1, . . . , h∗Xk) ◦ h

=A(h∗X1, . . . , h∗Xi−1, h∗[h
−1
∗ V,Xi], h∗Xi+1, . . . , h∗Xk) ◦ h

=(h∗A)(X1, . . . , Xi−1, [h
−1
∗ V,Xi], Xi+1, . . . , Xk),

where we used
h∗[h

−1
∗ V,Xi] = h∗[h

−1
∗ V, h−1

∗ h∗Xi] = h∗h
−1
∗ [V, h∗Xi] = [V, h∗Xi].

This completes the proof.

Lemma 4.2. [Representation associated to an eigenvalue] Let λ ∈ σ(M). Define, for any isometry h :
M −→ M , the map

Lh : Eλ −→ Eλ

f 7→ f ◦ h−1.

The map Lh is well defined and linear. The map

τλ : Iso(M) −→ GL(Eλ)

h 7→ Lh

is a group morphism, or, in other words, a representation of Iso(M).

Proof. We have to show that Lh ∈ GL(Eλ). The linearity of Lh is clear. What remains to be seen is the
fact that if f is an eigenvector of the Laplacian with eigenvalue λ then so is f ◦ h. First, we note that the
Laplacian can be described in terms of the Lie derivative. One characterisation of the divergence div(X)
of a vector field X on M is the equation

d(X⌟vol) = div(X)vol,

where d denotes the exterior derivative, ⌟ denotes the interior product, and vol denotes the volume form
with respect to the Riemannian metric g. In this situation, Cartan’s magic formula states that

LXvol = d(X⌟vol) +X⌟d(vol) = d(X⌟vol),

because the exterior derivative of forms of degree equal to the dimension of the manifold is zero. We have
thus obtained the equation

−△(f)vol = div(∇f)vol = L∇fvol,

for any smooth f : M → R. Now, let us consider the composition of a smooth function f : M → R and an
isometry h of M . First, we note that the gradient of f ◦ h is the pushforward of the gradient of f by h−1.
To see this, let p ∈ M and v ∈ TpM and compute

g(∇(f ◦ h)(p), v) = dh(p)f ◦ dph(v) = g(∇f(h(p)), dph(v)) = g
(
dh(p)h

−1(∇f(h(p))
)
, v
)
,
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where the last step makes use of the fact that h−1 is an isometry. We conclude that

∇(f ◦ h)(p) = dh(p)h
−1(∇f(h(p))

)
holds for all p ∈ M , which is to say

∇(f ◦ h) = h−1
∗ ∇f.

If f is an eigenfunction of the Laplacian with eigenvalue λ, it follows that

L∇(f◦h−1)vol = Lh∗∇f (h
−1)∗vol

Lemma(4.1)
= (h−1)∗L∇fvol = (h−1)∗(−λfvol) = (−λf ◦ h−1)vol,

where we used the fact (h−1)∗vol = vol, which holds for any isometry h−1 of M , twice. This allows us to
conclude that

△(f ◦ h−1) = λf ◦ h−1.

Finally, we note that τλ satisfies

τλ(gh)f = f ◦ (gh)−1 = (f ◦ h−1) ◦ g−1 = τλ(g) ◦ τλ(h)f

for any g, h ∈ Iso(M) and f ∈ Eλ. Hence, τλ is a representation of the isometry group of M . The equation
also proves that Lh is invertible with inverse Lh−1 .

Suppose we are in a situation where it is known that any representation of Iso(M) splits into a sum of
irreducible representations, and furthermore have a list of all the irreducible representations. In this case,
we immediately obtain an integer equation for the dimension of Eλ, i.e. the multiplicity of the eigenvalue
λ. In principle this approach is applicable when the isometry group is compact, but we will only need the
statement for finite groups later. Of course, the equation will be of no use unless one can exclude the trivial
representation from the decomposition of the representation.

Definition 4.3. A complex representation ρ : G → GL(V ) is called realizable over R if there exists a real
representation ρ̃ : G → GL(W ) such that ρ and ρ̃⊗ C are isomorphic as complex representations.

Definition 4.4. Let ρ : G → GL(V ) be a representation and W an invariant subspace. Define the
restriction

ρ∣∣W : G → GL(W )

of ρ to W by setting
ρ∣∣W g := (ρg)∣∣W

for all g ∈ G.
Let ρ : G → GL(V ) be a complex representation. Then we can interpret V as a real vector space by

restricting the scalar multiplication to R. It has real dimension 2dimCV . This is what we mean by the
phrase ρ interpreted as a real representation.

Theorem 4.5 ([10, Theorem 1, page 6]). Let ρ : G → GL(V ) be a representation, G a finite group, and
V a vector space over a field F such that #G =

∑#G
i=1 1 ∈ F is not equal to 0 in F. Then any ρ-invariant

subspace W of V has a ρ-invariant complement U .

Proof. Let U be a vector space complement of W in V , that is to say U ⊕W = V and define the projection
π : V → V, u + w 7→ w. By averaging π over the elements of G, we obtain a projection whose image is
W and whose kernel is ρ-invariant. As is true for any projection, the map’s kernel is complementary to its
image, which completes the proof.

Define the map π̃ by

π̃ :=
1

#G

∑
g∈G

ρ(g) ◦ π ◦ ρ(g−1).
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First, we verify that π̃ is a projection, which is to say that π̃ ◦ π̃ = π̃, or, equivalently, π̃(w) = w for all
w ∈ Im(π̃). This property is immediately inherited from π. To see this, let v ∈ V and compute

π̃(π̃(v)) =
1

#G

∑
g∈G

ρ(g) ◦ π ◦ ρ(g−1)

(
1

#G

∑
h∈G

ρ(h) ◦ π ◦ ρ(h−1)(v)

)

=
1

#G

∑
g∈G

∑
h∈G

1

#G
ρ(g) ◦ π ◦ ρ(g−1h) ◦ π ◦ ρ(h−1)(v)

=
1

#G

∑
g∈G

∑
h∈G

1

#G
ρ(gg−1h) ◦ π ◦ ρ(h−1)(v)

=
1

#G

∑
g∈G

π̃(v) = π̃(v).

Second, we have to check that the kernel ker(π̃) is a ρ-invariant, i.e. we have to show that π̃(ρ(h)(v)) = 0
for all v ∈ ker(π̃) and h ∈ G. It suffices to show that ρ(h) and π̃ commute. The computation is based on
the observation that left multiplication is a bijection of the group. Note that

ρ(h−1) ◦ π̃ ◦ ρ(h) = 1

#G

∑
g∈G

ρ(h−1g) ◦ π ◦ ρ(g−1h)

=
1

#G

∑
g∈G

ρ(g) ◦ π ◦ ρ(g−1)

= π̃.

Finally, it remains to be seen that Im(π̃) = W . The inclusion ’⊂’ follows from the fact that ρ(g) ◦ π ◦
ρ(g−1)(v) is an element of W for any v ∈ V and g ∈ G. This holds because π is a projection onto W , and
W is a ρ-invariant subspace of V . The inclusion ’⊃’ follows from the fact that π̃(w) = w, which is a direct
consequence of ρ(g) ◦ π ◦ ρ(g−1)(w) = ρ(gg−1)(w) = w for all g ∈ G and w ∈ W .

Theorem 4.6. Let ρ : G → GL(V ) be a representation. If any ρ-invariant subspace has a ρ-invariant
complement, then ρ can be decomposed into a sum of irreducible representations.

Proof. The proof is by induction on the dimension of the vector space on which G acts. There is nothing
to show in the case n = 1, since { 0 } and V are the only subspaces of any 1-dimensional vector space V .

Suppose the theorem holds for representations of G in vector spaces of dimension less or equal n. Let ρ
be of dimension n+1. If ρ is irreducible, we need not show anything. If ρ has an invariant subspace W , then
there exists a ρ-invariant complement U . Hence, ρ = ρ∣∣W ⊕ρ∣∣U and the induction hypothesis applies to both

summands, since the dimension of both U and W is at most n. Therefore, the sum of the decomposition
of ρ∣∣W and the decomposition of ρ∣∣U is a decomposition of ρ given by irreducible representations.

The next two lemmata describe the relationship between real and complex irreducible representations.

Lemma 4.7. [Real invariant subspaces of irreducible complex representation] Let G be a finite group. Let
ρ : G 7→ GL(V ) be a complex irreducible representation of dimCV = n. Suppose that ρ interpreted as a real
representation is not an irreducible real representation. Then there exists an n dimensional real subspace
W of V that is invariant under ρ and such that the restriction ρ|W is an irreducible real representation.

Furthermore, for any two invariant non-zero proper real subspaces W1,W2 ⊂ V , the representations
ρ|W1 and ρ|W2 are isomorphic.
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Proof. We consider the situation of a complex irreducible representation ρ with a non-trivial real invariant
subspace W of V . Since ρ is irreducible, it must hold that

{
∑
i

λiwi | k ∈ N, w1, . . . , wk ∈ W,λ1, . . . , λk ∈ C } ,

which is a non-zero invariant complex subspace of V , is the entire space V . Therefore, the real dimension
of W is at least n. As G is a finite group, an invariant subspace W always has a complementary invariant
subspace U , i.e. V = W⊕U . This subspace U must also have real dimension of at least n. This observation,
combined with the integer equation 2 dimC V = 2n = dimR W +dimR U , implies that dimR W = n. We have
just shown that any non-trivial real invariant subspace of V has real dimension equal to n. Since any real
invariant subspace of W is certainly a real invariant subspace of V , and therefore is either equal { 0 } or of
dimension n, it follows that W has no non-trivial real invariant subspaces. In other words, the restriction
of ρ to W is an irreducible real representation.

In order to prove that any two invariant subspaces are isomorphic, we want to use character theory for
representations in vector spaces over the field R. Specifically, we want to apply the statement if characters
of two real representations are equal as maps from G to R then the representations are isomorphic. Let
W1,W2 be invariant real subspaces of V . We have already noted that ρ∣∣W1

⊗ C = ρ = ρ∣∣W2
⊗ C. This is

useful, because the character of the complexification of a real representation is given by the inclusion of R
into C composed with the character of the real representation. One way to see this, is the fact that any
basis B := w1, . . . , wk of the real vector space W induces a basis B̃ := w1 ⊗ 1, . . . , wk ⊗ 1 of the complex
vector space W ⊗ C with the property that the matrix representation of ρ(g) w.r.t. B is the same as the
matrix representation of ρ(g)⊗ C w.r.t. B̃ for any element g ∈ G. In summary, we have seen that

ι ◦ χρ∣∣W2

= χρ∣∣W2

⊗C = χρ = χρ∣∣W1

⊗C = ι ◦ χρ∣∣W1

,

where ι : R → C is the inclusion map. Because the inclusion map is injective, we can conclude that the
characters of ρ∣∣W1

and ρ∣∣W2
are the same, and the two representations are isomorphic.

Lemma 4.8. [Complexification of irreducible real representation] Let G be a finite group. Let ρ : G 7→
GL(V ) be an irreducible real representation. Then the complex representation ρ ⊗ C is irreducible or has
an invariant complex subspace W of complex dimension dimR V

2
. In the former case, there exists no real

ρ ⊗ C-invariant subspace of V ⊗ C whose real dimension is less than dimRV . In the latter case, all other
non-trivial invariant complex subspaces are of the same dimension, which implies that W is irreducible.
Furthermore, (ρ⊗C)∣∣W and ρ are isomorphic when interpreted as real representations. Therefore, the fact

that ρ is an irreducible real representation implies that (ρ ⊗ C)∣∣W interpreted as a real representation is

irreducible.

Proof. Suppose V = Rn and ρ is an irreducible real representation whose complexification ρ ⊗ C is not
irreducible. Let W be a (non-zero) invariant complex subspace of Rn ⊗C = Cn. In the following, by abuse
of notation, we refer to the image of Rn under the conventional inclusion of Rn in Cn by Rn. The space
W ∩ Rn is a real invariant subspace and must therefore equal either { 0 } or Rn. In the latter case, the
space W is equal to Cn. Suppose now that W ∩ Rn = { 0 }. Then U :=

(
W ⊕ κ(W )

)
∩ Rn is a non-zero

real invariant subspace, wherefore its dimension must be n. Thus, it holds that W + κ(W ) is a complex
subspace which contains Rn. Hence, it must be equal Cn. It follows that n = dimC W +κ(W ) = 2 dimC W ,
which is to say that the complex dimension of W is n

2
. The last equality in the previous sentence follows

from the observation that W ∩ κ(W ) is a subset of W ∩ Rn = { 0 }.
The claim about the two representations (ρ⊗C)∣∣W and ρ being isomorphic real representations is again

shown by computing the characters. First, note that

χC
(ρ⊗C)∣∣W + χC

(ρ⊗C)∣∣W = χC
(ρ⊗C)∣∣W + χC

(ρ⊗C)∣∣κ(W )

= χC
ρ⊗C = ι ◦ χR

ρ ,

17



so that
2Re

(
χC
(ρ⊗C)∣∣W ) = χR

ρ .

Second, we need to compare the trace of a complex endomorphism and the trace of the same endomorphism
considered as a map between real vector spaces. For this purpose, consider a matrix representation A+iB of
(ρ⊗C)∣∣W (g) with respect to some complex basis ofW for some g ∈ G and A,B ∈ Mat(dimC W×dimC W,R).
Now, there is an obvious real basis induced by the previously chosen complex basis of W . With respect to
this basis, the matrix representation of (ρ⊗ C)∣∣W (g) is an element of Mat(2 dimC W × 2 dimC W,R) and it

is described in block form by (A,−B,B,A). Here, the first entry is the block in the upper left corner, the
second entry is the block in the upper right corner, and the third entry is the block in the lower left corner.
The trace of this matrix is two times the trace of A. This happens to be equal to two times the real part
of the trace of A+ iB. We can now conclude

χR
(ρ⊗C)∣∣W = 2Re

(
χC
(ρ⊗C)∣∣W ) = χR

ρ ,

whence the two representations are isomorphic.

Lemma 4.9 (Integer equation for the dimension of a representation). Let G be a finite group and ρ : G −→
GL(V ) a representation of G on the finite dimensional vector space V . Let S denote the set of irreducible
representations of G. Let d : S −→ N be the map that maps any representation to its dimension. Then there
exists a finite subset {ρ1, . . . , ρk} of S of cardinality k ∈ N and n1, . . . , nk ∈ N such that

dim(V ) =

k∑
i=1

nid(ρi).

Proof. The statement follows immediately from the existence of a decomposition of ρ into a sum of irre-
ducible representations.
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5 Tessellations of the Hyperbolic Plane

Let n ∈ N. In this section, X is either the n-dimensional hyperbolic space Hn or the n-dimensional sphere
Sn
ϵ of radius ϵ for some ϵ > 0. In the proofs, we mostly consider only the case of hyperbolic space and the

sphere of radius 1. Since most definitions, statements and proofs are taken from [9], we frequently mention
the corresponding theorem or on which page one can find the corresponding statement in that book. For
the sake of brevity, all references without an explicitly stated source refer to this book.

5.1 An Assortment of Definitions and Some Lemmata

Definition 5.1 (Tessellation). Let I be a set and Mi ⊂ X for each i ∈ I. Then the collection of sets
{Mi | i ∈ I } is a tessellation of X if its elements cover X and have pair wise disjoint interiors, and if the
collection is locally finite. In other words, a tessellation satisifies

i
⋃

i∈I Mi = X

ii ∀i, j ∈ I : M̊i ∩ M̊j = ∅
iii ∀x ∈ X∃ϵ > 0 : # { i ∈ I | Bϵ(x) ∩Mi ̸= ∅ } < ∞.

Definition 5.2 (Fundamental domain (p. 236)). Let Γ be a group acting on X. A fundamental domain
for Γ is a connected, open subset F ⊂ X for which there exists a set F ⊂ M ⊂ F such that M contains
exactly one representative of any orbit z ∈ X/Γ.

Another way to phrase the above conditions is to say: a fundamental domain F for Γ is an open
connected set such that (gF )g∈Γ cover X and the sets (gF )g∈Γ are pairwise disjoint. The condition that F
contains at most one representative of any orbit z ∈ X/Γ is equivalent to the pair-wise disjointness of the
sets (gF )g∈Γ. The condition that the sets (gF )g∈Γ cover X is equivalent to the existence of a representative
of any orbit z ∈ X/Γ in F . So a set M can be obtained by choosing one representative in F \ F for each
orbit of Γ which is not represented in F .

Definition 5.3 (Convex set (p.195)). A subset C of Hn is convex, if the unique geodesic between any two
points x, y ∈ C is contained in C. A subset C of Sn is convex, if the unique shortest geodesic between x
and y, where x, y ∈ C are two non-antipodal points, is contained in C.

Note that, according to this definition, all sets of the form {x,−x } for any point x ∈ Sn are convex
subsets of Sn.

Definition 5.4 (Side of convex set (p. 198)). A side of a convex set C is a non-empty maximal convex
subset of its topological boundary ∂C.

Definition 5.5 (Polyhedron). A subset P of X is a polyhedron in X, if P is non-empty, closed, convex
(with respect to X), and the set of sides of P is locally finite.

Definition 5.6 (Planes and Dimension [p.117, p.123, p.195]). If X = Sn ⊂ Rn+1, then an m-plane is
the intersection of X with a (m + 1)-dimensional vector subspace of Rn+1. Equivalently, we can define
an m-plane as the image of span { e1, . . . , em+1 } ∩ Sn under an isometry of Sn, where ei refers to the i-th
standard basis vector of Rn+1.

If X = Hn, we define m-planes for the Poincare ball model Bn as follows: An m-plane is the image of
the set span { e1, . . . , em } ∩ Bn under an isometry of Bn, where ei refers to the i-th standard basis vector
of Rn.4

4There are more explicit descriptions of the m-planes of hyperbolic space for any of its models, but since the
isometry group acts transitively on the set of m-planes, see [9, Proof of Theorem 4.5.3.], our definition is equivalent
to the one used in the textbook.
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Let C ⊂ X be a non-empty convex set. The dimension of C is defined as the minimal integer m such
that C is contained in an m plane P of X, i.e.

dimX C := min {m ∈ N0 | ∃P m-plane of X : C ⊂ P } .

It is a fact that there exists exactly one (dimX C)-plane, subsequently referred to as < C >, which contains
C.

We will state - without proof - a handful of properties of polyhedrons which we will need for the proof
of a later theorem. The first of these is the following

Theorem 5.7 (Theorem 6.2.3, p. 197). Let C ⊂ X be a non-empty convex set. The interior C̊ of C viewed
as a subset of < C > is nonempty.

Proof. Omitted.

This is incredibly useful, because it implies

Lemma 5.8. If C is a non-empty convex set of the same dimension as X, then C is contained in C̊. An
equivalent way of phrasing this is

∀x ∈ C∀k ∈ N : B 1
k
(x) ∩ C̊ ̸= ∅.

In fact, the somewhat stronger statement

∀x ∈ C∃K > 0∀0 < ϵ < K : Sϵ(x) ∩ C̊ ̸= ∅

holds.

Proof. Let x ∈ C and ϵ > 0. Our task is to produce an element y ∈ C̊ whose distance to x is ϵ. Since
the dimensions of C and X are the same, the plane < C > generated by C is the entire space X. By the
previous lemma, the interior of C as a subset of X is non-empty, i.e. there exists a z ∈ C and δ > 0 such
that Bδ(z) ⊂ C. We may assume that x /∈ Bδ(z), for if this is the case, the lemma is obviously true.

The idea is to pull this open ball towards x along the geodesic segments between x and the elements of
the ball. If X is the unit sphere, we can assume without loss of generality that z and x are not antipodal
and that −x /∈ Bδ(z). This can be achieved by choosing a different point in the ball and a smaller radius,
if necessary. Given these preliminaries, we can solve the problem by rescaling the preimage under the
exponential map at x. More precisely, the exponential map expx restricted to the set Bπ(0) ⊂ TxSn

is a diffeomorphism onto Sn \ {−x }. In the case where X is a hyperbolic space, the exponential map
expx : TxX → X is a diffeomorphism. Now let r := d(x, z) and move the preimage of Bδ(z) under the
exponential map towards the origin, i.e. consider

U :=
ϵ

r
exp−1

x (Bδ(z)).

We claim that
y := expx(

ϵ

r
exp−1

x (z)) satisfies y ∈ C̊ and d(x, y) = ϵ.

Obviously, the distance between y and x is equal ϵ, as long as ϵ < π. If ϵ ≤ r, then y lies in C, because
C contains the unique minimizing geodesic between the points x and z and this geodesic is given by
[0, 1] → X, t 7→ expx(t exp

−1
x (z)). The same argument shows that the entire open subset expx(U) is

contained in C. Hence, y lies in the interior of C.
By inspecting the proof, one can conclude that the constant K from the statement of the lemma can

be chosen in dependence on x as the minimum of r and π.

Another helpful statement is the next
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Theorem 5.9 (Theorems 6.3.1 and 6.3.4, p. 201). The side of a m-dimensional polyhedron is a (m− 1)-
dimensional polyhedron.

Proof. Omitted.

Definition 5.10 (Dihedral angle). Suppose P is a one-dimensional polyhedron in S1. Then P is either S1

or a geodesic segment whose length is less than or equal π. Thus, P has less than two sides unless its length
is strictly less than π, in which case it has exactly two sides. The two sides S, T of P are the endpoints
x, y ∈ S1 of the geodesic segment P , i.e. S = {x } , T = { y }. The dihedral angle θ(S, T ) between the two
sides is defined by

θ(S, T ) ∈ (0, π) and cos(θ(S, T )) = (x, y),

where (·, ·) denotes the euclidean inner product on R2.
Suppose P is a compact two-dimensional polyhedron in H2. The purpose of the compactness assumption

is to exclude the possibility of so called ideal vertices, that is vertices which lie on the boundary of the
disk in the Poincare disk model. Then the dihedral angle θ(S, T ) is defined for any two distinct sides S, T
of P which intersect. Note that the sides are one-dimensional convex sets, whence they must be geodesic
segments. Suppose that S intersects T , and let x ∈ S ∩ T . By translating x to the origin 0, we can assume
without loss of generality that S and T are subsets of straight lines through the origin. Therefore, there
exist u, v ∈ S1 such that S ⊂ { tu | t ∈ [0, 1] } and T ⊂ { tv | t ∈ [0, 1] }. We define the dihedral angle θ(S, T )
of S and T by

θ(S, T ) ∈ (0, π) and cos(θ(S, T )) = (u, v),

where (·, ·) denotes the euclidean inner product on R2.
For the definition for general polyhedra, we refer to [9, p. 213].

Definition 5.11 (Reflections). We define reflections for (n − 1)-planes P in X. Note that P is a co-
dimension one submanifold of X, wherefore the tangent space of X at a point x ∈ P can be decomposed
into TxX ∼= TxP ⊕ Rv where v ∈ TxX is any vector orthogonal to TxP . The reflection in P is an isometry
ΦP of X which restricts to the identity on P and whose derivative at any point x ∈ P is given by

TxP ⊕ Rv → TxP ⊕ Rv (3)

w + tv 7→ w − tv.

There exists a unique map with the above properties, see the following lemma.
Let Q be an n-dimensional polyhedron in X and S a side of Q and P the unique (n − 1)-plane in X

which contains S. The reflection gS : X → X in the side S is defined as the reflection ΦP in the plane P .

Lemma 5.12. For any (n− 1)-plane P in X, there exists a unique reflection in P .

Proof. Let p ∈ P . The uniqueness of a reflection in the plane P is a direct consequence of the surjectivity
of the exponential map expp and the equation

ϕ ◦ expp = expp ◦dpϕ

which holds for any isometry ϕ that fixes p.
The above equation is of little use when it comes to defining an isometry. While we know that an

isometry is completely determined if its derivative at a point is known, the equation says little about the
existence of isometries. Given a complete connected Riemannian manifold M , a point p ∈ M , and an
orthogonal linear endomorphism L of TpM , one cannot expect an isometry whose derivative a p is L to
exist. Of course, one can compute the derivative dv expp of expp at the point v ∈ TpM , use the equation to
obtain an explicit description of the derivative of Φ at expp(v), and check if it is an isometry. We choose a
different approach to avoid these calculations.
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We claim that it suffices to show the existence of reflections in the plane PX , which is defined as

PX :=

{
PHn := span { e1, . . . , en−1 } ∩Bn if X = Hn

PSn := span { e1, . . . , en } ∩ Sn if X = Sn,

where ei is the i-th standard basis vector in Rn and Rn+1, respectively.
Suppose that P is an (n− 1)-plane in X. By our definition of planes in X, there exists an isometry Ψ

which maps PX onto P . Suppose that a reflection ΦPX in the plane PX exists. Then the conjugation of
ΦPX by Ψ is a reflection in the plane P : The map Ψ ◦ ΦPX ◦ Ψ−1 restricts to the identity on P and its
derivative at the point x ∈ P satisfies Equation (3). The statement about the derivative is a consequence
of the fact that the derivative of the isometry Ψ maps the orthogonal decomposition TxPX ⊕ (TxPX)⊥ onto
the orthogonal decomposition TxP ⊕ (TxP )⊥.

We complete the proof by providing an explicit formula for the reflection in PX . The maps

ΦPSn : Sn → Sn (4)
n∑

i=1

λiei + λn+1en+1 7→
n∑

i=1

λiei − λn+1en+1

and

ΦPHn : Bn → Bn (5)

n−1∑
i=1

λiei + λnen 7→
n−1∑
i=1

λiei − λnen

are isometries and it is not hard to check that they have the desired properties.

5.2 Links of a Polyhedron - Some Local Considerations

Lemma 5.13. The distance sphere around any x ∈ X of a sufficiently small radius r > 0 in X is a
Euclidean sphere, i.e. Sr(x) := { y ∈ X | d(x, y) = r } ⊂ X is isometric to the (n − 1)-dimensional sphere
Sn−1

R̃
of some radius R̃ > 0.

Proof. Case X = Hn: We use the Poincaré ball model B of hyperbolic space. It suffices to consider the
distance spheres Sr(0) around the origin. For any p ∈ B, there exists an isometry which maps p to 0. This
isometry restricts to an isometry between Sr(p) and Sr(0). Thus, if Sr(0) is a Euclidean sphere, the same
is true for Sr(p).

In order to show that Sr(0) is a Euclidean sphere, it suffices to show the equality of sets Sr(0) =
{ z ∈ B | ∥z∥euclid = R }. This is a consequence of the Riemannian metric of X at the point x ∈ X being
given by

(v, w) 7→ 4∑
i x

2
i

∑
i

viwi,

where we use the standard identification of the tangent space at x with Rn. The description clearly shows
that the metric only depends on the Euclidean norm of the point. If the above equality of sets holds, it
follows that the metric on Sr(0) is a constant multiple of the metric on Sn−1

r .
Let x ∈ Sr(0) for some radius r > 0 and define R := ∥x∥Euclid. We claim that any element y ∈ B with

∥y∥Euclid = R also lies in the distance sphere Sr(0). It is clear that the action of the orthogonal group
O(n) on Rn leaves the unit ball invariant and preserves the Riemannian metric. Thus, they restrict to
isometries of the Poincaré Ball. Furthermore, the group O(n) acts transitively on the Euclidean distance
sphere { z ∈ Rn | ∥z∥Euclid = R } and the action of any element of the group fixes the origin 0 ∈ B. Finally,
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we observe that if Φ ∈ O(n) maps x onto y, then d(y, 0) = d(Φ(x),Φ(0)) = d(x, 0). Thereby, we have
proven the inclusion

{ y ∈ B | ∥y∥Euclid = R } ⊂ Sr(0). (6)

We claim that the converse inclusion also holds, i.e.

Sr(0) ⊂ { y ∈ B | ∥y∥Euclid = R } .

It suffices to show that y, z ∈ B with ∥y∥Euclid ̸= ∥z∥Euclid also satisfy d(y, 0) ̸= d(z, 0). Without loss of
generality, we may assume that ∥y∥Euclid > ∥z∥Euclid.

Let η : [0, c] → X be a minimizing geodesic segment from 0 to y parameterized at unit speed. Since the
complement of { v ∈ Rn | ∥v∥Euclid = ∥z∥Euclid } in B is disconnected and the path η starts in one component
and ends in the other, the path must intersect the aforementioned set at some time t0 < c. That is to say,
∥η(t0)∥Euclid = ∥z∥Euclid. Since η is distance preserving, we conclude that

d(z, 0)
Equation (6)

= d(η(t0), 0)
t0<c
< d(η(c), 0) = d(y, 0).

Case X = Sn: An argument similar to the above should work, which is why we worded the above proof
without using uniqueness of geodesics. We omit the proof and refer to the general literature.

Theorem 5.14 (Theorem 6.4.1, p. 214). Suppose that P is a polyhedron of dimension m > 1. Let x ∈ P ,
and ϵ > 0 sufficiently small. Then the set P ∩ Sϵ(x) is an (m − 1)-dimensional polyhedron in Sϵ(x). Let
S(P ∩Sϵ(x)) denote the set of sides of the polyhedron P ∩Sϵ(x). The set of sides of said polyhedron is given
by

S(P ∩ Sϵ(x)) = {S ∩ Sϵ(x) | S is a side of P and x ∈ S } .
The dihedral angle between any two adjacent sides S, T of P is equal to the dihedral angle between the
adjacent sides S ∩ Sϵ(x) and T ∩ Sϵ(x) of P ∩ Sϵ(x).

5

Proof. We consider only the case where P is a compact 2-dimensional polyhedron in the hyperbolic plane
H2 and refer to the textbook for the general case. There are three distinct possibilities for a point x ∈ P .
It either lies in the interior of P , in exactly one side of P , or exactly two sides of P . To see this, note that
P is the union of its boundary and its interior, and the boundary is covered by the sides of P . Therefore,
if x is not in P̊ , it must lie in at least one side of P . All that remains to be shown to prove the claim is the
fact that there are at most two sides S1 and S2 of P which contain x. This is illustrated in the Figure 1.

Suppose that x = 0 ∈ B2 lies in the sides S1 and S2. Let S3 be a third side with x ∈ S3. We will
show that S3 is not a subset of the boundary ∂P . Any side of P is a one-dimensional polyhedron and
must therefore be a segment of a geodesic line. The planes < S1 > and < S2 > are straight lines through
the origin. They divide the disk B2 into four quadrants, one of which contains P , see [Theorem 6.3.2.,
p.202]. Let us label the quadrant which contains the polyhedron by the name Q1. Choose two points B
and C which lie in the sides S1 and S2, respectively. Consider the triangle with vertices A := 0, B, and C.
Since the polyhedron P is convex, the triangle is contained in P . This can easily be seen to be true in the
projective disk model of the hyperbolic plane, where the geodesics are all contained in straight lines. The
side S3 is a subset of some ray L which starts in the origin and lies in the quadrant Q1. In particular, the
side S3 intersects the interior of the triangle with vertices A, B, and C. Therefore, the intersection of S3

and P̊ is non-empty, which is to say that S3 is not a subset of the boundary ∂P , and, hence, is not a side
of P .

The case x ∈ P̊ is trivial, because P ∩ Sϵ(x) = Sϵ(x) for sufficiently small ϵ.

5We have not yet defined the term adjacent for two sides of a polyhedron. For a compact 2-dimensional polyhedron
P in H2, two distinct sides S, T are adjacent if they intersect. If this is the case, S and T must be geodesic segments
which have exactly one endpoint in common. For a compact 1-dimensional polyhedron P in S1, two sides S and T
of P are adjacent if S ̸= P . For the general definition, see [p.213].
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Figure 1: The 2-dimensional polyhedron P is contained in the quadrant Q1 created by the straight lines < S1 > and
< S1 >, which are the 1-planes generated by the sides S1 and S2 of P . The point A ∈ P can lie in at most two sides S1

and S2 of P .
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If x lies on an edge S of P and is not a vertex, then there exists a neighborhood of x which intersects
only one edge of P . One can show that Sϵ(x) intersects the edge that contains x at antipodal points of
the circle Sϵ(x). One way to see this is to translate x to the origin 0 ∈ B so that the edge S is mapped
to a straight line through the origin and Sϵ(x) becomes a Euclidean circle centered at the origin. By the
definition of convexity, the polyhedron P ∩ Sϵ(x) has exactly one side, namely the set Sϵ(x) ∩ S.

The final case is the situation that x is a vertex, i.e. x lies on two edges. By applying a translation, if
necessary, we can assume that x is the origin. Then the distance sphere Sϵ(0) is a Euclidean circle centered
at 0, and the edges are straight lines through the origin. This should imply that P ∩ Sϵ(x) is the segment
between the two points on the circle which are given by the intersection of either edge with the circle.

Lemma 5.15. Let S be a side of an n-dimensional polyhedron Q. Suppose x ∈ S and ϵ := ϵ(x) > 0 is
sufficiently small. Then

gS∣∣Sϵ(x)
= gS∩Sϵ(x),

i.e. the restriction of the reflection gS in the side S of Q to the sphere Sϵ(x) is the reflection in the side
S ∩ Sϵ(x) of the polyhedron Q∩ Sϵ(x). The latter set is interpreted as a polyhedron in the geometric sphere
Sn−1
R , with R > 0 being chosen such that Sϵ(x) is isometric to Sn−1

R .

Proof. We only prove the lemma for X = Hn. We begin by considering the special case x = 0 ∈ Bn and
< S >= PHn , whereafter we reduce the general case to this situation. Let ϵ > 0 be sufficiently small for
Lemma 5.13 and Theorem 5.14 to hold. This guarantees the existence of an R > 0 such that Sϵ(0) is
isometric to Sn−1

R . Furthermore, it implies that Q ∩ Sϵ(0) is an (n− 1)-dimensional polyhedron in Sn−1
R .

The explicit descriptions in Equations (4) and (5) show that the reflection ΦPHn in the plane PHn

restricted to the sphere Sϵ(0) is the reflection in the plane PSn−1
R

= Sϵ(0) ∩ span(e1, . . . , en−1), i.e.

gS∣∣Sϵ(0)
= Φ<S>

∣∣Sϵ(0)
= ΦPHn

∣∣Sn−1
R

= ΦP
Sn−1
R

.

To prove the equality gS∣∣Sϵ(0)
= gS∩Sϵ(0), we need only show that the plane < S ∩ Sϵ(0) > generated by

the side S ∩ Sϵ(0) is given by PSn−1
R

. This would imply

ΦP
Sn−1
R

= Φ<S∩Sϵ(0)> = gS∩Sϵ(0),

which combined with the previous equation results in the desired conclusion. We proceed to proving the
equality of the planes < S ∩ Sϵ(0) > and PSn−1

R
. First, note that S is contained in the vector subspace

span(e1, . . . , en−1) of Rn, whence S ∩ Sϵ(0) is contained in span(e1, . . . , en−1) ∩ Sϵ(0) = PSn−1
R

. The latter

object is an (n− 2)-plane. Since the side S ∩ Sϵ(0) of the polyhedron Q ∩ Sϵ(0) is of dimension n− 2 and
there exists only one (n − 2)-plane which contains a specific (n − 2)-dimensional convex subset, it follows
that < S ∩ Sϵ(0) >= PSn−1

R
.

Now, consider the general case of a side S of Q which is not necessarily contained in PHn , a point
x ∈ S, and an ϵ > 0 which is sufficiently small. We claim that there exists an isometry Ψ which maps
< S > onto PHn and x onto 0. According to our definition of hyperbolic planes, there exists an isometry
Ψ̃ which maps the plane PHn onto the (n − 1)-plane < S > generated by the side S of Q. By composing
Ψ̃ with a translation τ of Ψ̃(x) to 0 which maps PHn onto PHn , we obtain an isometry which maps < S >
onto PHn and x onto 0. A map with the properties required of τ exists: any translation between the two
points maps PHn onto the intersection of Bn and an (n− 1)-dimensional vector subspace V of Rn. We can
subsequently move V ∩Bn into the position of PHn by applying an orthogonal transformation. Therefore,
the composition of the translation and the orhogonal transformation is an isometry of hyperbolic space
which maps ˜Ψ(x) to 0 and PHn onto itself. In summary, the map Ψ := τ ◦ Ψ̃ has the desired properties.
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The reflection in < S > is obtained from the reflection in Ψ−1(< S >) = PHn by conjugation with Ψ,
as was discussed in detail in the proof of Lemma 5.12. We conclude that

gS∣∣Sϵ(x)
=Ψ ◦ gΨ−1(S) ◦Ψ

−1∣∣Sϵ(x)

Previous discussion
= Ψ ◦ gΨ−1(S)∩Sϵ(0) ◦Ψ

−1∣∣Sϵ(x)
= gS∩Sϵ(x),

where the final equality stems from the following consideration: First, the conjugation by Ψ∣∣Sϵ(0)
of the

reflection in the plane < Ψ−1(S) ∩ Sϵ(0) > is the reflection in the plane Ψ(< Ψ−1(S) ∩ Sϵ(0) >). Second,
the latter plane is no other than < Ψ(Ψ−1(S) ∩ Sϵ(0)) >=< S ∩ Sϵ(x) >, which is a consequence of a
uniqueness argument similar to one we employed in the first part of the proof.

Definition 5.16. For any polyhedron P in X, define ΓP as the subgroup of the isometry group of X
generated by the reflections in the sides of P , i.e.

ΓP :=< gS | S is a side of P > .

Let x ∈ P . Define ΓP (x) as the subgroup of ΓP generated by the reflections in those sides of P which
contain x, i.e.

ΓP (x) :=< gS | S is a side of P and x ∈ S > .

Lemma 5.17. Let x ∈ P and ϵ > 0 sufficiently small. Recall that P ∩ Sϵ(x) is a polyhedron in the sphere
Sϵ(x). In this situation, the homomorphism

ρ : ΓP (x) −→ ΓP∩Sϵ(x)

g 7→ g∣∣Sϵ(x)

is well defined and bijective.

Proof. The proof is based on the following equality of sets: If a subgroup H of a group G is generated by
a subset F ⊂ H ⊂ G, then

H = {
k∏

i=1

hi | k ∈ N and h1, . . . , hk ∈ F ∪ F−1 } .

The inclusion ’⊃’ is obvious: finite products of elements of a subgroup are themselves elements of the
subgroup. The inclusion ’⊂’ follows from the fact that

H =
⋂

J∈{ I⊂G|I is subgroup of G and F⊂I }

J

and the fact that

{
k∏

i=1

hi | k ∈ N and h1, . . . , hk ∈ F ∪ F−1 }

is a subgroup of G that contains F .
ρ is well defined:

Let g ∈ ΓP (x), then there exist sides S1, . . . , Sk of P , all of which contain x, such that g =
∏k

i=1 gSi . It
follows that

g∣∣Sϵ(x)
=

(
k∏

i=1

gSi

)
∣∣Sϵ(x)

=

k∏
i=1

gSi
∣∣Sϵ(x)

lemma5.15
=

k∏
i=1

gSi∩Sϵ(x). (7)
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Since the sets Si∩Sϵ(x) are sides of the polyhedron P ∩Sϵ(x), the maps gSi∩Sϵ(x) are elements of ΓP∩Sϵ(x).
We have shown that g∣∣Sϵ(x)

is the product of elements of ΓP∩Sϵ(x), which implies that the map itself is an

element of the group.
ρ is surjective:

Let g′ ∈ ΓP∩Sϵ(x). There exist sides S′
1, . . . , S

′
k of P ∩ Sϵ(x) such that g′ is equal

∏k
i=1 gS′

i
. By Theorem

5.14, the sides S′
i are given by Si ∩ Sϵ(x) for some sides Si of P which contain x. This tells us that g′ is

equal to
∏k

i=1 gSi∩Sϵ(x), and we obtain

g′ =

(
k∏

i=1

gSi

)
∣∣Sϵ(x)

from the latter two equalities of equation (7). Since the maps gSi ∈ ΓP (x), this shows that g′ ∈ im(ρ). We
conclude that ρ is surjective.

ρ is injective:
It suffices to show that an isometry g of X which fixes the point x is uniquely determined by its values on
the sphere Sϵ(x). This, in turn, would follow if we could show that g is determined on B ϵ

2
(x): In this case,

the derivative of g at x is determined, and this determines the isometry via the exponential map, which is
surjective, since X is complete.

Let y ∈ B ϵ
2
(x). Assume that there exists a geodesic γ and an interval 0 ∈ I ⊂ dom(γ) such that

γ(I) ⊂ Bϵ(x), γ(0) = y and there exist t1, t2 ∈ I such that γ(t1) and γ(t2) are distinct points in Sϵ(x). The
isometry g maps γ onto the geodesic gγ with the property gγ(I) ⊂ Bϵ(x). A geodesic inside a sufficiently
small ball connecting two points in said ball is uniquely determined (up to reparameterisation to different
constant speeds) by those two points. It follows that

gγ∣∣[t1,t2]
is equal to the unique unit speed geodesic γ̃ which connects the two points gγ(t1) and gγ(t2) and lies in
Bϵ(x). This proves that the values of g are determined on B 1

2
ϵ(x), since

gy = gγ(0) = γ̃(0)

and γ̃ depends only on g∣∣Sϵ(x)
.

About the existence of such geodesics: Let τ be a unit speed geodesic with τ(0) = y. Note that we have

d(τ(t), y) = |t|

for sufficiently small values t and
Bϵ(x) ⊂ B 3ϵ

2
(y)

by the triangle inequality. Therefore, τ( 3ϵ
2
), τ(− 3ϵ

2
) ∈ X \B 3ϵ

2
(y) ⊂ X \Bϵ(x). The two maps

f± : R −→ R
t 7−→ d(τ(±t), x)

are continuous and satisfy

f±(0) = d(y, x) <
ϵ

2
and f±(

3ϵ

2
) > ϵ.

By the intermediate value theorem, there exist t1, t2 > 0 with

f+(t1) = f−(t2) = ϵ,
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which is just another way of saying τ(t1), τ(−t2) ∈ Sϵ(x). Note also, that B ϵ
2
(y) ⊂ Bϵ(x), which implies

τ
(
(− ϵ

2
,− ϵ

2
)
)
⊂ Bϵ(x). If we let

t1 := inf { t ∈ (0,∞) | τ(t) ∈ Sϵ(x)) } and t2 := inf { t ∈ (0,∞) | τ(−t) ∈ Sϵ(x)) } ,

then it holds that ϵ
2
< t1, t2 < 3ϵ

2
, τ ((−t2, t1)) ⊂ Bϵ(x), and τ(t1), τ(−t2) ∈ Sϵ(x). Upon closer inspection,

it is clear that our argument does not really require τ(t1) ̸= τ(−t2). However, in the above, we did claim the
existence of a geodesic through y which intersects the distance sphere Sϵ(x) in two distinct points. Indeed,
this is the case, as there are no self-intersecting geodesics of length strictly less than 2π in Sn or Hn.

5.3 An Example: Tessellations of the Circle

Figure 2: An example of the
case where the length of the
segment A is an odd sub-
multiple of 2π. The purple seg-
ment is the image of A under
both a reflection and a rota-
tion contained in the reflection
group ΓA generated by A.

Let us return to the situation of a polyhedron P in the hyperbolic plane H2.
Let ϵ > 0 and x ∈ P . The previous subsection explained that the sets P∩Sϵ(x)
are 1-dimensional polyhedrons in a geometric sphere. The idea behind the
proof showing that

{ gP | g ∈ ΓP }
is a tessellation of the hyperbolic plane, is to show that

{ gP ∩ Sϵ(x) | g ∈ ΓP (x) }

is a tessellation of S1
ϵ and use this to understand the ’local’ properties of the

collection of translates of P in H2.
First, we note an obvious necessary condition for a family of translates of

a polyhedron to tessellate the circle. We interpret the circle S1 as a subset
of the complex plane. By a segment of the circle, we mean any set of the
form A(c1, c2) := { eiθ | c1 ≤ θ ≤ c2 }, where c1, c2 are positive real numbers
with |c2 − c1| < 2π and c1 < c2. The length l of any such segment is equal to

c2 − c1. If a collection (Ai)i∈I of segments of the same length tessellate the circle, then

2π =
∑
i∈I

l(gi(A)) = l(A1)#I,

because the overlap between two different segments consists of one point and has length zero. Therefore,
the cardinality of I is finite and the length of A is equal to 2π

#I
.

Lemma 5.18. Let c1, c2 ≥ 0 with l := c2 − c1 = 2π
m

for some integer m > 1 and consider the segment
A := A(c1, c2). Then the the collection

{ gA | g ∈ ΓA }
is a tessellation of S1 if and only if m is even. In that case,

ΓA = { e2ikl | k ∈ { 1, . . . , m
2

} } ∪ { gei(c1−kl) | k ∈ { 1, . . . , m
2

} } .

Proof. For the sake of readibility, we introduce some labels: a := eic1 , b := eic2 . We mention that the
groups ΓA({ a }) and ΓA({ b }) generated by the reflection in the point a and b, respectively, contain only
two elements. These are the reflection of S1 in the respective point and the identity. This follows from the
fact that reflections are self inverse.

Next, we compute the group ΓA. As a first step, we note that the underlying set can be described as

{ 1 } ∪ { (gagb)k | k ∈ N } ∪ { (gbga)k | k ∈ N } ∪ { gb(gagb)k | k ∈ N } ∪ { ga(gbga)k | k ∈ N } . (8)
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We claim that the reflections in the boundary points of the segment are given by

gae
iθ = ei(c1−(θ−c1)) and gbe

iθ = ei(c2−(θ−c2)) = ei(2c2−θ),

for any θ ∈ R. One way to see that ga is the reflection around a, is to note that it is an isometry since
it preserves the distance between any two points. Futhermore, the path t 7→ ei(c1+t) is mapped onto the
path t 7→ ei(c1−t). The velocities at t = 0 are given by ieic1 and −ieic1 , respectively. This shows that the
derivative of ga at a is −IdTaS1 . The same argument applies to gb.

Visually, it is clear that the product of an even number of reflections is a rotation and the product of an
odd number of reflections is a reflection. We proceed with an explicit descriptions of the products. First,
observe that

gbgae
iθ = gbe

i(2c1−θ) = ei(2c2−2c1+θ) = e2i(c2−c1)eiθ = e2ileiθ

for any θ ∈ R. That is to say, gbga is the rotation by the angle 2l. We will notate this by

gbga = e2il,

where we interpret the complex number e2ikl as an isometry of S1. Since gagb is the inverse of gbga, the
equality gagb = e−2il follows immediately. Another immediate consequence is the equation

(gbga)
k = e2ikl.

Assume that m is odd, i.e. m = 2p + 1 for some p ∈ N. It is not hard to see that the powers of the
composition gbga of the reflections in the boundary points of the segment A are exactly the rotations by
the angles 2π k

2p+1
, where k = 0, . . . , 2p.6 Therefore, the cardinality of the set { (gagb)k | k ∈ N } is equal to

m. The group ΓA also contains at least one reflection. Thus, its cardinality is at least m+ 1. This shows
that

l#ΓA ≥ 2π

m
(m+ 1) > 2π,

which allows us to conclude that the collection in (5.18) is not a tessellation. See Figure 2.

6Since this argument is not terribly interesting, it is relegated to a footnote. First, we note that 2ikl = 2πi 2k
2p+1

,

wherefore

{ (gbga)k | k ∈ N } = { e2πi 2k
2p+1 | k ∈ N } .

Next, we take a closer look at 2k
2p+1

mod 1. We note the following equalities of sets:

{
2k

2p+ 1
mod 1 | k =∈ N } = {

2k

2p+ 1
| k = 0, . . . , 2p }

= {
2k

2p+ 1
mod 1 | k = 0, . . . , p } ∪ {

2p

2p+ 1
+

2k

2p+ 1
mod 1 | k = 1, . . . , p }

= {
2k

2p+ 1
mod 1 | k = 0, . . . , p } ∪ {

2k − 1

2p+ 1
mod 1 | k = 1, . . . , p }

= {
k

2p+ 1
mod 1 | k = 0, . . . , 2p } .

From the above, the equality

{ (gbga)k | k ∈ N } = { e2πi k
2p+1 | k = 0, . . . , 2p }

follows immediately.
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Suppose now that m is even, i.e. m = 2p for some p ∈ N. We want to describe the group ΓA explicitly,
for which purpose we note that

(gagb)
k = e−2ikl = e

−2πi k
p

ga(gbga)
keiθ = ei(2c1−2kl−θ) = e

i(2(c1−π k
p
)−θ)

= g
e
i(c1−π k

p
)e

θ

gb(gagb)
keiθ = e

i(2(c2−π k
p
)−θ)

= g
e
i(c2−π k

p
)e

θ

for any k ∈ N and θ ∈ R. These descriptions imply

gb(gagb)
k = ga(gbga)

k−1

for any k ∈ N, because of the fact that

c2 − π
k

p
= c1 + l − π

k

p
= c1 − π

k − 1

p
.

The reflection around a point x = eiθ0 in S1 is the same map as the reflection around its antipodal point
−x, because ei(2θ0−θ) = ei(2(θ0+π)−θ) for any θ ∈ R. In other words,

{ g
e
i(c1−π k

p
) | k ∈ N0 } = { g

e
i(c1−π k

p
) | k = 1, . . . p } .

To summarize the above discussion, we have seen that

{ (gagb)k | k ∈ N } = { e−2πi k
p | k = 1, . . . , p } = { e2πi k

p | k = 1, . . . , p } = { (gbga)k | k ∈ N }

and
{ gb(gagb)k | k ∈ N } = { ga(gbga)k | k ∈ N0 } = { g

e
i(c1−π k

p
) | k = 1, . . . , p } .

By inserting these results into the the description of ΓA given in (8), we arrive at the conclusion

ΓA = { e2πi k
p | k = 1, . . . , p } ∪ { g

e
i(c1−π k

p
) | k = 1, . . . , p } .

The circle is tessellated by the 2p segments of length π
p
. For every segment given as the image of A under

a rotation, the adjacent segments are given as the image of A under a reflection. See Figure 3.

5.4 Sufficient Conditions for a Polyhedron to Induce a Tessellation

The next lemma, affirming the existence of a so called Lebesgue number for open covers of a compact metric
space, is a basic statement from topology. We will use it in the main proof of this section. The reason the
theorem is included here is that it is usually stated for compact metric spaces. We, however, will apply it
to a cover of a compact subset of a metric space by open subsets of the ambient metric space.

Lemma 5.19 (Lebesgue number, see [2]). Let (M,d) be a metric space and K ⊂ M a compact subset. Let
I be a set and let (Ui)i∈I be a collection of open subsets of M which cover K. Then it holds that

∃l > 0∀x ∈ K∃i ∈ I : Bl(x) ⊂ Ui.

Proof. Omitted. The proof in the referenced textbook requires only minor modifications.

30



Figure 3: An example of the
case where the length of the
segment A is an even sub-
multiple of 2π. The purple seg-
ments are images of A under a
unique reflection of the reflec-
tion group ΓA. The yellow seg-
ments are images of A under
a unique rotation of the reflec-
tion group ΓA.

Before we prove the main theorem of this section, we briefly discuss the local
situation of tessellations induced by a compact hyperbolic triangle P whose
angles are sub-multiples of π. Consider the situation depicted in Figure 4.
If the point p := p2 lies in the interior of the triangle, there is no need to
involve any reflections to cover a neighborhood of p2. If a point p := p3 lies
on exactly one side of the triangle, a neighborhood of p in H2 is given by
the union of P and its image under the reflection in the side that contains
p. The interesting case are the vertices of the triangle, i.e. points p := p1
at which two sides intersect. In this situation, we look at sufficiently small
distance spheres Sϵ1(p1) and apply the discussion from Lemma 5.18 to the
segment of the circle colored in purple in the figure, namely the intersection
of P and Sϵ1(p1). This tells us that Sϵ1(p1) is tessellated by the images of
the segment Sϵ1(p1) ∩ P under a finite subgroup of the isometry group of H2.
Since the same holds for circles of all radii 0 < ϵ < ϵ1, we can conclude that
the ball Bϵ1(p1) is tessellated by the images of Bϵ1(p1) ∩ P under a finite
subgroup of the isometry group. The idea of reducing the local situation to a
tessellation of a lower dimensional sphere is explained in detail in the proof of
the next theorem and works for hyperbolic space of all dimensions n ≥ 2. The
difficulty lies in making sure that the reflection group of the polyhedron does not contain any isometries
which map the polyhedron onto a set which intersects the ball Bϵ1(p1) except for the isometries in the
subgroup determined in the local argument.

Theorem 5.20 (Theorem 7.1.3, p.265). Let P be an n-dimensional compact polyhedron in either one of
the two spaces X := Sn or X := Hn. If the dihedral angle between any two adjacent sides S and T of P is
an element of { π

n
| n ∈ N }, then

{ gP | g ∈ ΓP }
is a tessellation of the space.

Proof. We begin by introducing some notation used subsequently: Let S denote the set whose elements are
the sides of P . Let S(x) denote the set whose elements are the sides of P which contain x.

The proof proceeds by induction on the dimension of the space X. The case of S1 was described in
detail in an earlier example (see Lemma 5.18). The case of H1 is omitted. Suppose now that n ∈ N with
n > 1 .

Part One: Let x ∈ P . Then there exists ϵ := ϵ(x) > 0 such that { gP ∩Bϵ(x) | g ∈ ΓP (x) } is a
tessellation of Bϵ(x). Furthermore, ΓP (x) is finite.
The statement is trivial if x ∈ P̊ : Since some neighborhood of x is contained in P̊ = P \∂P = P \ (∪S∈SS),
x is not contained in any side of P . Therefore, ΓP (x) is the trivial subgroup. For an ϵ > 0 small enough to
guarantee Bϵ(x) ⊂ P , the claim reduces to

{Bϵ(x) } is a tessellation of Bϵ(x),

which is obviously true.
Now, let x ∈ ∂P . Let ϵ > 0 be sufficiently small so that Bϵ(x) only intersects the sides of P that

contain x and ϵ < π
2
. For any 0 < δ < ϵ, Theorem 5.14 implies that the set P ∩ Sδ(x) is a polyhedron in

an (n− 1)-dimensional sphere whose dihedral angles are still submultiples of pi.
Until now, we have used the notation gU for the image of U ⊂ X under the map g : X → X. For the

next couple of sentences the notation g(U) is used instead for the sake of clarity. The induction hypothesis
applied to this polyhedron implies that

{ g′(P ∩ Sδ(x)) | g′ ∈ ΓP∩Sδ(x) }
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Figure 4: The three distinct possibilities for the local situation of tessellation induced by a compact 2-dimensional polyhedron
(in the figure, a triangle) in the hyperbolic plane depicted in the Poincare disk model.
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is a tessellation of Sδ(x). To show the equality of sets

{ g′(P ∩ Sδ(x)) | g′ ∈ ΓP∩Sδ(x) } = { g(P ) ∩ Sδ(x) | g ∈ ΓP (x) } ,

we use the map ρ from lemma (5.17). The inclusion ′ ⊂′ follows from the equality

g′(P ∩ Sδ(x)) = ρ−1(g′)(P ) ∩ Sδ(x),

for any g′ ∈ ΓP∩Sδ(x), and the inclusion ′ ⊃′ is a consequence of

g(P ) ∩ Sδ(x) = ρ(g)(P ∩ Sδ(x)),

for any g ∈ ΓP (x). Since the two collections of sets are the same and one is a tessellation, the same holds
for the other, i.e.

{ g(P ) ∩ Sδ(x) | g ∈ ΓP (x) } is a tessellation of Sδ(x). (9)

This information allows us to deduce that { gP ∩Bϵ(x) | g ∈ Γ(x) } is a tessellation of Bϵ(x). First,
note that ⋃

g∈Γ(x)

gP ∩Bϵ(x) =
⋃

g∈Γ(x)

gP ∩

(
{x } ∪

⋃
0<δ<ϵ

Sδ(x)

)

= {x } ∪
⋃

0<δ<ϵ

⋃
g∈Γ(x)

gP ∩ Sδ(x)
Equation9

= {x } ∪
⋃

0<δ<ϵ

Sϵ(x)

= Bϵ(x).

Second, let g, h ∈ ΓP (x) and suppose the set(
gP̊ ∩Bϵ(x)

)
∩
(
hP̊ ∩Bϵ(x)

)
is not empty. Then the image of this set under g−1, given by P̊ ∩ Bϵ(x) ∩ g−1hP̊ , is non-empty. Let
y ∈ P̊ ∩Bϵ(x) ∩ g−1hP̊ . Since x ∈ ∂P and y ∈ P̊ , we have y ̸= x. Therefore, 0 < dX(x, y) < ϵ and

y ∈
(
P̊ ∩ SdX (x,y)(x)

)
∩
(
g−1hP̊ ∩ SdX (x,y)(x)

)
= ∅,

where the last equality follows from the statement in Equation (9). This contradicts the fact that the empty
set does not contain any elements. Hence the interior of the elements of our collection are pairwise disjoint.

Third, again from the statement in Equation (9), it follows that { gP̊ ∩ Sδ(x) | g ∈ ΓP (x) } is a collection
of pairwise disjoint open subsets of a compact space. Hence, it is finite. From Lemma 5.8, we know that
P̊ ∩ Sδ(x) ̸= ∅. It follows that all sets of the form gP̊ ∩ Sδ(x) for maps g which fix x are non-empty. Since
the sets of that form are pairwise disjoint and non-empty, they are certainly pairwise distinct. Hence, the
finite collection is in bijection with ΓP (x), whence the latter is finite, also.

Part Two: The collection of sets { gP | g ∈ ΓP } covers X.
The idea is as follows: We show that there exists a positive real number l such that Bl(x) is contained in⋃

g∈ΓP
gP for all x ∈

⋃
g∈ΓP

gP . Then we conclude by showing that this property implies
⋃

g∈ΓP
gP = X.

By the result of the previous part, we know that there exists an ϵ(x) > 0 for any x ∈ P such that

Bϵ(x)(x) =
⋃

g∈ΓP (x)

gP ∩Bϵ(x)(x) =

 ⋃
g∈ΓP (x)

gP

 ∩Bϵ(x)(x) ⊂
⋃

g∈ΓP

gP. (10)

Applying the Lebesgue number lemma to the open cover {Bϵ(x)(x) | x ∈ P } of the compact set P gives us
an l > 0 with the following property:

∀x ∈ P∃y ∈ P : Bl(x) ⊂ Bϵ(y)(y). (11)
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The previous two numbered equations combined state that the ball of radius l around any element x ∈ P
is contained in the union of the translates of P , i.e.

∀x ∈ P : Bl(x) ⊂
⋃

g∈ΓP

gP.

Note that the set
⋃

g∈ΓP
gP is invariant under any h ∈ ΓP , i.e. h

⋃
g∈ΓP

gP ⊂
⋃

g∈ΓP
gP . This allows us

to deduce that the Property (5.4) extends to all elements of
⋃

g∈ΓP
gP : If x ∈

⋃
g∈ΓP

gP , then x = gp for
some g ∈ Γ and p ∈ P . Since g is an isometry, it maps a ball around p onto the ball of the same radius
around gp. In particular, Bl(x) = Bl(gp) = gBl(p). Since Bl(p) is contained in

⋃
g∈ΓP

gP , so is gBl(p).
Another way to phrase the above is to sayy ∈ X and ∃x ∈

⋃
g∈ΓP

gP : d(x, y) < l

 =⇒ y ∈
⋃

g∈ΓP

gP.

The only subset of X with this property is X itself. To be more specific, if a subset S ⊂ X satisfies

(y ∈ X and ∃x ∈ S : d(x, y) < ϵ) =⇒ y ∈ S (12)

for some ϵ > 0, then S is equal X.
To prove this, it suffices to show that the ball Bnϵ(x) is contained in S for some fixed x ∈ S and all

n ∈ N. We show this by induction on n ∈ N. Let x ∈ S. It is clear that Bϵ(x) is contained in S. Now
let n > 1 and assume that B(n−1)ϵ(x) ⊂ S. We want to show that any element y ∈ Bnϵ(x) is contained in
S. To do so, we produce an element z ∈ X which satisfies d(z, y) < ϵ and d(x, z) < (n − 1)ϵ. Any such z
has the properties z ∈ S and y ∈ Bϵ (z), whence property (12) guarantees that y ∈ S. We return to the
existence of a point with the above properties. Let γ : [0, d(x, y)] −→ X be a geodesic from x to y whose
length is equal to the distance between x and y. This geodesic must also be the shortest path from γ(t1) to
γ(t2) for any elements t1, t2 of its domain. Heuristically, the idea is to use the point γ(d(x, y)− ϵ), but its
distance to the point y is ϵ, which means it won’t work for our purposes. 7 We need to get a little closer
to y without leaving the ball B(n−1)ϵ(x). The point z := γ(d(x, y)− ϵ+ nϵ−d(x,y)

2
) does the job: From the

inequality d(x, y) < nϵ, it follows that

d (z, y) = ϵ− nϵ− d(x, y)

2
< ϵ and d (x, z) =

d(x, y) + nϵ

2
− ϵ < (n− 1)ϵ.

Part Three: Assume that for any x ∈ P and g ∈ ΓP it holds that

gP ∩Bϵ(x)(x) ̸= ∅ =⇒ g ∈ ΓP (x). (13)

Then the collection { gP | g ∈ ΓP } is locally finite, and the interiors of its elements are pairwise disjoint.
We leave the general case x ∈ X to the reader and deal only with a point x ∈ P . By assumption,

{ g ∈ ΓP | gP intersects Bϵ(x)(x) }

is a subset of the finite set ΓP (x). Hence, only finitely many members of the collection { gP | g ∈ ΓP }
intersect Bϵ(x)(x). Since x was an arbitrary element of X, the collection is locally finite.

Next, suppose that g, h ∈ Γ are two elements of ΓP such that g̊P intersects h̊P . We want to show
that g = h. Note that g̊P = gP̊ , because g is a homeomorphism. The previous assumption implies that
P̊ intersects h−1gP̊ . Let x ∈ P̊ ∩ h−1gP̊ . Then h−1gP intersects Bϵ(x)(x) and Equation (13) implies that

h−1g ∈ ΓP (x). The fact that x ∈ P̊ tells us that x does not lie in any side of P , whence ΓP (x) is the

7Formally, this does not make sense if y ∈ Bϵ(x), as d(x, y)− ϵ is less than zero and does not lie in the domain of
γ. In this case, however, there was nothing to show in the first place.
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subgroup of Γ generated by the empty set, and as such only contains the identity element. It follows that
g = h, and we conclude that the interiors of the elements of the collection are pairwise disjoint.

Part Four: The Condition (13) holds.
The goal is to find a description of the elements of (g, p), (h, q) ∈ ΓP × P for which gp = hq holds. Our
approach consists of defining an equivalence relation ∼, in the hope that

κ : X̃ −→ X

[g, p] 7−→ gp

defined on the set of equivalence classes X̃ := (ΓP × P )/ ∼ will turn out to be injective. We will endow X̃
with the quotient topology coming from the projection and the product topology on ΓP ×P , while ΓP and
P ⊂ X are endowed with the discrete and the subspace topology, respectively. Note that for κ to be well
defined, the equivalence relation ∼ must satisfy

(g, p) ∼ (h, q) =⇒ gp = hq

for any two points (g, p), (h, q) ∈ Γ× P .
We define the equivalence relation by explicitly stating a partition of ΓP × P . For (g, p) ∈ ΓP × P ,

define the set
[g, p] := { (gh, p) | h ∈ ΓP (p) } = gΓP (p)× { p }

It is not hard to verify that
X̃ := { [g, p] | (g, p) ∈ ΓP × P }

is a partition of ΓP × P . Clearly, for any element (h, q) ∈ [g, p], it holds that gp = hq: we have p = q and
hq = gjp = gp for some j ∈ ΓP (p). Therefore, κ is well defined.

If κ were injective, we could proceed as follows to conclude that Condition (13) holds: Suppose x ∈ X,
g ∈ ΓP , y ∈ gP ∩ Bϵ(x)(x) and p ∈ P such that y = gp. We have to show that g ∈ ΓP (x). By part 1, we
know that gp = hq for some h ∈ ΓP (x) and q ∈ P ∩Bϵ(x). Since κ is assumed to be injective, it holds that
[g, p] = [h, q], which is equivalent to

(g, p) ∈ [h, q] = hΓP (q)× { q } .

We claim that ΓP (q) ⊂ ΓP (x). To see this, note that any side S of P which contains q intersects Bϵ(x), and
this ball has the property that it only intersects sides of P which contain x. An immediate consequence of
this is that S(q) is a subset of S(x) and { gS | S ∈ S(q) } is a subset of { gS | S ∈ S(x) }. The claim follows,
since the inclusion of a set of generators of a subgroup in the set of generators of another subgroup implies
the corresponding inclusion of the generated subgroups. The previous statements imply

g ∈ hΓP (q) ⊂ hΓP (x) ⊂ ΓP (x),

which is what we wanted to show.
To finish the inductive step and thereby the entire proof, it remains to show that κ is injective. We

will show that κ is a covering map. More specifically, this entails checking that the domain and codomain
of κ are Hausdorff and path-connected, and that every element of the codomain has an evenly covered
neighborhood. This suffices, since any covering map of a simply connected space is injective.8 To see this,
let z ∈ X and x, y ∈ κ−1({ z }), and consider a path γ : [0, 1] → X̃ from x to y. The path γ is mapped onto
a loop κ ◦ γ in X. Since X is simply connected, the loop is homotopic to the constant loop via a homotopy
with fixed endpoints. Since κ is a covering map, this homotopy lifts to a homotopy with fixed endpoints
between γ and the constant path τx : [0, 1] → X̃, t 7→ x. The fact that the homotopy fixes the endpoints of
all curves implies

y = γ(1) = τx(1) = x.

8Since a covering map is both surjective and a local homeomorphism, the phrase ’injective covering map’ is
synonymous to the word ’homeomorphism’.
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In other words, the cardinality of κ−1({ z }) ≤ 1 for any z ∈ X, i.e. κ is injective.
We claim that Bl(z) (with l as in the earlier part of the proof) is an evenly covered neighborhood of z

for any z ∈ X and that X̃ is a connected Hausdorff space. As a consequence of this, it follows that κ is a
covering map. For any [g, p] ∈ X̃ and any r > 0, define the set

B̃([g, p], r) := { [gh, q] | h ∈ ΓP (p) and q ∈ P ∩Br(p) } .

To prove the claim, it suffices to show

(i) B̃([g, p], r) is an open neighborhood of [g, p] for any [g, p] ∈ X̃ and r > 0,

(ii) κ∣∣B̃([g,p],r)
: B̃([g, p], r) → Br(gp) is a homeomorphism for any [g, p] ∈ X̃ and 0 < r ≤ ϵ(p),

(iii) X̃ is Hausdorff,

(iv) X̃ is connected,

(v)
⋃

[g,p]∈κ−1({ z }) B̃([g, p], l) = κ−1(Bl(z)) for all z ∈ X, and

(vi) if z ∈ P and x, y ∈ κ−1({ z }) with x ̸= y, then the sets B̃(x, l) and B̃(y, l) are disjoint.

Point (i). The set B̃([g, p], r) is an open neighborhood of [g, p] for any [g, p] ∈ X̃ and r > 0.
Let [g, p] ∈ X̃ and r > 0. In order to show that B̃([g, p], r) is open in X̃, we need to show that the preimage
of B̃([g, p], r) under the quotient map [·] : ΓP × P → X̃ is open. Note that, for any q ∈ Bϵ(p)(p) it holds
that ΓP (q) ⊂ ΓP (p), and, consequently, ΓP (q)ΓP (p) = ΓP (p) and

{ ghj | h ∈ ΓP (p) and j ∈ ΓP (q) } × { q } = gΓP (p)ΓP (q)× { q } = gΓP (p)× { q } .

Therefore, the preimage under the projection is given by

[·]−1(B̃([g, p], r)
)
= { (ghj, q) | h ∈ ΓP (p), q ∈ P ∩Br(p), and j ∈ ΓP (q) }
= gΓP (p)× (P ∩Br(p)).

This description of [·]−1
(
B̃([g, p])

)
allows us to conclude that it is an open subset of ΓP × P , since it is

given as a product of open subsets of ΓP and P , respectively.
Point (ii). The map κ∣∣B̃([g,p],r)

: B̃([g, p], r) → Br(gp) is a homeomorphism for any [g, p] ∈ X̃ and

0 < r ≤ ϵ(p).
We begin by verifying the continuity of the map m : ΓP × P → X, (g, p) 7→ gp. For any z ∈ X and r > 0

m−1(Br(z)) =
⋃
g∈Γ

{ g } ×
(
P ∩ g−1(Br(z))

)
is the union of open subsets and therefore itself open. By the universal property of the quotient topology,
the continuity of m implies the continuity of κ, since m = κ ◦ [·].

Next, we check that the restrictions are well defined and surjective. For any (g, p) ∈ ΓP × P and
0 < r < ϵ(p), part one of this proof describes a certain tessellation of Br(p). In particular, we have seen
that the sets hP ∩Br(p), with h ∈ ΓP (p), cover Br(p). Therefore, it holds that

Br(gp) = gBr(p) = g
⋃

h∈ΓP (p)

hP ∩Br(p) =
⋃

j∈gΓP (p)

j (P ∩Br(p))

= m
(
gΓP (p)× (P ∩Br(p))

)
= κ

(
[gΓP (p)× (P ∩Br(p))]

)
= κ(B̃([g, p], r)).

This tells us that κ maps B̃([g, p], r) onto Br(gp), so that the restrictions defined in Point (ii) are well
defined and surjective.
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It still needs to be proven that κ∣∣B̃([g,p],r)
is injective. The idea is to reduce the injectivity of κ to a

weakened ’local’ version of Property (13). This version states that

(q1, q2 ∈ P ∩Br(p), h ∈ ΓP (p), and q1 = hq2) =⇒ h ∈ ΓP (q1). (14)

First, let us take a closer look at any two elements of X̃ which are mapped onto the same point by κ. Let
(h1, q1), (h2, q2) ∈ ΓP (p)× (P ∩Br(p)) and assume

κ([gh1, q1]) = gh1q1 = gh2q2 = κ([gh2, q2]).

We want to show [h1, q1] = [h2, q2], which is equivalent to q1 = q2 and h−1
1 h2 ∈ ΓP (q1). Obviously, it holds

that q1 = h−1
1 h2q2 and h−1

1 h2 ∈ ΓP (p). So we have two points in P which are close to eachother and a map
in ΓP (p) which maps one point onto the other. We claim that Equation (14) is a sufficient condition for
the injectivity of κ∣∣B̃([g,p],r)

. To see this, note that the equation implies h−1
1 h2 ∈ ΓP (q1). Therefore, both

the map itself and its inverse fix the point q1. Consequently, it holds that

q1 = (h−1
1 h2)

−1q1 = (h−1
1 h2)

−1h−1
1 h2q2 = q2.

This proves the injectivity of κ∣∣B̃([g,p],r)
.

We shall presently verify Equation (14). The main ingredient are yet again the tessellations of small
balls constructed in part one of the proof. Let q1, q2 and h be as in equation (14). Let s > 0 such that
Bs(q1) ⊂ Br(p). Then the collection

{ jP ∩Bs(q1) | j ∈ ΓP (q1) }

covers the ball Bs(q1). First, note that hP̊ ∩ Bs(q1) is non-empty. This follows from Lemma 5.8, as hP is
a non-empty convex set which contains q1. Second, observe that the sets j∂P ∩ Bs(q1), with j ∈ ΓP (q1),
do not cover any open subset of X. The latter statement holds, because it is a finite collection of (n− 1)-
dimensional sets, and such a collection can not cover an n-dimensional set. These observations allow us
deduce the existence of a k ∈ ΓP (q1) such that the intersection(

hP̊ ∩Bs(q1)
)
∩
(
kP̊ ∩Bs(q1)

)
is non-empty. It follows that the superset(

hP̊ ∩Br(p)
)
∩
(
kP̊ ∩Br(p)

)
is non-empty as well. This fact allows us to conclude that h = k by noting that h, k ∈ ΓP (p) and

{ jP ∩Br(p) | j ∈ ΓP (p) }

is a tessellation of Br(p). Thus, h is an element of ΓP (q1).
Finally, we turn our attention to the continuity of the κ∣∣B̃([g,p],r)

−1. Let U ⊂ B̃([g, p], r) be an open

subset and [j, x] ∈ U . The preimage of U under the map in question is given by the set κ(U). To show
that κ(U) is open in X, it suffices to prove the existence of a s > 0 with Bs(jx) ⊂ κ(U). By definition of
the quotient topology, the set [·]−1(U) is open in ΓP × P and contains [·]−1([j, x]) = jΓP (x) × {x }. By
definition of the product topology, there exists a family of open neighborhoods (Vh)h∈ΓP (x) of x in P with
the property ⋃

h∈ΓP (x)

{ jh } × Vh ⊂ [·]−1(U).
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The crucial property we exploit in the next step is the finite cardinality of the group ΓP (x). It implies that
the set

⋂
h∈ΓP (x) Vh is open in P , and, consequently, contains the set P ∩ Bs(x) for some 0 < s < ϵ(jx).

This, in turn, allows us to conclude

U = [·]
(
[·]−1(U)

)
⊃ [·]

( ⋃
h∈ΓP (x)

{ jh } × Vh

)
⊃ { [jh, q] | h ∈ ΓP (x) and q ∈ P ∩Bs(x) } = B̃([j, x], s)

and, finally,
κ(U) ⊃ κ(B̃([j, x], s)) = Bs(jx).

Point (iii).The space X̃ is Hausdorff.
Let [g, p], [h, q] ∈ X̃ with [g, p] ̸= [h, q]. Since [g, p] = [h, q] if and only if p = q and g−1h ∈ ΓP (q), our
assumption is equivalent to the statement ’q ̸= p or g−1h /∈ ΓP (q)’. We claim that there exist r1, r2 > 0
such that B̃([g, p], r1) does not intersect B̃([h, q], r2). Since the quotient map [·] is surjective, it suffices to
show that the preimage of the intersection is empty. Using the description of the preimages from earlier,
we see that

[·]−1
(
B̃([g, p], r1) ∩ B̃([h, q], r2)

)
=
(
gΓP (p)× (P ∩Br1(p))

)
∩
(
hΓP (q)× (P ∩Br2(q))

)
=
(
hΓP (q) ∩ gΓP (p)

)
×
(
P ∩Br1(p) ∩Br2(q)

)
.

We immediately notice that, in the case q ̸= p, the fact that we can separate points in X by choosing
sufficiently small radii r1, r2 implies that the set above is empty. In the case q = p and g−1h /∈ ΓP (q),
the two left cosets gΓP (p), hΓP (p) are distinct, and we conclude that the set above is empty for arbitrary
r1, r2 > 0.

Point (iv). The space X̃ is connected.
Let U, V ⊂ X̃ be open, disjoint subsets which cover X̃. The goal is to prove that one of the two subsets
is the whole space and the other is empty. We are working explicitly with the definition of connectedness.
First, we show that

{ [g, x] | x ∈ P }
is contained either in U or V for any g ∈ ΓP . The sets

({ g } × P ) ∩ [·]−1(U) and ({ g } × P ) ∩ [·]−1(V ),

are disjoint open subsets of { g }×P which cover { g }×P . Since the set P is connected9and homeomorphic
to { g } × P , one of the sets in the above equation must be empty. Therefore, { [g, x] | x ∈ P } is contained
in either U or V .

Without loss of generality, we can assume that { [1, x] | x ∈ P } is contained in U . We now show that
U = X̃. For this purpose, let [g, x] ∈ X̃, let S1, . . . , Sk be a finite sequence of sides of P with g =

∏k
i=1 gSi ,

and denote the identity map on X by g0. We show that Wj := { [
∏j

i=0 gi, x] | x ∈ P } is contained in U for
j ∈ { 0, . . . , k } by induction. We already discussed the case j = 0. Let j ∈ { 1, . . . , k } and assume that
Wj−1 is contained in U . For any y ∈ Sj we know that gSj ∈ ΓP (y). Therefore, (

∏j
i=1 gSi)

−1∏j−1
i=1 gSi =

gSj ∈ ΓP (y). In other words, [
∏j

i=1 gSi , y] = [
∏j−1

i=1 gSi , y]. Recall that this point lies in U by the induction
hypothesis. Since one element of the set Wj is contained in U , and the set is contained in one of the disjoint
sets U or V , it follows that Wj is a subset of U . This concludes the induction, and thereby proves that
[g, x] ∈ Wk ⊂ U . Since [g, x] was an arbitrary element of X̃, we have shown the equality of X̃ and U .

For the proof of Points (v) and (vi), we need the uniqueness of lifts of any short geodesic given a choice
of lift of its starting point. First, we discuss the existence. If γ : [a, b] → X is a geodesic of length less

9All polyhedra P are connected with the sole exception being the polyhedra consisting of two antipodal points in
Sn. This exceptional case cannot occur in our situation, because the dimension of P is not zero.
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than l, then γ is contained in Bl(γ(a)). Given a choice of x ∈ κ−1(γ(a)), one lift of the geodesic is given
by γ̃1 : κ∣∣B̃(x,l)

−1 ◦ γ. This proves the existence of lifts. Suppose now that γ̃1 : [a, b] → X̃ is another lift of

γ which also starts at the x. Our approach consists of showing that

A := { t ∈ [a, b] | γ̃1(t) = γ̃2(t) }

is both open and closed. Since it is non-empty and [a, b] is connected, this will imply that it is equal to
[a, b], which allows us to conclude γ̃1 = γ̃2. To see that A is closed, consider a convergent sequence (si)i∈N in
A. Note that the expression limi→∞ γ̃1(si) refers to a single point in X̃, as the Hausdorff property implies
that a sequence can have at most one limit. Therefore we can meaningfully say

γ̃1( lim
i→∞

si) = lim
i→∞

γ̃1(si) = lim
i→∞

γ̃2(si) = γ̃2( lim
i→∞

si),

which is to say limi→∞ si ∈ A. To see that A is open, consider a t0 ∈ A. Since γ̃1(t0) lies in B̃(x, l) by
construction and the two lifts agree at t0, the same holds for γ̃2. By continuity of the lifts, there exists an
open neighborhood I of t0 in [a, b] which is mapped into B̃(x, l) by both lifts. The injectivity of κ∣∣B̃(x,l)

together with the fact that γ is a path in Bl(γ(a)) implies that any two lifts agree while they lie in the ball
B̃(x, l). Therefore, I is contained in A, which shows that A is open.

Point (v). We have the equality of sets
⋃

[g,p]∈κ−1({ z }) B̃([g, p], l) = κ−1(Bl(z)) for all z ∈ X.

We have already seen the inclusion ’⊂’. For the converse, let x ∈ κ−1(Bl(z)). We want to find y ∈ κ−1({ z })
such that x lies in B̃(y, l). Let b := d(κ(x), z) and consider the shortest path γ : [0, b] → X from κ(x) to z
whose image lies in B̃(y, l). Its length is certainly less than l. Therefore, it has a unique lift γ̃ starting at
x. Note that y := γ̃(b) ∈ κ−1({ z }) and κ∣∣B̃(y,l)

is a homeomorphism onto Bl(z). The lift of γ given by

κ∣∣B̃(y,l)

−1 ◦ γ

is equal to γ̃. To see this, note that t 7→ γ(b− t) is a path from z to κ(x), and

t 7→ κ∣∣B̃(y,l)

−1 ◦ γ(b− t)

and
t 7→ γ̃(b− t)

are both lifts of t 7→ γ(b − t) which start at y. The uniqueness of such lifts implies that the two lifts are
the same. Since reparameterisation is a reversible operation, we conclude that

x = γ̃(0) = κ∣∣B̃(y,l)

−1 ◦ γ(0),

which certainly means x lies in the ball B̃(y, l). This proves the inclusion ’⊃’.
Point (vi). If z ∈ P and x, y ∈ κ−1({ z }) with x ̸= y, then the sets B̃(x, l) and B̃(y, l) are disjoint.

It is worth nothing that we already studied the intersection of two sets of the form B̃(x, r) for x ∈ X̃ and
r > 0 to prove that X̃ is Hausdorff. There, our upper bound on the radii depended on the two points in
X̃. Here, l > 0 is fixed for all elements in the preimage of a point z ∈ X. Suppose the intersection is
non-empty, and let w ∈ B̃(x, l) ∩ B̃(y, l). Let γ be the shortest path from κ(w) to z which is contained in
Bl(z). Then the fact that the restrictions of κ to both B̃(x, l) and B̃(y, l) are homeomorphisms allows us
to produce two lifts of γ which both start at w. These lifts are not the same, because one ends at x, the
other ends at y, and we assumed x and y to be distinct. But the length of γ is less than l, so there exists
only one lift starting at w. This is a contradiction. We conclude that the intersection is empty.
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6 The Multiplicity m1(K) of the Smallest Positive Eigenvalue
of the Laplacian on the Klein Quartic K

In this section, K denotes the Klein Quartic. We refer to the literature for a definition of K.
We will give an overview of how the various partial results concerning the multiplicity m1(K) of the

smallest positive eigenvalue λ1(K) of the Laplacian on K are combined to arrive at the result m1(K) = 8.
We have discussed two ingredients in this document: the integer equation for m1(K) which stems from the
representation theory argument and the lower and upper bound formulae for the number of eigenvalues
that lie in an interval which stem from the Selberg trace formula. There are lots of details which we will
not delve into here. We also need some results whose proofs are based on different strategies. Specifically,
we need the following results, which we quote without proof:

1. If λ ∈ (0, 7.85], then any decomposition of τλ into a sum of irreducible representations does not
include a 1-dimensional representation. 10

2. The first positive eigenvalue satisfies the inequality

λ1(K) ≤ 2(4−
√
7) ≈ 2.708497.11

3. There is a theorem which roughly says If S is a closed hyperbolic surface of genus g ≥ 2, then all
sufficiently small eigenvalues of the Laplacian have multiplicity less or equal 2g − 1. In the case of
the Klein quartic, the precise statement for an eigenvalue λ of the Laplacian is

λ ≤ 1

4
+

(
π

4arcsin(
√
2

)
≈ 0.719512 =⇒ m(λ) ≤ 5.12

For the applications of Lemma 3.8, the existence of functions with the desired properties has to be shown.
Second, some information about the closed geodesics of K and their lengths has to be obtained. We refer to
the literature. The results given by applications of the lemma are statements of the kind ”If λ lies in some
interval then the number of eigenvalues counting multiplicity is greater equal or lesser equal some n ∈ N.”
The authors of the paper [1] show that

4. λ ∈ [0.71, 2.575] =⇒ m(λ) < 6

5. λ ∈ [2.575, 5.5] =⇒ m(λ) < 12

6. λ ∈ [2.575, 5.5] =⇒ m(λ) > 7

in Propositions 5.5, 5.6, and 5.7, respectively
Before we can put together the pieces of the puzzle, we need one final statement, which is the integer

equation for the multiplicity of an eigenvalue of the Laplacian derived from a decomposition of τλ. For
this purpose, we need some information about the irreducible real representations of the isometry group of
the Klein Quartic. It turns out that the character table of the isometry group, which is isomorphic to the
projective general linear group PGL(2, 7), provides sufficient data. It is specified on the page

https://people.maths.bris.ac.uk/~matyd/GroupNames/321/PGL(2,7).html.

Lemma 6.1 ([1, Corollary 5.3, p.16]). The character table of Iso(K) provides enough information to assess
if an irreducible complex representation is realizable over R. More specifically, there are 9 irreducible complex

10[1, Proposition 4.4 and Corollary 5.2]
11[1, p. 3]
12[1, Theorem 1.1 and Remark on p.7]
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representations ρ1, . . . , ρ9. Their (complex) dimensions are 1, 6, 7, and 8. They are all realizable over R.
Therefore, the (real) dimensions of the irreducible real representations of Iso(K) are also 1, 6, 7, and 8.

Because the direct sum decomposition of the representation τλ1(K) does not include any one-dimensional
representation, we obtain an integer equation

m1(K) = n16 + n27 + n38 (15)

for some n1, n2, n3 ∈ N0.

Proof. According to [10, Proposition 39, p. 109], the question of the realizability of a representation χ over
R can be answered by looking at the sum∑

y∈Iso(K)

χ(y2) =
∑

[y] conjugacy class of Iso(K)

#[y]χ(y2).

Since the characters all have real values, the value of this sum is equal to #Iso(K) if and only if χ is
realizable over R and equal to −#Iso(K) if and only if χ is not realizable over R.

The character of a representation is a class function, i.e. the image of y depends only on its conjugacy
class. (This just amounts to the statement that the trace of an endomorphism is invariant under conjuga-
tion.) If x, y are conjugate group elements, then the squares x2, y2 are conjugate as well. Therefore, the
map y 7→ χ(y2) is a class function. Next, note that we can determine the order of y2 from the order of y.
Namely, if the order of y is odd, then the order of y and y2 are equal. If the order of y is even, then the
order of y2 is half the order of y. In the case of the group Iso(K), this almost suffices to determine the class
function y 7→ y2. Namely, we have the following

1 7→ 1 2A 7→ 1 2B 7→ 1

3 7→ 3 4 7→ 2A or 2B 6 7→ 3

7 7→ 7 8A 7→ 4 8B 7→ 4,

with the image of the conjugacy class 4 being the only entry which is not fully determined by the order.
We consider ρ3 and attempt to compute the sum∑

[y] conjugacy class of Iso(K)

#[y]χρ3(y
2).

Given the ambiguous information about the map y 7→ y2, we get two possible results for the sum:∑
[y]∈{ conjugacy classes of Iso(K) }

#[y]χρ3(y
2)

=1 · 6 + 21 · 6 + 28 · 6 + 56 · 0 + 42 · (−2) + 56 · 0 + 48 · (−1) + 42 · 2 + 42 · 2
or 1 · 6 + 21 · 6 + 28 · 6 + 56 · 0 + 42 · 0 + 56 · 0 + 48 · (−1) + 42 · 2 + 42 · 2
=336 or 420.

This allows us to resolve the ambiguity. Since the sum must be equal to ±336, it must hold that 4 7→ 2A.
Furthermore, we can conclude that ρ3 is realizable over R. Next, we compute the sum for ρ4∑

[y]∈{ conjugacy classes of Iso(K) }

#[y]χρ4(y
2)

=1 · 6 + 21 · 6 + 28 · 6 + 56 · 0 + 42 · 2 + 56 · 0 + 48 · (−1) + 42 · 0 + 42 · 0
=336
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and conclude that ρ4 is realizable over R. In the expression for ρ5, the summands are the same as for ρ4,
whence it too is realisable over R. The corresponding computations for the other six irreducible represen-
tations are omitted.

We claim that the complexification of any irreducible real representation of the isometry group of
K is an irreducible complex representations. This follows from Lemma 4.8 and the fact that all the
irreducible complex representations are realizable over R. For if the complexification of some irreducible real
representation were not complex irreducible, then there would exist an irreducible complex representation
which is not realizable over R. In particular, this shows that for any irreducible real representation of
(real) dimension d, there exists an irreducible complex representation of (complex) dimension d - namely
its complexification. Thus, the dimensions of the real irreducible representations are 1, 6, 7, and 8. Since
the decomposition of τλ1(K) does not involve one-dimensional representations, any decomposition of τλ1(K)

into a sum of irreducible real representations implies the integer equation stated in Equation (15).

We are finally in a position where we can explain how the pieces of the puzzle collected on the last
couple of pages fit together.

The results stated in Points 1 and 2, allowed us to obtain the integer equation Equation (15). In
particular, this equation shows that m1(K) greater equal 6. Therefore, the upper bound on the multiplicity
of small eigenvalues from Point (3) tells us that

λ1(K) ≥ 1

4
+ (

π

4 arcsin
√
2
)2 ≈ 0.719512 . . . .13

A first application of Lemma 3.8, Point (4) implies that the multiplicity m(λ) is strictly less than 6 for
eigenvalues λ ∈ [0, 2.575]. Consequently, it holds that

λ1(K) > 2.575.

Taken together with the upper bound for from Point (2), we know that λ1(K) ∈ [2.575, 5.5]. Now two
further applications of Lemma 3.8 and its lower bound variant show that the multiplicity m1(K) of λ1(K)
satisfies

7 < m1(K) < 12.

The integer Equation (15) implies that
m1(K) = 8.

This is the approach used to prove the

Theorem 6.2 ([1, Theorem 1.2.]). The multiplicity m1(K) of the smallest positive eigenvalue λ1(K) of
the Laplacian on the Klein Quartic is equal 8.

13[1, Theorem 1.1 and Corollary 5.4]
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7 Conclusion

In this thesis, we have had a look at how the multiplicity of the smallest positive Laplacian eigenvalue on
the Klein Quartic was determined.

Along the way, we skipped lots of details some of which might warrant a closer look in the future. In
particular, the linear programming needed for the application of the lemma derived from the Selberg trace
formula could be an interesting topic.

A natural question is to what extent the methods employed in the main paper can be extended to
determine the maximal multiplicity of the smallest positive eigenvalues of the Laplacian for surfaces of any
genus g ≥ 2. We also did not delve into the history of either questions or results concerning the Laplacian
and its spectrum. Getting an overview of the main theorems and the open questions would be a worthwhile
task.

Another obvious question is why anyone would care to know about these properties of the Laplacian’s
spectrum on closed hyperbolic surfaces. Specifically, one might want to understand how these properties
relate to other questions of more explicitly geometric nature.
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