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Abstract
While proving the sc-Fredholm property of APS-type operators DA = d

dt − A(t) on both unweighted

and weighted Floer path spaces Wn =
⋂
k+r=nW

r,2(R,Wk) and (Wδn
n+k)n≥0, we argue that the latter

case requires a bound on the weight sequence 0 = δ0 < δ1 < . . . whose value δ∞ can be calcu-
lated in terms of the operator family A(t). Moreover, in an attempt to replace the classical Floer
cylinder Σ = R × S1 by a pair-of-pants worldsheet with topology-changing level sets, we prove the
sc-smoothness of a retraction rΣ : (−ϵ, ϵ) ⊕ W⊕2

n −→ W⊕2
n that interpolates between topologically

distinct fibres rt<0(W
⊕2
n ) ∼=Wn+1,2(S1) and rt>0(W

⊕2
n ) ∼= Wn+1,2(S1) ⊕Wn+1,2(S1), leaving it for

future investigation to interpret the Cauchy-Riemann operator ∂z̄ ∼ ∂t + i∂ω as calculating the flow
of a sc-smooth vector field A(t) ∼ i∂ω on the M-polyfold im(rΣ).

Kurzzusammenfassung
In dieser Arbeit beweisen wir die sc-Fredholm-Eigenschaft von APS-Operatoren DA = d

dt − A(t)

auf ungewichteten und gewichteten Pfadräumen Wn =
⋂
k+r=nW

r,2(R,Wk) und (Wδn
n+k)n≥0. In let-

zterem Fall muss die Gewichtsfolge 0 = δ0 < δ1 < . . . eine obere Schranke besitzen, deren Wert
wir in Abhängigkeit von der Operatorfamilie A(t) eingrenzen können. Des Weiteren unternehmen
wir den Versuch den klassischen Floer-Zylinder Σ = R × S1 durch eine ’pair-of-pants’-Weltfläche zu
ersetzen und konstruieren dazu eine sc-glatte ’retraction’ rΣ : (−ϵ, ϵ)⊕W⊕2

n −→W⊕2
n , die zwischen

topologisch distinkten Fasern rt<0(W
⊕2
n ) ∼= Wn+1,2(S1) und rt>0(W

⊕2
n ) ∼=Wn+1,2(S1)⊕Wn+1,2(S1)

interpoliert. Wir überlassen es zukünftigen Untersuchungen zu klären, inwieweit sich der Cauchy-
Riemann-Operator ∂z̄ ∼ ∂t + i∂ω durch den Fluss eines sc-glatten Vektorfelds A(t) ∼ i∂ω auf der
M-Polyfold im(rΣ) beschreiben lässt.
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Chapter 1

Introduction

1.1 Motivation

Before describing our precise results in sections 1.2 and 1.3, let us outline the basic dictionary
that defines the philosophy behind our approach.

� In studying maps u : Σ −→ H from a 2-dimensional worldsheet Σ to an in our case
linear target space H, we will fix a Morse function ν on Σ and regard the time slices

u(t) = u|ν−1(t) : Σt −→ H

as points in an M-polyfoldMΣ.

� For the classical Floer cylinder Σ = R×S1 this M-polyfold will be given asMΣ = R⊕W ,
with a constant fibre

W =
[
L2(S1,H) ⊃W 1,2(S1,H) ⊃ . . .

]
hosting maps S1 −→ H of all regularities.

� Hence, we may reinterpret a given map u : R×S1 −→ H as a path R −→W through the
sc-Banach space W =

[
W k,2(S1,H)

]
k≥0

, the ’regularity’ of such a path being defined

by its place in the filtration H ⊃ W1 ⊃ . . . of nested Sobolev spaces

Wn =
⋂

k+r=n

W r,2(R,Wk)

� Operator families A(t) : (Wk+1)k≥0 −→ (Wk)k≥0, on the other hand, can be understood
as time-dependent vector fields on W , whose flow lines are the solutions to

[DAu](t) =

[
d

dt
−A(t)

]
u(t) = 0

Since DA : L2(R,W1) ∩W 1,2(R,W0) −→ L2(R,W0) extends to a regularizing
sc-operator on the filtration (Wn)n≥0, only flow lines of the highest regularity
W∞ ⊂

⋂
k≥0C

∞(R,Wk) will be allowed.

� In the case of a pair-of-pants worldsheet Σ = CP 1 \ {±1,∞} with Morse function ν,
the topology-changing level sets ν−1(t) will be represented by the topologically distinct
fibres

rt>0(Mn) ∼=Wn+1,2(S1)⊕Wn+1,2(S1) and rt<0(Mn) ∼=Wn+1,2(S1)

of a sc-smooth splicing r : R ⊕M −→ M . Thus, it should be possible to study the
solutions to a PDE on Σ as those flow lines u : R −→M through the ambient fibre M
which stay within a time-dependent ”constraint surface” rt(M) ⊂M .
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1.2 Summary of results (Part I)

In the paper [RS], Robbin and Salamon prove the classical Fredholm property of operators

DA = d
dt −A : L2(R,W ) ∩W 1,2(R, H) L2(R, H)

where, among other things, A(t) :W −→ H is a family of self-adjoint operators on a Hilbert
space H. Part I of this thesis studies the implications of replacing the pair W ⊂ H by a
sc-Banach space

. . . ⊂Wk ⊂ . . . ⊂W1 ⊂W0 = H

in the sense of [HWZ21], where as before the norm
∥∥·∥∥

W0
is assumed to arise from a Hilbert

space structure on H (in which case we also call the filtration (Wk)k≥0 a ”sc-Hilbert space”).

Our findings, as well as their relation to pre-existing work, can be summarized as follows:

Chapter 2 Motivated by Floer theory, we assume our operator family to decompose as

A(t) = A0 +B(t)

where, in addition to B(t) ∈ L(H) and A0 :W1 −→ H being self-adjoint,
A0 : (Wk+1)k≥0−→ (Wk)k≥0 is a regularizing sc-operator on the Banach scale.

Prop. 2.18 Now that a ”baseline operator” A0 has been singled out, we can regard
not only W0 but also the higher levels Wk as Hilbert spaces with inner product

⟨v, w⟩Wk
:= ⟨v, w⟩Wk−1

+ ⟨A0v,A0w⟩Wk−1
,

thereby maintaining the property that A0 :Wk+1 −→Wk is self-adjoint
as an unbounded operator on

(
Wk, ⟨·, ·⟩Wk

)
.

Lem. 2.20 Hence, at every k ≥ 0 we can import the ”vertical regularization property”

D−1
A0

(
W r,2(R,Wk)

)
⊂ W r,2(R,Wk+1) ∩W r+1,2(R,Wk) from [RS] Thm. 3.13.

Lem. 2.19 Moreover, as a built-in feature of our baseline operator A0,
we have an additional ”horizontal regularization property”

A−1
0

(
L2(R,Wk)

)
= L2(R,Wk+1).

Note, however, that we cannot get along without a perturbation B(t) ∈ L(H)
as the classical Fredholm property of DA : L2(R,W1) ∩W 1,2(R, H) −→ L2(R, H)
requires our family A(t) to approach invertible endpoints A±∈L(W1, H) at t = ±∞.

Def. 2.21 In our setting, we will have to impose the additional property of
+2.23 B(t) ∈ L(H) being a ”moderate family of sc-operators” on (Wk)k≥0

to ensure that, while operating on the Hilbert space H := L2(R, H),
Cor. 2.29 B preserves the bifiltration W r

k :=W r,2(R,Wk) in the sense that

B(W r
k ) ⊂W r

k for all r, k ≥ 0.

Cor. 2.34 This leads to DA : (Wn+1)n≥0 −→ (Wn)n≥0 being a sc-operator

on the filtration given by diagonals Wn :=
⋂

k+r=n

W r
k , with the lowest orders reading

H = L2(R, H), W1 = L2(R,W1) ∩W 1,2(R, H), W2 = L2(R,W2) ∩W 1,2(R,W1) ∩W 2,2(R, H).

As illustrated in Fig. 2.1, the vertical and horizontal regularization properties
Prop. 2.35 can be combined to prove that first DA0 : (Wn+1)n≥0 −→ (Wn)n≥0

+ 2.36 and with B being a moderate perturbation also DA : (Wn+1)n≥0 −→ (Wn)n≥0

is a regularizing sc-operator in the sense that D−1
A (Wn) =Wn+1.

This seemingly innocent observation in fact opens the floodgates
with most of our subsequent findings building on this result.
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Before further elaborating on this, let us remark that all
assumptions (A0 being a baseline operator, B being a good perturbation)
are invariant under the replacement A→ −A,
so everything that has been proven about DA will be valid for D−A as well.

Although this has not been emphasized by Robbin and Salamon,
[RS] Thm. 3.10 (’Elliptic Regularity’) can be reinterpreted

Lem. 2.37 as saying that −DA :W1 −→ H and D−A :W1 −→ H
are mutually adjoint as unbounded operators on H = L2(R, H).

Thm. 2.38 Given such a pair of mutually adjoint Fredholm operators φ±= ∓D±A :W1 −→ H,
+ 2.40 now with the bonus property that φ±: (Wn+1)n≥0−→(Wn)n≥0 are regularizing sc-operators,

we will arrive at our first main result that the operator

−φ+=DA : (Wn+1)n≥0−→ (Wn)n≥0

(and therefore similarly φ−=D−A ) is sc-Fredholm.

The more general fact that for a regularizing sc-operator to be sc-Fredholm
it is enough to be classically Fredholm at the lowest level,
has already been pointed out by Wehrheim (see [We] Def. 3.1 and [We] Lem. 3.6 ).
However, whereas the proof given in [We] traces back to abstract
Hahn-Banach-style arguments about the existence of complementary subspaces,
our more restrictive setup allows completely explicit decompositions of the spaces Wn

as summarized by the ”double helix”

HkerDA ⊕D−A(W1) DA(W1)⊕ kerD−A= =

kerDA ⊕D−A(W2) DA(W2)⊕ kerD−A= =

kerDA ⊕D−A(W3) DA(W3)⊕ kerD−A= =

W1

W2

D−A DA

D−A DA

It is this very picture that will come to our rescue in the proof of Theorem 4.15.

Cor. 2.41 As a by-product, the sc-Fredholm property guarantees that
D±A :Wn+1 −→Wn are classical Fredholm operators at every level n ≥ 0.

Chapter 3 This makes the composition

S := DAD−A :W2 −→ H,
Thm. 3.4 which is constructed to be of type ”− T ∗T ”,

a non-positive, self-adjoint Fredholm operator.

Lem. 3.6, The spectrum of such operators admits a gap ϵ > 0
Cor. 3.7 so that σ(S) ⊂ (−∞, −ϵ] ∪ {0}.

As a result, the resolvent map R•(S): ρ(S)−→L(H,W2) features a Laurent expansion

Lem.3.14+ Rλ(S) = −P
λ +Q[idH − λQ]−1, λ ∈ Bϵ(0) \ {0}

Prop. 3.15 whose coefficients

P = − 1

2πi

∫
⟲
dλ [S − λ]−1 and Q =

1

2πi

∫
⟲

dλ

λ
[S − λ]−1

apart from being represented as L(H,W2)-valued contour integrals around the origin,
admit the following interpretation:

3



� P : H=DA(W1)⊕kerD−A−→ kerD−A is the orthogonal projector onto kerD−A
� Q is a parametrix (quasi-inverse) for S in the sense that

SQ = idH − P and QS = idW2 − P

This interpretation relies on the absence of higher poles ”λ−k”
which is guaranteed by the ” ≤ ”-direction of the formula

Prop. 3.11
∥∥Rλ(S)∥∥L(H) = dist

(
λ, σ(S)

)−1

being valid for self-adjoint operators S.

Now that we have studied the properties of DA as an operator on the
unweighted filtration Wn = L2(R,Wn) ∩W 1,2(R,Wn−1) ∩ . . . ∩Wn,2(R, H),
note that (Wn)n≥0 fails to be an honest sc-Banach space,
in the sense required by polyfold theory [HWZ21],
since a simple ”bump escape argument” (see Lemma 2.44) shows that
unboundedness of the domain R prevents L2(R,W1) ∩W 1,2(R, H) ↪→ L2(R, H)
from being a compact inclusion.

Chapter 4 As explained for example in the paper [FW] by Frauenfelder and Weber,

this issue can be remedied by introducing a weight sequence 0 = δ0 < δ1 < . . .

In a dual approach to [FW], we consider the inverted weight factors γ−δi= e−δiη(t)

(with η ∈ C∞(R) satisfying η(t) = |t| for |t| ≥ 1)
as a sequence of injective sc-operators γ−δi : (Wn)n≥0 −→ (Wn)n≥0

and use the identification

γ−δ :Wn
∼−→ γ−δ(Wn) ⊂ Wn

to make Wδ
n := γ−δ(Wn) a Banach space with norm

∥∥γ+δ(·)∥∥Wn
.

Lem. 4.1 Since one can rephrase results from the paper [FW] as saying that
+ 4.3 γ−∆δi :Wn+1 −→Wn with ∆δi= δi+1 − δi > 0 is a compact operator,

the commutative triangle

Wn+1

H

Wn

γ−∆δi

γ−δi+1
γ−δi

Rem. 4.7 translates into a compact inclusion Wδi+1

n+1 ↪→Wδi
n .

Thus, our ”twisting sequence” γ−δi : (Wn)n≥0−→ (Wn)n≥0 produces a bifiltration

HW1W2W3

Hδ1Wδ1
1Wδ1

2Wδ1
3

Hδ2Wδ2
1Wδ2

2Wδ2
3

co
m
pa
ct

co
m
pa
ct

co
m
pa
ct

co
m
pa
ct

co
m
pa
ct

co
m
pa
ct

with compact diagonals indicated in red, leaving us with

Lem. 4.8 a k-family of honest sc-Banach spaces (Wδn
n+k)n≥0.

Rem. 4.5 + The density property of these sc-Banach spaces is guaranteed by
Prop. 2.42 the set S := C∞

0 (R)W∞ being dense in every Wn

and at the same time invariant under γ−δ in the sense that γ−δ(S) = S.
4



Now we are ready to state our main result:

Once our weight sequence 0 = δ0 < δ1 < . . . is bounded by a suitable δ∞,
whose value depends on the invertible endpoints A±∈ L(W1, H) of our family A(t)
as well as the spectral gap of S = DAD−A :W2 −→ H,

Thm. 4.17 DA : (Wδn
n+1)n≥0 −→ (Wδn

n )n≥0

will be a sc-Fredholm operator between honest sc-Banach spaces.

As before, the key ingredient consists in

Prop. 4.13 DA: (Wδn
n+1)n≥0−→ (Wδn

n )n≥0 being a regularizing sc-operator,
which itself is the combination of two separate properties:

Lem. 4.14 First, one easily verifies that DA is ”strongly twistable”, which guarantees that

+ 4.11 DA : (Wδ
n+1)n≥0 −→ (Wδ

n)n≥0

is a regularizing sc-operator for arbitrary but fixed δ > 0.

Note, however, that working with an increasing weight sequence 0 = δ0 < δ1 < . . .
forces us to vary the size of δ as we proceed to higher levels of regularity.

In order to adapt to these changes of δ,
DA has to be ”twist-regularizing”, which means that
at least for 0 < δ < δ∞ with a suitable upper bound δ∞
the unweighted operator DA :W1 −→ H needs to satisfy

Thm. 4.15 D−1
A (Hδ) ⊂ Wδ

1

According to the decomposition W1 = D−A(W2)⊕ kerDA,
this property requires fundamentally different proofs
in the cases w ∈ D−A(W2) and v ∈ kerDA,
making Theorem 4.15 perhaps the most interesting result of this thesis:

� Building on the techniques from Chapter 3,
Step 1 uses spectral perturbation theory
to characterize the restricted parametrix Q|Hδ

� Step 2, on the other hand, is a spiced-up version
of ideas from [Sa] Lem. 2.11 and [RS] Prop. 3.14
that when combined can be used to prove
exponential decay of solutions to DAv = 0,
now however with some extra complexity
coming from the fact that working in W1

requires us to control not only v ∈ L2(R, H)
but in fact v ∈ L2(R,W1) as well as its derivative v̇ ∈ L2(R, H).

Our calculation leads to an inequality involving
∥∥Ḃ(t)

∥∥
L(H)

and
∥∥B̈(t)

∥∥
L(H)

so for Theorem 4.15 we have to work with ”localized”
(or ”asymptotically constant”) perturbations that satisfy

lim
t→±∞

∥∥B(l)(t)
∥∥
L(H)

= 0 for l = 1, 2.

Chapter 5 The final chapter of Part I is devoted to criteria for restrictions of

”J0∂s :W
1,2(I,H) −→ L2(I,H)” to define an actual baseline operator

in the sense used before. More specifically, we take I = (0, 1) to be the
standard interval and assume that H is a (possibly infinite-dimensional)
real Hilbert space with complex structure J0 ∈ L(H).
Then ω = ⟨J0·, ·⟩H and Ω = (−ω)⊕ ω serve as symplectic forms
on H and H⊕H, respectively.

5



In writing u ∈W 1,2
Λ (I,H), we require the endpoints

(
u(0), u(1)

)
to be contained in a prescribed subspace Λ ⊂ H⊕H
and it turns out that taking the adjoint of

Prop. 5.3 J0∂s :W
1,2
Λ (I,H) −→ L2(I,H)

amounts to replacing Λ by its Ω-orthogonal complement ΛΩ.

Cor. 5.5 As a result, the self-adjoint restrictions of J0∂s :W
1,2(I,H) −→ L2(I,H)

correspond to Lagrangian subspaces Λ = ΛΩ.

With this understood, note that there is

a unique way to define the higher levels Wn+1,2
Λ (I,H)

once we require J0∂s :
(
Wn+1,2

Λ (I,H)
)
n≥0
−→

(
Wn,2

Λ (I,H)
)
n≥0

Lem. 5.6 to be a regularizing sc-operator.

Interestingly, this generalizes the Lagrangian boundary
conditions considered in [FW] section 7.

With I = (0, 1) being a bounded interval,

Prop. 5.8 the density property of our Banach scale
(
Wn,2

Λ (I,H)
)
n≥0

seems far from obvious, but is in fact guaranteed
by the mere presence of a baseline operator.

This suggests the conclusion that a baseline operator generates
(rather than just lives on) the Banach scale.

Now that we have described an explicit baseline operator,
it remains to explain which maps Γ : Rt × I −→ L(H)
represent good perturbations B(t) ∈ L(H).

For moderate perturbations this boils down to the requirement

Prop. 5.20 sup
(t,x)∈R×I

∥∥∂lt∂kxΓ∥∥L(H)
<∞ for all l, k ≥ 0

which in ”sigma model situations” Γ : R× I Φ−→ H F−→ L(H)
reduces to a condition

Prop. 5.23 sup
(t,x)∈R×I

∥∥∂lt∂kxΦ∥∥H <∞
on the base curve Φ : R× I −→ H
that we study perturbations DAδΦ = 0 around.

We expect this condition to be guaranteed by
a-priori estimates similar to [Sa] Prop. 1.21.

6



1.3 Summary of results (Part II)

Considering maps Σ −→ X from a cylinder worldsheet Σ = R× S1 to a linear target space
X = H meant that in Part I we were dealing with constant time slices S1.
A map ut : S1 −→ H was taken to be a point in L2(S1,H), with information about the
regularity of ut determining its place in the filtration L2(S1,H) ⊃W 1,2(S1;H) ⊃ ....
As a result, maps u : R× S1 −→ H were interpreted as paths u : R −→ (Wk)k≥0 through an
sc-Banach space Wk =W k,2(S1,H), with the regularity of such a path being determined by
its place in the filtration H ⊃ W1 ⊃ ..... where

Wn =
⋂

k+r=n

W r,2
(
R,W k,2(S1,H)

)
In the more experimental Part II, we explore the possibility of replacing Σ = R × S1 by a
Riemann surface with topology-changing level sets. Our strategy is to fix a Morse function
ν on Σ and identify its value with the gluing parameter a ∈ B of a sc-smooth splicing
r : B ⊕M −→ M . Levelwise maps ua : ν−1(a) −→ H will now be points ua ∈ ra(M) and
maps u : Σ −→ H can be interpreted as paths u : R −→ im(r) ⊂M through an M-polyfold.
Note that just as in the topology-preserving case, the ambient sc-Banach spaceM serves as a
constant target through which such a path can travel, with information about the worldsheet
topology now repackaged into a constraint ”ua ∈ ra(M) ∀a”.

Working with the example of a pair-of-pants worldsheet Σ = S2 \ {±1,∞}, we manage to
construct such a sc-smooth splicing r : (−ϵ, ϵ) ⊕W⊕2

n −→ W⊕2
n that interpolates between

fibres ra>0(W
⊕2
n ) ∼=Wn,2(S1,H)⊕Wn,2(S1,H) and ra<0(W

⊕2
n ) ∼=Wn,2(S1) .1

Let us explain the idea behind this construction: Whereas the polyfold construction of Morse
theory (see e.g. [FFGW]) is concerned with gluing copies of R, our basic building block
consists in the gluing of two adjacent intervals (−1, 0) and (0, 1). The level sets of our Morse
function will be patched together from two copies of (−1, 0) and two copies of (0, 1), with a
breaking process at a = 0 allowing for a change of gluing partners to model the topology-
changing level sets at a Morse critical point. In addition to this a-dependent, ”dynamical”
gluing, we implement ”sheaf-like” or ”static” gluing to connect neighbouring intervals at safe
distance from the Morse critical point where the effects of our dynamical gluing process are
invisible. However, in the following we will mostly focus on the dynamical gluing.

Depending on the value of our parameter a, our intervals will be glued on an overlap of
size 2a, by using cut-off functions R1/aβ and 1 − R1/aβ as shown below to interpolate
between Sobolev functions that were originally defined on (−1, 0) and (0, 1).

0 +
a

2
+a−a

2
−a

R1/a β 1−R1/a β

It will be useful to replace β and 1− β by their normalized look-alikes

α :=
β√

β2 + (1− β)2
and γ :=

1− β√
β2 + (1− β)2

for in this case the matrix

(
α γ
−γ α

)
belongs to SO

(
2, C∞(R)

)
.

Moreover, we will use the notation Rλf(·) = f(λ·) and τbf(·) = f(· + b) to denote the
rescaling and shift maps, respectively.

1Caution: Here Wn will be a different space than the Wn from Part I
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With the mapping spaces Fn(−1, 0), En(0, 1) and Nn(−a, a) yet to be determined, we define
our gluing map as the upper row in

[
R1/aα · τ−a R1/aγ · τ+a
−R1/aγ · τ−a R1/aα · τ+a

]
=

[
R1/aα R1/aγ

−R1/aγ R1/aα

]
·

[
τ−a

τ+a

]Fn(−1, 0) En(0, 1)

Wn,2(−1 + a, 1−a)
Nn(−a, a)

and take inspiration in [FFGW] Example 5.9 to consider the retraction[
τ+a

τ−a

][
R1/aα −R1/aγ

R1/aγ R1/aα

]
B

[
1

0

]
|Ψ⟩ ⟨Ψ|

[
R1/aα R1/aγ

−R1/aγ R1/aα

]
BT

[
τ−a

τ+a

]

=

[
τ+a

τ−a

][
R1/aα

2 R1/aαγ

R1/aαγ R1/aγ
2

]
|BΨ⟩ ⟨BΨ|

[
τ−a

τ+a

]
=

[
R1/aτ+1α

2 · id R1/aτ+1αγ · τ+2a

R1/aτ−1αγ · τ−2a R1/aτ−1γ
2 · id

]Fn(−1, 0) En(0, 1)

Fn(−1, 0)
En(0, 1)

Note that the naive choice ”Fn = Wn,2(−1, 0)”, ”En = Wn,2(0, 1)” leads to a breakdown of
sc0-continuity because the derivatives

∂kx
[
R1/aτ+1α

2
]
=

1

ak
R1/a

[
∂kx τ+1α

2
]

and ∂kx
[
R1/aτ+1αγ

]
=

1

ak
R1/a

[
∂kx τ+1αγ

]
introduce arbitrarily high pole divergences at a = 0. We circumvent this issue by defining
our Sobolev spaces w.r.t. vector fields V± = ±x∂x on (−1, 0) and (0,+1), respectively.
These simply commute with the rescaling map, in the sense that for f ∈ C∞(R) we have

V±
[
R1/af

]
= R1/a

[
V±f

]
After this heuristic introduction, let us continue with a more precise summary of our results:

Our ’contravariant Sobolev spaces’ Wn,2
V,g (Ω) are defined on open subsets Ω ⊂ Rm,

thereby depending on the datum of a metric g and distinguished vector field V .

Rem. 6.1 Elements of Wn,2
V,g (Ω) are tuples (u0, ..., un) ∈ L2

g(Ω)
⊕n+1 which

obey a suitable realization of the constraint ”uk+1 = V [uk]”.

The spaces Wn,2
V,g exhibit a strikingly simple transformation behaviour in the sense

Prop. 6.2 that each diffeomorphism Φ : Ω′ −→ Ω induces an isomorphism of Banach spaces

Wn,2
V,g (Ω)

∼−→Wn,2
Φ∗V,Φ∗g(Ω

′), (u0, ..., un) 7−→ (u0 ◦ Φ, ..., un ◦ Φ)
that while acting by componentwise pullback of the tuple (uk)k=0,...,n

packages all non-trivial information into the ”smooth data” (V, g).
This data is needed to recover the interpretation of the higher entries uk .

While the Sobolev spaces Wn,2
V,g (Ω) can be studied over any open subset Ω ⊂ Rm,

we will focus exclusively on the case m = 1 with Ω = I an open interval.

Regarding the notation, it is sometimes useful to write Wn,2
V ;ρ(I) :=Wn,2

V,ρ4
(I)

or drop the subscript g from Wn,2
V,g (I) once a particular metric has been singled out.

As an application of our transformation rule, we use the vehicle of a canonical
Rem. 6.3 ’straightening diffeomorphism’ Φ : Ix −→ I to trivialise a given (non-vanishing)

vector field as Φ∗V = ∂x , making it possible to identify Wn,2
V,g (I) with an (almost)

Lem. 6.4 standard Sobolev space Wn,2
∂x,Φ∗g(Ix) and to analyse (non-)compactness

of the inclusion W 1,2
V,g(I) ↪→ L2

g(I), (u0, u1) 7−→ u0.
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Moreover, in an algebraic interlude we develop calculation rules to exchange
the distinguished vector field, while keeping the interval I and metric g fixed.

Rem. 6.5 Specifically, we introduce the subring R(I,W ) ⊂ C∞(I)
of ’smooth functions with bounded W-derivatives’

and exhibit f ∈ R(I,W ) as a sufficient condition for Wn,2
V (I)

Lem. 6.13 to embed into the Sobolev space Wn,2
W (I) with rescaled vector field W = f · V .

Returning to our vector field V+ = x∂x, note that this calculation rule

yields a bounded linear inclusion Wn,2
∂x

(0, 1) ↪→Wn,2
V+

(0, 1)

whereas the reverse inclusion does not exist.

Having introduced vector-field dependent Sobolev spaces Wn,2
V,g to circumvent

the sc0-catastrophe mentioned above, our main effort consists in proving
that the off-diagonal part of the retraction defines a sc∞-map

(a, u) 7−→

{
R1/a(τ+1αγ)τ2au for a > 0

0 for a ≤ 0

Note that R1/a(τ+1αγ) ∈ C∞
0 (R) is a bump supported in

(
−3

2
a, −a

2

)
,

making it possible to evaluate τ2au in the space Wn,2
V−

(−1, 0)
even though it originates from Wn,2

V+
(0, 1).

Figure 8.1 is an illustration of this transfer process and the
technique of ’comoving intervals’ that is required for differentiation w.r.t. to a.

In differentiating the expression a −→ R1/af · τ2aw ∈W
n,2
V−

(−1, 0)
with w ∈Wn,2

V+
(0, 1) and a bump f ∈ C∞

0

(
−3

2
, −1

2

)
,

one has to distinguish between ’longitudinal derivatives’ in a-direction
and ’transversal derivatives’ along the level sets.

First of all, the transversal derivative V k
−
[
R1/afτ2aw

]
is just a sum of similar terms

Prop. 8.22 R1/aMk,l[f ] · τ2aV l
+w

with V l
+w ∈W

n−l,2
V+

(0, 1) and Mk,l[f ] ∈ C∞
0 (R) a bump supported in

(
−3

2
, −1

2

)
.

On the other hand, derivatives in a require more care:
As we will see below, it is only necessary to calculate the

a-derivatives of a 7−→ R1/a(f)τ2au ∈W
1,2
V−

(−1, 0),
with the n-th a-derivative forcing us to focus on u ∈Wn+1,2

V+
(0, 1).

With χn,l[f ] ∈ C∞
0 (R) yet another kind of bump supported in

(
−3

2
, −1

2

)
, one finds

Prop. 8.19

(
∂

∂a

)n
R1/af · τ2au =

1

an

n∑
l=0

R1/a χn,l[f ] · τ2aV l
+u ∈W

1,2
V−

(−1, 0)

so the n-th a-derivative translates into a pole of order n.

Prop. 8.25 To prove sc-smoothness of a fibre-linear sc0-map ∂0π : B ⊕ E −→ F
where the base is an open subset B ⊂ R and the fibres are sc-Banach spaces E and F ,
it is enough to find a sequence of sc0-maps ∂nπ : B ⊕ En −→ F , n ≥ 0
such that at fixed e ∈ En+1 the map b 7−→ ∂n+1πb(e) ∈ F0

is the derivative of its predecessor b 7−→ ∂nπb(e) ∈ F0.

Prop. 8.19 suggests that in our case this sequence will be given by

∂nπa(u) =
1

an

n∑
l=0

R1/a χn,l[f ] · τ2aV l
+u

with transversal derivatives

V m
− [∂nπau] =

1

an

m+n∑
s=0

R1/aL
m,n
s · τ2aV s

+u, Lm,ns ∈ C∞
0 (−3

2
, −1

2
)

entering the proof of sc0-continuity.

9



Crucially, our sc∞-criterion can be extended to the case of
Thm. 8.26 removable singularities 0 ∈ (−ϵ, ϵ), the main condition being

that the left and right limits

lim
b↗0

∂nπb(e), lim
b↘0

∂nπb(e) ∈ Fk
have to exist and agree for every fixed e ∈ En+k.

In the case of the map

(a, u) 7−→

{
R1/a(τ+1αγ)τ2au for a ∈ (0, ϵ)

0 for a ∈ (−ϵ, 0)
this will be achieved by choosing

En =Wn+1,2
V+;ρn (0, 1) Fn =Wn+1,2

V−;ρn (−1, 0)
with a fine-tuned weight factor ρ = 1

|x| .

Apart from providing compact inclusions (which itself would not require any fine-tuning),

Prop. 8.27 our weight sequence ρn = |x|−n can be used to cancel the pole 1
an from V m

− [∂nπau].
Indeed, the map ∂nπ : (0, ϵ)⊕ En+m −→ Fm involves a ”weight difference”

between Wn+m+1,2
V+;ρn+m and Wm+1,2

V−;ρm , allowing us to substitute ρm = |x|n ρn+m

and use the support of R1/aL
m,n
s to compensate 1

an by |x|n < (2a)n.

The transition at a Morse critical point can now be
Thm. 7.4 modelled through a sc-smooth ’crossover splicing’

rCross : (−ϵ, ϵ)⊕
[
Wn+1,2
V−;ρn (−1, 0)

]⊕2
⊕
[
Wn+1,2
V+;ρn (0, 1)

]⊕2 [
Wn+1,2
V−;ρn (−1, 0)

]⊕2
⊕
[
Wn+1,2
V+;ρn (0, 1)

]⊕2

∈

a A,B C,D A,B C,D

that is explicitly given by

a

b

0

D

C

B

A

A B C D

R 1
a

(
τ−1αγ

)
τ−2a

R 1
a

(
τ−1αγ

)
τ−2a

R 1
a

(
τ+1αγ

)
τ+2a

R 1
a

(
τ+1αγ

)
τ+2a

R 1
a

(
τ−1γ

2
)
id

R 1
a

(
τ−1γ

2
)
id

R 1
a

(
τ+1α

2
)
id

R 1
a

(
τ+1α

2
)
id

D

C

B

A

A B C D

R 1
b

(
τ−1αγ

)
τ−2b

R 1
b

(
τ−1αγ

)
τ−2b

R 1
b

(
τ+1αγ

)
τ+2b

R 1
b

(
τ+1αγ

)
τ+2b

R 1
b

(
τ−1γ

2
)
id

R 1
b

(
τ−1γ

2
)
id

R 1
b

(
τ+1α

2
)
id

R 1
b

(
τ+1α

2
)
id

−1B

0

+1 D

0

−1 A

0

+1C

0

−1

B0

+1

D 0

−1
A 0

+1

C0
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By restricting rCross to suitable closed subspaces

Wn ⊂Wn+1,2
V−;ρn (−1, 0)⊕W

n+1,2
V+;ρn (0, 1)

Thm. 7.9 we arrive at a sc-smooth splicing rΣ : (−ϵ, ϵ)⊕W⊕2
n −→W⊕2

n

that interpolates between fibres

Prop. 7.11 ra>0

(
W⊕2
n

) ∼= [Wn+1,2(S1)
]⊕2

and ra<0

(
W⊕2
n

) ∼=Wn+1,2(S1)

corresponding to distinct topologies S1 ⊔ S1 and S1:

a < 0

B

0

D

0

A

0

C

0

−1
+1

+1

−1

+
1

2

− 1

2

F

− 1

2

+
1

2

E

a > 0

B

0

D

0

A

0

C

0

−1
+1

+1

−1

+
1

2

− 1

2

F

− 1

2

+
1

2

E

It remains to describe a way by which
geometrical data defined on the worldsheet Σ
can be transferred to our M-polyfold im(rΣ).

In particular, we need a collective parametrization for all level sets Σa
so that each one of them can be identified with the ensemble of
unit intervals used in the construction of rΣ .

Prop. 7.1 Luckily, this can be achieved without integrating any gradient flow:

Our pair-of-pants worldsheet Σ = C \ {±1}
can be interpreted as a ramified cover of the cylinder C = C \ {0}.
This allows us to equip Σ with a distinguished Morse function ν
coming from the radial coordinate on C.
Meanwhile, the angular coordinate ω provides
the desired collective parametrization of all level sets:

−20+20 −40+40 −60+60 −80+80
−100+100
−120+120
−140+140

−160+160

−20 +20−40 +40−60 +60
−80 +80

−100 +100
−120 +120
−140 +140

−160 +160
+20

+40

+60
+80 +100

+120

+140

+160

−20

−40
−60

−80 −100
−120

−140

−160w = z2 − 1

pair of pants C \ {±1} cylinder C = C \ {0}
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Away from the critical point at z = 0
we can implement a holomorphic change of coordinates z 7−→ ν + iω,
allowing us to split the operator

∂z̄ ∼ ∂ν + i∂ω
into a longitudinal part ∂ν and a transversal part i∂ω.

Once we identify our Morse function ν with the gluing parameter a, the gluing map from
Proposition 7.3 should make it possible to study a combination of various copies of

A(a) :=

[
τ+a

τ−a

] [
R1/aα −R1/aγ

R1/aγ R1/aα

] [
i∂ω

?

] [
R1/aα R1/aγ

−R1/aγ R1/aα

] [
τ−a

τ+a

]
as an operator family on the ambient space of our retraction rΣ, similar to the operator
families encountered in Part I.

We leave the complete formulation as well as the properties of this operator family to future
investigation and conclude our discussion with a series of heuristic remarks:

� The matrix
[
i∂ω

?

]
being diagonal ensures that A(a) commutes with the retraction,

in the sense that ra ◦A(a) = A(a) ◦ ra at every value of the gluing parameter a.
As a result, A(a) will preserve im(ra) as a closed subspace of the ambient fibre.

� The term ”?” is invisible to vectors from the subspace im(ra).

However, one might consider choosing an injective operator

? :Wn+1,2
V a
int;ρ

a
int

(−a, a) −→Wn,2
V a
int;ρ

a
int

(−a, a)

to prevent A(a) from having an ”unphysical” kernel on the ambient fibre.

� Note that the term ∂[R1/aα] =
1
aR1/a[∂α] introduces a pole at a = 0.

However, at the same time ∂ω : Wn+1,2 −→ Wn,2 leads a decrease in regularity. This
decrease in regularity translates to a weight difference between Wn+1,2

V ;ρn and Wn,2
V ;ρn−1

by which we can absorb the pole in way similar to Proposition 8.27.
Thus, we expect our operator family to extend continuously beyond a = 0.

� Even more, it should be possible to apply our methods from section 8.2 to prove sc-
smoothness of the map (a, u) 7−→ A(a)u, in essentially the same way as we proved
sc-smoothness of the retraction (a, u) 7−→ ra(u).

These remarks suggest the interpretation ofA as a vector field with sc-smooth time-dependence,
whose flow arises as the kernel of our APS-operator

∂z̄ ∼
d

da
−A(a)
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Part I

The sc-Fredholm property
of APS-type operators

on weighted Floer path spaces
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Chapter 2

APS operators on unweighted
Floer path spaces

2.1 Basic definitions about almost and honest sc-Banach spaces

In this section we introduce some very basic notions encountered in (linear) polyfold theory
[HWZ07], while disentangling them from the requirement of ’compact inclusions’. First of all,
remark that the notion of a ’regularizing sc-operator’ makes sense on any kind of filtration
without any assumption on how the levels are related:

Definition 2.1 (Filtration-compatible maps)
Let U0 ⊃ U1 ⊃ . . . ⊃ Uk ⊃ . . . and V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ . . . be filtrations of vector spaces.

1) A map ϕ : U0 −→ V0 is called regularizing if for every k ≥ 0 we have ϕ−1(Vk) ⊂ Uk
2) Assume each Uk carries a norm ∥·∥Uk and each Vk carries a norm ∥·∥Vk.

A linear map ϕ : U0 −→ V0 is called sc-operator if for every k ≥ 0 we have
ϕ(Uk) ⊂ Vk and ϕ ∈ L(Uk, Vk)

Remark. A sc-operator ϕ : U0 −→ V0 is regularizing if and only if ϕ−1(Vk) = Uk

For our purposes, it will be useful to study ’almost sc-Banach spaces’ as a precursor to the
usual sc-Banach spaces of [HWZ07]:

Definition 2.2 (Banach scales)
Given a filtration of vector spaces V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ . . . each carrying a norm
such that

(
Vk, ∥·∥Vk

)
is a Banach space and the inclusions are continuous

we say that

� (Vk)k∈N is an almost sc-Banach space if V∞ :=
⋂
n∈N

Vn is dense in Vk for every k ∈ N

� (Vk)k∈N is a sc-Banach space if in addition to this all inclusions Vk+1 ↪→ Vk are compact
operators

Notation. Given a filtration V = (Vk)k∈N we denote by V 1 the truncated filtration (V 1)k = Vk+1

If V is an (almost) sc-Banach space, then so is V 1.

A sc-Banach space will sometimes be called honest sc-Banach space to highlight the differ-
ence. Similarly, we will introduce a distinction between almost and honest sc-subspaces:

Definition 2.3 (almost/honest sc-subspace)
Assume that along with an almost sc-Banach space (Uk)k∈N we are given a sequence of
subspaces V0 ⊂ U0, Vk+1 ⊂ Vk ∩ Uk+1 such that, when Vk is equipped with the norm
coming from Uk, the intersection

⋂
m≥0 Vm is dense in every Vk.

In this case we say that V ⊂ U is an almost sc-subspace.

We call V ⊂ U an (honest) sc-subspace if in addition all our subspaces Vk ⊂ Uk are closed.

Remark. Every almost sc-Banach space is an honest sc-subspace of itself.

14



Note that, as we have defined it, an honest sc-subspace V ⊂ U does not necessarily have to
be an honest sc-Banach space. However, it will automatically be an honest sc-Banach space,
once U is:

Lemma 2.4 Let V ⊂ U be a sc-subspace. If U is an honest sc-Banach space, then so is V .

Proof. To verify compactness of the inclusion Vk+1 ↪→ Vk consider any bounded sequence
xn ∈ Vk+1. Since Vk+1 ⊂ Uk+1 ↪→ Uk is compact, we can find a subsequence that converges
in Uk. Its limit in contained in Vk because Vk ⊂ Uk is a closed subspace.

Almost sc-subspaces, on the other hand, exhibit better stability properties:

Lemma 2.5 (The image of a sc-operator is an almost sc-subspace)
Let ϕ : U −→ V be a sc-operator between almost sc-Banach spaces U and V .
If X is an almost sc-subspace of U , then ϕ(X) =

[
ϕ(Xk)

]
k≥0

is an almost sc-subspace of V .

Proof. The property ϕ(Xk+1) ⊂ ϕ(Xk) ∩ Vk+1 is immediate from Xk+1 ⊂ Xk and our as-
sumption that ϕ is a sc-operator. It remains to show that ϕ(X)∞ is dense in every ϕ(Xk).
In doing so the smaller set ϕ(X∞) ⊂ ϕ(X)∞ will be sufficient. Indeed, X∞ ⊂ Xk is a dense
subset w.r.t the norm ∥·∥Uk so taking into account that ϕ ∈ L(Uk, Vk) is continuous, every
ϕ(x) ∈ ϕ(Vk) can be approximated by a sequence ϕ(xn) with xn ∈ X∞

The analogous result for honest sc-subspaces requires some extra conditions:

Corollary 2.6 (Case where the image is an honest sc-subspace)
Let ϕ : U −→ V be a regularizing sc-operator and assume that ϕ(U0) ⊂ V0 is closed subspace.
Then ϕ(U) =

[
ϕ(Uk)

]
k≥0

is an honest sc-subspace of V .

Proof. By Lemma 2.5 we already know that ϕ(U) =
[
ϕ(Uk)

]
k≥0

is an almost sc-subspace.

That it is indeed an honest sc-subspace can be seen as follows: For a regularizing sc-operator
we have ϕ−1(Vk) = Uk , by which we can rewrite ϕ(Uk) = ϕ(U0) ∩ Vk. Moreover, continuity
of the inclusion Vk ↪→ V0 guarantees that ϕ(U0) ∩ Vk is a closed subspace of Vk.

The reader may observe that arguments similar to Lemmas 2.4, 2.5 and Corollary 2.6 are
involved in the proof of [We] Lem. 3.6. However, we prefer to highlight them as individual
properties.

Now we are ready to state the main property that we are after, namely that of a linear
operator being sc-Fredholm. We phrase our definition in such a way that it emphasizes the
concrete input needed for an operator to be sc-Fredholm, while making sense not only on
honest but also on almost sc-Banach spaces:

Definition 2.7 (sc-Fredholm operator)
Let U = (Uk)k∈N and V = (Vk)k∈N be almost sc-Banach spaces. Assume that along with
finite-dimensional subspaces K ⊂ U∞ and C ⊂ V∞ we can find decompositions Uk = K⊕Xk

and Vk = Yk ⊕ C where the Xk ⊂ Uk and Yk ⊂ Vk are closed subspaces that organise into
sc-subspaces of U and V, respectively. Assume further that φ : U0 −→ V0 is a sc-operator
with kerφ = K and φ(Uk) = Yk. In this situation φ will be called sc-Fredholm.

Remark 2.8 (Classical Fredholm property at every level)
With the notation of Definition 2.7 it is immediately clear that if φ : (Uk)k≥0 −→ (Vk)k≥0 is
sc-Fredholm, the operator φ : Uk = K ⊕Xk −→ Yk ⊕C = Vk will be classically Fredholm at
every level k ≥ 0.

It is straightforward, be it a bit tedious, to verify that in the case of honest sc-Banach spaces
our definition agrees with the standard one from [HWZ07], the moral reason for why this
works being Auxiliary Lemma 2.9 and Lemma 2.10 below.
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Auxiliary Lemma 2.9 (Finite-dimensional subspaces are closed)
Let U be a normed space over a complete field (in our case R or C).
Then every finite-dimensional subspace C ⊂ U is closed.

Proof. Given a basis {ei}i=1,...,n of C the norm
∥∥∑

i λ
iei
∥∥
C
=
∑

i

∣∣λi∣∣ is complete. Since all

norms on a finite-dimensional vector space are equivalent, we conclude that
(
C, ∥·∥U

)
is a

Banach space. Hence Cauchy sequences in C cannot have their limit outside of C.

Lemma 2.10 (Topological decomposition of Banach spaces)
Let U = X ⊕ C be a Banach space, decomposed into closed subspaces X and C.
Then ∥·∥U is equivalent to the canonical norm of X ⊕ C

Proof. The canonical norm on X ⊕ C is given by ∥(x, c)∥ = ∥x∥U + ∥c∥U so the triangle
inequality of ∥·∥U shows that X⊕C −→ U , (x, c) 7−→ x+ c is a bounded linear isomorphism,
which by the Inverse Mapping Theorem has a bounded inverse. The condition that X and
C are closed subspaces is to ensure that X⊕C is a Banach space, as required for the Inverse
Mapping Theorem.

To conclude this warm-up section, let us comment on a repeating pattern that we will
encounter in regularization proofs over and over again:

Definition 2.11 (Escalator)
Given a filtration of sets V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ . . . we say that a map
ϕ : V1 −→ V0 is an escalator for (Vk)k∈N if at every k ≥ 1 we have

x, ϕ(x) ∈ Vk =⇒ x ∈ Vk+1 (2.1)

or in other words Vk ∩ ϕ−1(Vk) ⊂ Vk+1

Auxiliary Lemma 2.12 (Escalators are regularizing)
Let ϕ : V1 −→ V0 be an escalator for (Vk)k∈N. Then ϕ−1(Vk) ⊂ Vk+1

Proof. At k = 0 we trivially have ϕ−1(V0) ⊂ V1. Assume by induction that ϕ−1(Vk) ⊂ Vk+1

holds for a given k ≥ 0. Then any x ∈ V1 with ϕ(x) ∈ Vk+1 ⊂ Vk will belong to Vk+1

so property (2.1) implies x ∈ Vk+2 and therefore ϕ−1(Vk+1) ⊂ Vk+2

Auxiliary Lemma 2.13 (Stability of the preimage)
Assume that on a filtration of vector spaces (Vk)k∈N we are given operators A0 : V1 −→ V0
and B : V0 −→ V0 with A−1

0 (Vk) ⊂ Vk+1 and B(Vk) ⊂ Vk. Then A0 +B : V1 −→ V0 satisfies
(A0 +B)−1(Vk) ⊂ Vk+1 as well.

Proof. By Auxiliary Lemma 2.12 it suffices to verify that A0+B : V1 −→ V0 is an escalator for
(Vk)k∈N. Indeed, consider x ∈ Vk such that (A0+B)x ∈ Vk. Then A0x = (A0+B)x−Bx ∈ Vk
implies x ∈ Vk+1
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2.2 Baseline Operators
In this section we explain how a Hilbert space structure on the lowest level of an almost sc-
Banach spaceW0 ⊃W1 ⊃ . . . can be transferred to all higher levelsWk, making it possible to
apply the techniques of [RS] there as well. The key ingredient will be that of a distinguished
’baseline operator’.

Definition 2.14 (Hilbert scales)
An (almost) sc-Banach space (Wk)k∈N will be called (almost) sc-Hilbert space
if the norm ∥·∥W0

arises from a Hilbert space structure on H :=W0

Definition 2.15 (Baseline operator)
Let H ⊃W1 ⊃ . . . ⊃Wk ⊃ . . . be an almost sc-Hilbert space.
An operator A0 :W1 −→ H will be called sc-self-adjoint or baseline operator if

� A0 is an sc-operator, i.e. A0(Wk+1) ⊂Wk and A0 ∈ L(Wk+1,Wk)

� A0 is regularizing, i.e. A−1
0 (Wk) =Wk+1

� A0 :W1 −→ H is self-adjoint as an unbounded operator on H

Note that the datum of a self-adjoint sc-operator A0 : W1 −→ H comes with a unique
equivalence class of possible norms

∥∥·∥∥
W1
:

Lemma 2.16 (Characterising the graph norm of a self-adjoint operator)
Let A0 : W1 −→ H be self-adjoint as an unbounded operator on H and assume that ∥·∥W1

is
chosen in such a way that both A0 and the inclusion ι :W1 ↪→ H belong to L(W1, H).
Then ∥·∥W1

is equivalent to the graph norm of A0

Proof. Since A0 is a symmetric operator, we observe that for all λ ∈ C, w ∈W1 one has

∥(A0 + λ)w∥2H = ∥A0w∥2H + |λ|2 ∥w∥2H + 2Reλ ⟨w,A0w⟩H (2.2)

By inserting λ = i we see that the expression

∥(A0 + i)w∥2H = ∥A0w∥2H + ∥w∥2H (2.3)

defines a norm on W1. This norm is equivalent to the graph norm of A0, denoted by ∥·∥A0
W1

.
Since A0 and the inclusion ι belong to L(W1, H) we immediately have

∥w∥A0
W1

=
Def
∥A0w∥H + ∥w∥H ≤

[
∥A0∥L(W1, H) + ∥ι∥L(W1, H)

]
· ∥w∥W1

Self-adjointness of A0 ensures thatA0 + i :W1−→H is invertible and the Inverse Mapping The-
orem guarantees (A0 + i)−1 ∈ L(H,W1). Thus, equation (2.3) provides the missing inequality

∥w∥W1
=
∥∥(A0 + i)−1(A0 + i)w

∥∥
W1
≤
∥∥(A0 + i)−1

∥∥
L(H,W1)

∥(A0 + i)w∥H ≤
∥∥(A0 + i)−1

∥∥
L(H,W1)

∥w∥A0
W1

On the other hand, the combination of A0 being a regularizing sc-operator leads to a de-
creasing filtration of spectra

σ(A0 :W1 −→ H) ⊃ σ(A0 :W2 −→W1) ⊃ . . .

We will use the dual version of this statement:

Lemma 2.17 (Increasing filtration of resolvent sets)
Let A0 : (Wk+1)k∈N −→ (Wk)k∈N be a regularizing sc-operator.
Then ρ

(
A0 :W1 −→W0

)
⊂ ρ

(
A0 :Wk+1 −→Wk

)
so the resolvent set can only grow

as we restrict A0 to higher levels 1 + k

Proof. Choosing λ ∈ ρ
(
A0 :W1 −→W0

)
means that A0−λ :W1 −→W0 is invertible, so the

restriction A0−λ :Wk+1 −→Wk is at least injective. In fact it is also surjective because Aux-
iliary Lemma 2.13 guarantees (A0−λ)−1(Wk) ⊂Wk+1. Since A0−λ belongs to L(Wk+1,Wk),
the Inverse Mapping Theorem ensures that its inverse (A0−λ)−1 ∈ L(Wk,Wk+1) is a bounded
linear operator as well.
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The combination of Lemma 2.16 and Lemma 2.17 can be bootstrapped to establish the
conditions for [RS] Thm. 3.10 at every level Wk+1 ↪→Wk instead of just W1 ↪→ H:

Proposition 2.18 (Self-adjointness at every level)
Let H =W0 ⊃W1 ⊃ . . . ⊃Wk ⊃ . . . be an (almost) sc-Hilbert space. Given a baseline opera-
tor A0 :W1 −→ H equipWk+1 with the inner product ⟨v, w⟩Wk+1

:= ⟨v, w⟩Wk
+⟨A0v,A0w⟩Wk

and write
∥∥·∥∥

Wk, A0
for the norm induced by ⟨·, ·⟩Wk

Then the following statements hold true for all k ≥ 0:

1) ∥·∥Wk, A0
is equivalent to the norm ∥·∥Wk

already there

2) A0 :Wk+1 −→Wk is self-adjoint as an unbounded operator on
(
Wk, ⟨·, ·⟩Wk

)
Proof of Proposition 2.18.
For k = 0 note that ∥·∥H arises from an inner product ⟨·, ·⟩H and A0 : W1 −→ H is self-
adjoint as an unbounded operator on H =W0.

Now assume by induction that conditions 1) and 2) are fulfilled at a given k ≥ 0.
Condition 1) implies that A0 and the inclusion ι :Wk+1 ↪→Wk are bounded linear operators
from

(
Wk+1, ∥·∥Wk+1

)
to
(
Wk, ⟨·, ·⟩Wk

)
whereas condition 2) says that A0 : Wk+1 −→ Wk is

self-adjoint as an unbounded operator on
(
Wk, ⟨·, ·⟩Wk

)
. Since ∥·∥Wk+1, A0

represents the graph

norm of A0 : Wk+1 −→
(
Wk, ⟨·, ·⟩Wk

)
, we can apply Lemma 2.16 in the setting ”H” = Wk

and ”W1” =Wk+1 to conclude that ∥·∥Wk+1, A0
is equivalent to the norm ∥·∥Wk+1

already there.
It remains to show that A0 : Wk+2 −→ Wk+1 is self-adjoint as an unbounded operator
on
(
Wk+1, ⟨·, ·⟩Wk+1

)
. SinceA0 :Wk+1 −→Wk is symmetric, symmetry ofA0 : Wk+2 −→ Wk+1

follows from the calculation

Wk+2

〈
w ,

Wk+1

A0w
〉
Wk+1

=
Wk+1

〈
w ,

Wk+1

A0w
〉
Wk

+
〈
A0w

Wk+1

, A0 A0w

Wk+1

〉
Wk

=
〈
A0w,w

〉
Wk

+
〈
A0A0w,A0w

〉
Wk

=
〈
A0w,w

〉
Wk+1

To verify self-adjointness it remains to check ±i ∈ ρ
(
A0 :Wk+2 −→Wk+1

)
which immediately follows from Lemma 2.17 because the self-adjointness of A0 : W1 −→ H
ensures ±i ∈ ρ

(
A0 :W1 −→ H

)
.

Remark. Proposition 2.18 shows that every baseline operator A0 : (Wk+1)k≥0 −→ (Wk)k≥0

can be truncated to a baseline operator A0 : (Wk+1)k≥1 −→ (Wk)k≥1.

Before invoking [RS], let us mention an additional property that is in a way built into the
definition of a baseline operator:

Lemma 2.19 (Horizontal Regularization)
Let A0 :W1 −→ H be a baseline operator on an almost sc-Hillbert space H ⊃ W1 ⊃ ... ⊃ Wk ⊃ ...

Then the map A0 : L
2(R,W1) −→ L2(R, H) satisfies A−1

0

(
L2(R,Wk)

)
= L2(R,Wk+1)

Proof. By Auxiliary Lemma 2.12 it suffices to verify thatA0 is an escalator for
[
L2(R,Wk)

]
k∈N.

Given w ∈ L2(R,Wk) such that A0w belongs to L2(R,Wk) as well, A
−1
0 (Wk) =Wk+1 shows

that we have w(t) ∈ Wk+1 almost everywhere. In fact, by setting w(t) = 0 on the null set
where it would be violated, we can arrange for the statement that w(t) ∈Wk+1 for all t ∈ R.
Using the modified norms ∥·∥Wk, A0

from Proposition 2.18 we observe

∥w(t)∥2Wk+1
≤ const. × ∥w(t)∥2Wk+1, A0

= const. ×
[
∥w(t)∥2Wk, A0

+ ∥A0w(t)∥2Wk, A0

]
≤ const. ×

[
∥w(t)∥2Wk

+ ∥A0w(t)∥2Wk

]
Integration over t ∈ R yields∫

∥w(t)∥2Wk+1
≤ const. ×

[ ∫
∥w(t)∥2Wk

+

∫
∥A0w(t)∥2Wk

]
<∞

and therefore w ∈ L2(R,Wk+1).
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On the other hand, as a reward for Proposition 2.18, we obtain the following property:

Lemma 2.20 (Vertical Regularization)
Let A0 :W1 −→ H be a baseline operator on an almost sc-Hillbert space H ⊃ W1 ⊃ ... ⊃ Wk ⊃ ...
Then for every pair r, k ≥ 0 the operator

DA0 =
d

dt
−A0 : L

2(R,Wk+1) ∩W 1,2(R,Wk) −→ L2(R,Wk)

satisfies D−1
A0

(
W r,2(R,Wk)

)
⊂W r,2(R,Wk+1) ∩W r+1,2(R,Wk)

Proof. Proposition 2.18 shows that A0 can be regarded as a self-adjoint operator on the
Hilbert space

(
Wk, ⟨·, ·⟩Wk

)
, whose graph norm is equivalent to the norm ∥·∥Wk+1

already
there.
Note that [RS] Thm 3.10 (Elliptic regularity) relies on the operator ”A(t)” being self-adjoint
at every t ∈ R but does not require existence of invertible endpoints A± = lim

t→±∞
A(t).

[RS] Thm 3.13 is a direct consequence of Thm 3.10. Applied in the setting ”H” = Wk,

”W” =Wk+1 with ”A(t)” = A0 it shows that D
−1
A0

(
W r,2(R,Wk)

)
⊂ W r,2(R,Wk+1) ∩ W r+1,2(R,Wk)

as claimed.

Our proof of the key Proposition 2.35 will be a combination of Lemma 2.20 (Vertical Reg-
ularization) and Lemma 2.19 (Horizontal Regularization). Note, however, that we need to
work with constant A0 instead of a time-dependent operator family A(t) because the oper-
ators A(t) and A(t0) at different times t ̸= t0 will in general no longer commute, making it
impossible for A(t) to be symmetric w.r.t. ⟨v, w⟩Wk+1

= ⟨v, w⟩Wk
+ ⟨A(t0)v,A(t0)w⟩Wk

.

2.3 Admissible perturbations of a baseline operator

As explained in the previous section, our proof of regularization requires a fixed baseline
operator A0 instead of a time-dependent family A(t). Nonetheless, we can introduce per-
turbations B(t) ∈ L(H) on top of A0 that are a posteriori compatible with the process of
regularization.

Definition 2.21 (Perturbations of a baseline operator)
Let H =W0 ⊃W1 ⊃ . . . ⊃Wk ⊃ . . . be an almost sc-Hilbert space.
As perturbations to the baseline operator A0 from Section 2.2
we will consider operator families B ∈ C1

bounded

(
R,L(H)

)
.

Such a perturbation will be called...

� symmetric if at every t ∈ R the operator B(t) ∈ L(H) is symmetric

� endpoint-regular if there exist invertible operators A± ∈ L(W1, H)
such that A0 +B(t) −→ A± in L(W1, H) as t→ ±∞

� localized if B ∈ C2
(
R,L(H)

)
and

∥∥B′(t)
∥∥
L(H)

,
∥∥B′′(t)

∥∥
L(H)
−→ 0 as t→ ±∞

� moderate if B is a family of sc-operators B(t) : (Wk)k≥0 −→ (Wk)k≥0

such that at every k ≥ 0 the map R −→ L(Wk) is smooth with bounded derivatives,

i.e. all derivatives B(m)(t) ∈ L(Wk), m ≥ 0 exist and satisfy sup
t∈R

∥∥B(m)(t)
∥∥
L(Wk)

<∞

We will say that B(t) ∈ L(H) is a...

� Robbin-Salamon perturbation if it is symmetric and endpoint-regular

� good perturbation if it is moderate, symmetric and endpoint-regular

� very good perturbation if it is moderate, symmetric, endpoint-regular and localized
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As a rule of thumb, we will rely on moderate perturbations to ensure that DA is regularizing,
whereas Robbin-Salamon perturbations are used to make DA a Fredholm operator in the
classical sense. Very good perturbations will only be required for the proof of Theorem 4.15.

At the beginning of [RS] section 3, Robbin and Salamon give a list of three in part rather
specific properties that are assumed in order to make their proofs work. For the record, let us
observe that these properties are automatically covered by our notion of a ’Robbin-Salamon
perturbation’:

Lemma 2.22 (Applicability of the results from [RS] )
Let A0 ∈ L(W,H) be self-adjoint as an unbounded operator on H and assume
that B ∈ C1

bounded

(
R,L(H)

)
is a symmetric and endpoint-regular perturbation of A0.

Then A(t) := A0 +B(t) ∈ L(W,H) satisfies the conditions (A1), (A2), (A3)
formulated at the beginning of [RS] Section 3.

Proof.
� A slightly stronger and more concise version of (A1) consists in the requirement

A ∈ C1
bounded

(
R,L(W,H)

)
as realized by demanding B ∈ C1

bounded

(
R,L(H)

)
.

� Since B(t) ∈ L(H) is symmetric at every t ∈ R, the Kato-Rellich Theorem ensures
that A(t) :W −→ H is self-adjoint as an unbounded operator on H, which verifies the
first part of condition (A2). The second part is covered by the statement that ∥·∥W is
equivalent to the graph norm of A(t), with the equivalence being realized by constants
independent of t. In our case, we know from the proof of Lemma 2.16 that

∥w∥W ≤
∥∥(A0 + i)−1

∥∥
L(H,W )

=: c

(
∥A0w∥H + ∥w∥H

)
so using κ := sup

t∈R
∥B(t)∥L(H) <∞ we obtain

∥w∥W ≤ c
(
∥A(t)w∥H + (1 + κ) ∥w∥H

)
≤ c(1 + κ)

(
∥A(t)w∥H + ∥w∥H

)
whereas the opposite direction is already settled by A ∈ C0

bounded

(
R,L(W,H)

)
.

� Finally, condition (A3) coincides with the statement that A(t) = A0+B(t) is endpoint-
regular.

To increase flexibility and as a preparation for the next section, we briefly generalize the
notion of a moderate perturbation from Definition 2.21. In the following let U ,V and W be
almost sc-Banach spaces.

Definition 2.23 (Moderate families of sc-operators)
We say that a family of sc-operators A(t) : (Uk)k≥0 −→ (Vk)k≥0 is moderate
if at every level k ≥ 0 the map A : R −→ L(Uk, Vk) is smooth with bounded derivatives,
i.e. all derivatives A(m)(t) ∈ L(Uk, Vk), m ≥ 0 exist and satisfy sup

t∈R

∥∥A(m)(t)
∥∥
L(Uk, Vk)

<∞.

The set of moderate families A(t) : U −→ V will be denoted byM(U, V ).

Remark 2.24 (Moderate families are the morphisms of a C-linear category)
� The sum of moderate families A,B ∈M(U, V ) is again moderate

� Let U
B(t)−→ V

A(t)−→W be moderate families. Then the product rule together with∥∥∥A(m)(t)B(n)(t)
∥∥∥
L(Uk,Wk)

≤
∥∥∥A(m)(t)

∥∥∥
L(Vk,Wk)

∥∥∥B(n)(t)
∥∥∥
L(Uk, Vk)

shows that the composition A(t) ◦B(t) is moderate, too.
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Example. Let A0 : W1 −→ H be a baseline operator on an almost sc-Hilbert space
H ⊃W1 ⊃ . . . and denote by ι :W1 −→ H the canonical inclusion.
Then A0 : (Wk+1)k≥0 −→ (Wk)k≥0 and ι : (Wk+1)k≥0 −→ (Wk)k≥0 are constant families of
sc-operators. Given a moderate perturbation B(t) ∈ L(H) the perturbed

A(t) = A0 +B(t) ◦ ι : (Wk+1)k≥0 −→ (Wk)k≥0

is a moderate family of sc-operators in the sense of Definition 2.23.

2.4 DA as a sc-operator

2.4.1 Banach-space-valued Sobolev spaces

Before turning toDA, let us identify the condition under which a general t-family of operators
A(t) : E −→ F induces a map A :W r,2(R, E) −→W r,2(R, F ) between Banach-space-valued
Sobolev spaces.

We adopt a slightly unconventional perspective on Sobolev spaces, which as we shall see in
Part II Remark 6.1 opens a door to generalization:

Remark 2.25 (Alternative construction of Sobolev spaces)
Let E be a Banach space. Given any test function ϕ ∈ C∞

0 (R), Young’s inequality shows
that the expression

δϕ(u0, u1) :=

∫
u0 ∂ϕ+

∫
u1ϕ

defines a bounded linear map δϕ : L2(R, E)⊕2 −→ E. Hence, for every r ≥ 1

Ŵ r,2(R, E) :=
{
(u0, u1, ..., ur) ∈ L2(R, E)⊕r+1

∣∣∣ (uk, uk+1)
⋂

ϕ∈C∞
0 (R)

∈ ker δϕ ∀ k = 0, ..., r − 1
}

is a closed subspace of L2(R, E)⊕r+1 and thus a Banach space itself.

The standard Sobolev spaces can be recovered as follows:

Lemma 2.26 (Identifying Ŵ r,2 with W r,2 )

The projection map p0 : Ŵ
r,2(R, E) −→ L2(R, E), (uk)k=0,...,r 7−→ u0 is injective.

In particular, we can identify Ŵ r,2(R, E) with its image under p0, denoted by W r,2(R, E) ⊂ L2(R, E).

Proof. Consider
(
u0 = 0, u1, . . . , ur

)
∈ Ŵ r,2(R, E) and assume by contradiction that there

exists a minimal k ≤ r− 1 such that uk+1 ̸= 0. For the convolution with any φ ∈ C∞
0 (R) we

obtain φ ∗ uk+1 = φ̇ ∗ uk = 0

Now let φϵ ∈ C∞
0 (R) be a standard Dirac sequence1. Then one has

lim
ϵ→0

∥∥φϵ ∗ uk+1 − uk+1

∥∥
L2(R, E)

= 0

so having φϵ∗uk+1 = 0 for all ϵ > 0 implies uk+1 = 0 in contradiction to our assumption.

Now, as a first step, let us describe transitions between Banach-space-valued Sobolev spaces
W 1,2(R, E) and W 1,2(R, F ):
Lemma 2.27 (Product rule)

Let E,F be Banach spaces. Assume that we are given (u, u′) ∈ Ŵ 1,2(R, E)
and A ∈ C1(R,L(E,F )) with sup

t∈R

∥∥A(m)(t)
∥∥
L(E,F ) <∞ for m = 0, 1.

Then one has Au ∈W 1,2(R, F ) with weak derivative d
dtAu = A′u+Au′

1i.e. φϵ =
1
ϵ
φ
( ·
ϵ

)
where φ ≥ 0 is a smooth function supported in [−1, 1] such that

∫
φ = 1
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Proof. Given a standard Dirac sequence φϵ ∈ C∞
0 (R) we have uϵ := φϵ ∗ u ∈ C∞ ∩W 1,2(R, E) and

lim
ϵ→0

∥∥uϵ − u∥∥W 1,2(R, E)
= 0

By combining Young’s inequality with our assumption sup
t∈R

∥∥A(m)(t)
∥∥
L(E,F ) <∞ one verifies that

for any test function ϕ ∈ C∞
0 (R)

δϕ
(
Au,A′u+Au′

)
=

∫
Au∂ϕ+

∫
[A′u+Au′]ϕ

= lim
ϵ→0

[ ∫
Auϵ ∂ϕ+ [A′uϵ +Au′ϵ]ϕ

]
= lim

ϵ→0

[ ∫
∂
(
Auϵϕ

)]
= 0

and therefore
(
Au,A′u+Au′

)
∈ Ŵ 1,2(R, F ).

Having understood the case r = 1, let us turn to higher Sobolev spaces:

Lemma 2.28 (Ŵ r,2 as a functor)
Let E and F be Banach spaces. Then for every Cr-map A : R −→ L(E,F ) whose derivatives
are bounded in the sense that sup

t∈R

∥∥A(m)(t)
∥∥
L(E,F ) <∞ for all m = 0, ..., r

there exists a unique bounded linear map Ŵ r,2(A) : Ŵ r,2(R, E) −→ Ŵ r,2(R, F )
such that the diagram

Ŵ r,2(R, E)

L2(R, E)

p0

Ŵ r,2(R, F )

L2(R, F )

p0

Ŵ r,2(A)

A

commutes.

Proof. To verify that the bounded linear map

L2(R, E)⊕r+1

[uk]k=0,...,r

L2(R, F )⊕r+1[
[Au]k =

k∑
l=0

(
k

l

)
A(k−l) ul

]
k=0,...,r

Ŵ r,2(A)

maps Ŵ r,2(R, E) to Ŵ r,2(R, F ), let us pick any
(
u0, u1, ..., ur

)
∈ Ŵ r,2(R, E).

For 0 ≤ l, k − l ≤ k ≤ r − 1 we have A(k−l) ∈ C1
(
R,L(E,F )

)
and

(
ul, ul+1

)
∈ Ŵ 1,2(R, E),

so Lemma 2.27 shows that [Au]k ∈W 1,2(R, F ) with weak derivative

d

dt
[Au]k =

k∑
l=0

(
k

l

)[
A(k+1−l)ul +A(k−l)ul+1

]
=

k+1∑
l=0

[(
k

l

)
+

(
k

l − 1

)]
(k+1

l )

A(k+1−l)ul = [Au]k+1

The injectivity of p0 : Ŵ r,2(R, F ) −→ L2(R, F ) ensures that Ŵ r,2(A) is the unique map
lifting A : L2(R, E) −→ L2(R, F ).

Observe that according to our proof of Lemma 2.28, the operator norm of A :W r,2(R, E) −→W r,2(R, F )
is bounded by

2r+1 ·
r∑

m=0

sup
t∈R

∥∥A(m)(t)
∥∥
L(E,F )
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Typically, we will work with smooth families A(t) to induce a bounded linear map at every
regularity level r ≥ 0:

Corollary 2.29
Assume that A : R −→ L(E,F ) is smooth with bounded derivatives,
i.e. all derivatives A(m)(t) ∈ L(E,F ), m ≥ 0 exist and satisfy sup

t∈R

∥∥A(m)(t)
∥∥
L(E,F ) <∞

Then A defines an sc-operator

A :
(
W r,2(R, E)

)
r≥0
−→

(
W r,2(R, F )

)
r≥0

Proof. Given u ∈W r,2(R, E) we can write u = p0(û) with a unique û ∈ Ŵ r,2(R, E)
and the norm satisfies

∥∥u∥∥
W r,2(R, E)

=
∥∥û∥∥

Ŵ r,2(R, E)
.

The commutative diagram from Lemma 2.28 shows that Au ∈W r,2(R, F ) with∥∥Au∥∥
W r,2(R, F ) =

∥∥Ap0 û∥∥W r,2(R, F ) =
∥∥p0 Ŵ (A) û

∥∥
W r,2(R, F ) =

∥∥Ŵ (A) û
∥∥
Ŵ r,2(R, F ) ≤

∥∥Ŵ (A)
∥∥ · ∥∥u∥∥

W r,2(R, E)

so we conclude that A : L2(R, E) −→ L2(R, F ) restricts to a bounded linear map from
W r,2(R, E) to W r,2(R, F ).

2.4.2 Construction of the bifiltration W r
k and nested Sobolev spaces Wn

Having worked with a fixed pair of Banach spaces E and F , we now turn to the ”bifiltration”
W r
k =W r,2(R,Wk) of Sobolev spaces associated to an almost sc-Banach spaceW0⊃W1⊃ . . .

Given an arbitrary subset S ⊂ N2, we describe a general recipe to regard the intersection

WS :=
⋂

(k,r)∈S

W r
k

as a Banach space in its own right. Our recipe consists in taking successive pullbacks in the
category B =

[
Banach spaces, bounded linear maps

]
. In fact, the following special case will

be sufficient for our purposes:

Auxiliary Lemma 2.30 (Intersection of Banach spaces)
Given bounded linear inclusions of Banach spaces X ↪→ H ←↩ Y equip X ∩ Y with the
norm ∥w∥X ∩ Y := ∥w∥X + ∥w∥Y . Then (X ∩ Y, ∥·∥X ∩ Y ) is a Banach space with bounded linear
inclusions X ←↩ X ∩ Y ↪→ Y

Proof. As the inclusions X ∩ Y ↪→ X and X ∩ Y ↪→ Y are bounded linear, every Cauchy
sequence wn ∈ X ∩ Y gets mapped to Cauchy sequences wn ∈ X and wn ∈ Y , which by
completeness of X and Y converge to limits x ∈ X and y ∈ Y , respectively. Since the
inclusions X ↪→ H and Y ↪→ H are bounded linear, we observe that x = limn→∞wn = y so
the limits agree and belong to X ∩ Y . Going back to the norm ∥·∥X ∩ Y we have

∥wn − x∥X ∩ Y = ∥wn − x∥X + ∥wn − y∥Y −→ 0

Remark 2.31 (Pullbacks in B)
By adapting the proof of Auxiliary Lemma 2.30 one can show that the Cartesian pullback

of any two bounded linear maps X
α−→ Z

β←− Y is represented by the closed subspace

ker
(
α ◦ pr0 − β ◦ pr1

)
⊂ X ⊕ Y

This explains our choice of the norm ∥·∥X + ∥·∥Y
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Now we are ready to summarize our basic setup:

Construction (Bifiltration of Banach-space-valued Sobolev spaces)

� Given an almost sc-Banach space H ⊃W1 ⊃ . . . ⊃Wk ⊃ . . .
the subspaces W r,2(R,Wk) ⊂ L2(R,Wk) ⊂ L2(R, H) organise into a bifiltration

W r
k :=W r,2(R,Wk)

with W r′
k′ ⊂W r

k whenever r′ ≥ r and k′ ≥ k.

� Given a finite set S ⊂ N2 Auxiliary Lemma 2.30 shows that

WS :=
⋂

(k,r)∈S

W r,2(R,Wk)

is a Banach space with norm
∥∥w∥∥S := ∑

(k,r)∈S

∥∥w∥∥
W r,2(R,Wk)

� Of particular interest are the diagonals

Wn :=
⋂

(k,r)∈N2

k+r=n

W r,2(R,Wk) = L2(R,Wn) ∩W 1,2(R,Wn−1) ∩ . . . ∩Wn,2(R, H)

� The lowest levels read

H := L2(R, H) W1 = L2(R,W1) ∩W 1,2(R, H) W2 = L2(R,W2) ∩W 1,2(R,W1) ∩W 2,2(R, H)

It is important to know how the maps d
dt and A = A0 + B operate on the bifiltration W r

k .
As it turns out, this is question is easily settled by using our work from section 2.4.1:

Lemma 2.32 (Maps operating on the bifiltration)

1) The map d
dt :W

1,2(R, H) −→ L2(R, H) satisfies d
dt

(
W r+1
k

)
⊂W r

k

2) Given a moderate family of sc-operators A(t):
(
Wk+1

)
k≥0
−→

(
Wk

)
k≥0

the map A : L2(R,W1) −→ L2(R, H) obeys A
(
W r
k+1

)
⊂W r

k

3) Given a moderate family of sc-operators B(t):
(
Wk

)
k≥0
−→

(
Wk

)
k≥0

the map B : L2(H) −→ L2(H) preserves the bifiltration, i.e. B
(
W r
k

)
⊂W r

k

Proof. Fix any k ≥ 0. Statement (1) is a result of the commutative diagram

W r+1,2(R,Wk)

W r,2(R,Wk)

d
dt

W 1,2(R,Wk)

L2(R,Wk)

d
dt

W 1,2(R, H)

L2(R, H)

d
dt

⊂ ⊂

⊂ ⊂

Moreover, the maps A : R −→ L(Wk+1,Wk) and B : R −→ L(Wk) being smooth with
bounded derivatives, statements (2) and (3) follow directly from Corollary 2.29.
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Now that we know how its components operate, let us describe suitable domains for the
operator DA.

Notation. By h, v : N2 −→ N2 we mean the maps
h : (k, r) 7−→ (k + 1, r) and v : (k, r) 7−→ (k, r + 1)

Lemma 2.33 (Flexible target)
Let A(t):

(
Wk+1

)
k≥0
−→

(
Wk

)
k≥0

be a moderate family of sc-operators.

Then for every finite subset S ⊂ N2 the operator

DA =
d

dt
−A : L2(R,W1) ∩W 1,2(R, H) −→ L2(R, H)

restricts to a bounded linear map DA :Wh(S)∪ v(S) −→WS

Proof. Combining d
dt

(
W r+1
k

)
⊂W r

k and A
(
W r
k+1

)
⊂W r

k we have

DA

(
W r
k+1 ∩W r+1

k

)
⊂W r

k

Regarding the norms we observe that
∥∥∥ d

dt
w
∥∥∥
W r
k

≤ ∥w∥W r+1
k

and ∥Aw∥W r
k
≤ Crk ∥w∥W r

k+1

where the constants Crk > 0 arise from Lemma 2.28

Thus, by writing CS := max
(k,r)∈S

Crk we find

∥DAw∥S =
∑

(k,r)∈S

∥DAw∥W r
k
≤

∑
(k,r)∈S

∥w∥W r+1
k

+
∑

(k,r)∈S

Crk ∥w∥W r
k+1
≤ ∥w∥v(S) + CS ∥w∥h(S)

Iterating the prescription from Lemma 2.33 with S0 = L2(R, H) and Sn+1 = h(Sn) ∪ v(Sn),
we arrive at the following conclusion:

Corollary 2.34 (DA as a sc-operator)

The map DA =
d

dt
−A : L2(R,W1) ∩W 1,2(R, H) −→ L2(R, H) defines a sc-operator

DA :
(
Wn+1

)
n≥0
−→

(
Wn

)
n≥0

Proof. Let Dn :=
{
(k, r) ∈ N2

∣∣ k + r = n
}
denote the n-th diagonal.

Then h(Dn) ∪ v(Dn) = Dn+1 so Lemma 2.33 shows that DA : W1 −→ H restricts to
bounded linear maps DA ∈ L(Wn+1,Wn).

2.5 Further properties of DA

2.5.1 ... in the case of a moderate perturbation

Having identified DA : (Wn+1)n≥0 −→ (Wn)n≥0 as a sc-operator, one may ask whether it
is also regularizing. In the case where our family A(t) is replaced by a constant baseline
operator A0, this question can be answered by combining Lemmas 2.19 and 2.20:

Proposition 2.35 (DA0 :W1 −→W is regularizing)
Let A0 be a baseline operator on an almost sc-Hilbert space H ⊃W1 ⊃ . . . ⊃Wk ⊃ . . .
Then the operator DA0 = d

dt −A0 :W1 −→ H satisfies D−1
A0

(
Wn

)
=Wn+1
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Proof of Proposition 2.35.
By Auxiliary Lemma 2.12 it suffices to verify that DA0 is an escalator for

(
Wn

)
n≥0

.
Thus, given u ∈ Wn with DA0u ∈ Wn we have to show that u ∈ Wn+1

Step 1 (Vertical Shift). At every k = 0, ..., n− 1 we argue as follows:
The property u ∈ Wn ⊂ L2(R,Wn) ∩W 1,2(R,Wn−1) can be weakened to saying that

u ∈ L2(R,Wk+1) ∩W 1,2(R,Wk)

Meanwhile, we have DA0u ∈ Wn ⊂Wn−k,2(R,Wk) so Vertical Regularization (Lemma 2.20)
implies that u ∈Wn−k,2(R,Wk+1) ∩Wn−k+1,2(R,Wk).
By repeating this argument for all k = 0, .., n− 1 we arrive at

u ∈
n⋂
k=0

Wn+1−k,2(R,Wk)

but it still remains to show u ∈ L2(R,Wn+1)
Step 2 (Horizontal Extension).
By Step 1 we have u ∈ W 1,2(R,Wn) so the weak derivative u̇ belongs to L2(R,Wn). Com-
bined with our assumption that DA0u ∈ Wn ⊂ L2(R,Wn), this implies

A0u = u̇−DA0u ∈ L2(R,Wn)

so Horizontal Regularization (Lemma 2.19) yields u ∈ L2(R,Wn+1) and we are done.

WkWk+1Wn−1WnWn+1

not covered
by Step 1

m

r

W r,2(R,Wm)

Figure 2.1: Illustration of Proposition 2.35. To any collection of points S ⊂ N2 we associate
an intersection of subsets ⋂

(m,r)∈S

W r,2(R,Wm) ⊂ L2(R, H).

Our claim Wn ∩D−1
A0

(Wn) ⊂ Wn+1 is proven by a combination of
’Vertical Regularization’

D−1
A0

(W r
k )
∣∣
W 0

k+1∩W
1
k
⊂ W r

k+1 ∩W r+1
k for k = 0, ..., n− 1

and ’Horizontal Regularization’ A−1
0 (W 0

n) ⊂W 0
n+1.
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The result of Proposition 2.35 carries over to time-dependent operator familiesA(t)=A0+B(t),
provided that B(t) ∈ L(H) is a moderate perturbation in the sense of Definition 2.21:

Proposition 2.36 (DA :W1 −→W is regularizing)
Assume that A(t):W1−→H arises from a moderate perturbation of our baseline operator A0.

Then the modified operator DA = d
dt −A :W1 −→ H still satisfies D−1

A

(
Wn

)
=Wn+1

Proof. The perturbation A(t) = A0 + B(t) leads us to decompose DA = DA0 − B. In
Proposition 2.35 we have shown that DA0 is regularizing, i.e. D−1

A0

(
Wn

)
= Wn+1. On the

other hand, Lemma 2.32(3) guarantees that B ∈ L(H) preserves the filtration in the sense
that B

(
Wn

)
⊂ Wn. Thus, by Auxiliary Lemma 2.13 it cannot alter our conclusion that DA

is regularizing.

2.5.2 ... in the case of a symmetric perturbation

Let A0 be a baseline operator on an almost sc-Hilbert space H ⊃W=W1 ⊃ . . . and consider
A(t) = A0 +B(t) ∈ L(W,H) in the case where B(t) ∈ L(H) is a symmetric perturbation.
Then we have the following result which is merely a reformulation of [RS] Thm. 3.10 (Elliptic
Regularity):

Lemma 2.37 (D∗
−A = −DA)

The operators D−A :W1 −→ H and −DA :W1 −→ H are mutually adjoint.

Proof. Recall that the adjoint of an unbounded operator D−A is defined on the domain

D(D∗
−A) :=

{
ξ ∈ H

∣∣ ⟨ξ,D−A·⟩H is a bounded functional on (W1, ∥·∥H)
}

We claim that

D(D∗
−A) ⊂

(1)

{
ξ ∈ H

∣∣∃η ∈ H : ⟨ξ,D−Aϕ⟩H + ⟨η, ϕ⟩H = 0 ∀ϕ ∈ C∞
0 (R,W )

}
⊂
(2)
W1 ⊂

(3)
D(D∗

−A)

To verify inclusion (1) pick any ξ ∈ D(D∗
−A). Since ⟨ξ,D−A·⟩H is a bounded functional

on (W1, ∥·∥H), the Hahn-Banach theorem shows that there exists an extension λ ∈ H∗

with λ|W1 = ⟨ξ,D−A·⟩H. By the Riesz represention theorem we can find η ∈ H such that
λ = −⟨η, ·⟩H . Thus, for any ϕ ∈ C∞

0 (R,W ) ⊂ W1 we have ⟨ξ,D−Aϕ⟩H + ⟨η, ϕ⟩H = 0.

Inclusion (2) is the statement of [RS] Thm. 3.10 (Elliptic regularity).

Regarding inclusion (3) let us first establish a partial integration formula for weak derivatives.
Given ξ, ρ ∈ W1 we can find approximating sequences ϕn, ψn ∈ C∞

0 (R, H) such that ϕn → ξ
and ψn → ρ in W 1,2(R, H). At fixed n ∈ N the functions ϕn and ψn are smooth and
compactly supported, so the Fundamental Theorem of Calculus gives

0 =

∫
d

dt
⟨ϕn, ψn⟩H =

∫
⟨ϕ′n, ψn⟩H +

∫
⟨ϕn, ψ′

n⟩H

On the other hand, using Young’s inequality we can identify the limit as

⟨ξ′, ρ⟩H + ⟨ξ, ρ′⟩H = lim
n→∞

∫
⟨ϕ′n, ψn⟩H +

∫
⟨ϕn, ψ′

n⟩H = 0

With this done, recall that A(t) :W −→ H is a symmetric operator at every t ∈ R,
so given ξ(t), ρ(t) ∈ W we obtain

〈
ξ(t), A(t)ρ(t)

〉
H

=
〈
A(t)ξ(t), ρ(t)

〉
H
.

Taking both ingredients together we conclude that for ξ, ρ ∈ W1 one has

⟨DAξ, ρ ⟩H + ⟨ ξ,D−Aρ ⟩H = 0 (2.4)

In particular, ⟨ξ,D−A·⟩H = −⟨DAξ, ·⟩H is a bounded functional on (W1, ∥·∥H) so ξ ∈ D(D∗
−A).

Now that we have shown D(D∗
−A) = W1 , note that according to formula (2.4) the adjoint

of D−A is given by D∗
−A = −DA. This choice is unique because W1 is dense in H.
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2.6 The sc-Fredholm property of DA : (Wn+1)n≥0 −→ (Wn)n≥0

Building on our observations in sections 2.5.1 and 2.5.2, the sc-Fredholm property of DA

arises from a nice general pattern:

Theorem 2.38 (Criterion for being sc-Fredholm)
Let H ⊃ W1 ⊃ . . . ⊃ Wn ⊃ . . . be an almost sc-Hilbert space.

Assume we are given regularizing sc-operators φ± : (Wn+1)n≥0 −→ (Wn)n≥0 such that

at the lowest level n = 0 the operators φ± :W1 −→ H are Fredholm and mutually adjoint.

Then the operators φ± are sc-Fredholm.

Proof of Theorem 2.38.
Let us begin by the following observation, which works for φ+ and φ− individually:

� Since φ± is regularizing, we have kerφ± = φ−1
± (0) ⊂

⋂
n≥0

Wn

� Moreover, φ± :W1 −→ H being Fredholm ensures that
kerφ± is finite-dimensional and φ±(W1) ⊂ H is a closed subspace.

Next let us study the interplay of φ+ and φ−:
As the operators φ± :W1 −→ H are mutually adjoint, we have φ±(W1)

⊥ = kerφ∓
so with φ±(W1) ⊂ H being closed subspaces there are orthogonal decompositions

H = φ±(W1)⊕ kerφ∓

As mentioned above, kerφ± is contained in every Wn and therefore
taking the intersection with Wn yields decompositions

Wn =
[
Wn ∩ φ±(W1)

]
⊕ kerφ∓ = φ±(Wn+1)⊕ kerφ∓ (2.5)

where for the second equality we have used that φ−1
± (Wn) =Wn+1.

Corollary 2.6 shows that Xn := φ−(Wn+1) and Yn := φ+(Wn+1) are honest sc-subspaces of
W = (Wn)n≥0. Setting K := kerφ+ and C := kerφ− we have ticked all boxes to ensure
that φ+ : W1 −→W is sc-Fredholm in the sense of Definition 2.7. By symmetry of our
construction φ− : W1 −→W is sc-Fredholm as well.

Remark 2.39 (Double Helix I)
As an important takeaway from the proof of Theorem 2.38, note that, according to the
decompositions (2.5), our maps φ± give rise to a ”double helix” of isomorphisms

Hkerφ+ ⊕ φ−(W1) φ+(W1)⊕ kerφ−= =

kerφ+ ⊕ φ−(W2) φ+(W2)⊕ kerφ−= =

kerφ+ ⊕ φ−(W3) φ+(W3)⊕ kerφ−= =

kerφ+ ⊕ φ−(W4) φ+(W4)⊕ kerφ−= =

W1

W2

W3

φ− φ+

φ− φ+

φ− φ+

This picture will be revisited in Remark 3.16 and provides guidance for Theorem 4.15.
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Let us put all pieces together and use Theorem 2.38 to exhibit DA : (Wn+1)n≥0 −→ (Wn)n≥0

as a sc-Fredholm operator between almost sc-Banach spaces:

Theorem 2.40 (DA as an sc-Fredholm operator in the unweighted case)
Let A0 :W1 −→ H be a baseline operator on an honest sc-Hilbert space H ⊃W1 ⊃ . . . ⊃Wk ⊃ . . .
Assume that B(t) ∈ L(H) is a good perturbation (moderate, symmetric, endpoint-regular)
and write A(t) = A0 +B(t) .

Then D±A : (Wn+1)n≥0 −→ (Wn)n≥0 are sc-Fredholm operators between almost sc-Banach spaces.

Proof. All we have to do is verify that the pair ”φ±” = ∓D±A satisfies the conditions of
Theorem 2.38: With A(t) : (Wk+1)k≥0 −→ (Wk)k≥0 being a moderate family of sc-operators,
Corollary 2.34 ensures that also D±A : (Wn+1)≥0 −→ (Wn)n≥0 are sc-operators. Since more
specifically A(t) = A0+B(t) is a moderate perturbation of a baseline operator, we have seen
in Proposition 2.36 that DA : (Wn+1)n≥0 −→ (Wn)n≥0 and similarly D−A is regularizing.
Moreover, we have observed in Lemma 2.37 that for a symmetric perturbation B(t) the
operators D−A and −DA are mutually adjoint.

Hence, it remains to explain why D±A :W1 −→ H are Fredholm operators.
This, however, is the main statement of the paper [RS] (see [RS] Thm. A or [RS] Thm. 3.12)
and requires A(t) = A0+B(t) ∈ L(W1, H) to be a symmetric, endpoint-regular perturbation
of A0 as well as our assumption that W1 ↪→ H is a compact inclusion.2

Corollary 2.41 (Classical Fredholm property at every level)
The assumptions of Theorem 2.40 ensure that
D±A :Wn+1 −→Wn is a Fredholm operator at every level n ≥ 0 .

Proof. Combine Theorem 2.40 with Remark 2.8.

2Compactness of the inclusion W1 ↪→ H enters [RS] Lem. 3.8 which by the inequality∥∥ξ∥∥W1
≤ const. ×

[ ∥∥ξ∥∥H(T )
+

∥∥DAξ
∥∥
H
]

(2.6)

from [RS] Lem. 3.9 makes it possible to apply the ’Abstract Closed Range Lemma’ [RS] Lem. 3.7
Note that the inequality (2.6) is the only step in the proof of [RS] Thm. 3.12 that requires invertible endpoints

A± ∈ L(W,H)
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2.7 (Wn)n≥0 as an almost sc-Banach space

Let H ⊃W1 ⊃ . . . be an almost sc-Banach space. Then the following result confirms
that the ”suspension” Wn =

⋂
r+k=n

W r,2(R,Wk)

constructed in section 2.4.2 is indeed an almost sc-Banach space (resp. almost sc-Hilbert
space if H was a Hilbert space). What we will prove is actually a bit stronger and will
therefore become important in section 4.1:

Proposition 2.42 (Density axiom for (Wn)n≥0)
The space C∞

0 (R)W∞ ⊂ W∞ consisting of finite sums
∑′

iwifi(·)
with fi ∈ C∞

0 (R) and wi ∈W∞ is dense in every Wn

Proof. As a warm-up let us prove that S := C∞
0 (R)W∞ is dense in everyW r

k =W r,2(R,Wk).
To approximate a given u ∈ W r

k pick a Dirac sequence φδ ∈ C∞
0 (R). Given a prescribed

accuracy ϵ > 0, we fix δ such that∥∥φδ ∗ u− u∥∥W r,2(R,Wk)
< ϵ/3

Now that δ has been chosen, the expression κ :=
r∑
l=0

∥∥φ(l)
δ

∥∥
L1(R) can be treated as a constant.

Auxiliary Lemma 2.43 shows that for any w ∈ L2(R,Wk) we have φδ ∗w ∈W r,2(R,Wk) with∥∥φδ ∗ w∥∥W r,2(R,Wk)
=

r∑
l=0

∥∥φ(l)
δ ∗ w

∥∥
L2(R,Wk)

≤ κ
∥∥w∥∥

L2(R,Wk)

In our case, u can be approximated by a step function v =
m∑
i=1

vi χIi with vi ∈ Wk and

Ii compact such that
∥∥v − u∥∥

L2(R,Wk)
< ϵ/3κ. Moreover, since W∞ is dense in Wk, we can

consider a modified step function ṽ =
m∑
i=1

ṽi χIi with ṽi ∈W∞ such that
∥∥ṽi − vi∥∥2Wk

< (ϵ/3κ)2

m2·|Ii|

and therefore ∥ṽ − v∥L2(R,Wk)
< ϵ/3κ.

Note that φδ ∗ ṽ ∈ C∞
0 (R)W∞ and∥∥φδ ∗ ṽ − u∥∥W r,2(R,Wk)
≤
∥∥φδ ∗ [ṽ − v]∥∥W r,2(R,Wk)

+
∥∥φδ ∗ [v − u]∥∥W r,2(R,Wk)

+
∥∥φδ ∗ u− u∥∥W r,2(R,Wk)

≤ κ
∥∥ṽ − v∥∥

L2(R,Wk)
+ κ

∥∥v − u∥∥
L2(R,Wk)

+
∥∥φδ ∗ u− u∥∥W r,2(R,Wk)

< ϵ

To prove that S = C∞
0 (R)W∞ is dense in every Wn let us repeat the above proof for

u ∈ L2(R,Wn) ∩W 1,2(R,Wn−1) ∩ . . . ∩Wn,2(R, H). This time we fix δ such that∥∥φδ ∗ u− u∥∥W r,2(R,Wn−r)
< ϵ/3 for all r = 0, ..., n

and define κ :=
n∑
l=0

∥∥φ(l)
δ

∥∥
L1(R). Then as before we choose a step function v =

∑
i

′
viχIi with vi ∈Wn

such that
∥∥v − u∥∥

L2(R,Wn)
< ϵ/3κ and therefore automatically

∥∥v − u∥∥
L2(R,Wn−r)

< ϵ/3κ for all r = 0, ..., n.

Since W∞ is dense in Wn , we can find a modified step function ṽ =
∑
i

′
ṽiχIi with ṽi ∈W∞

such that
∥∥ṽ − v∥∥

L2(R,Wn)
< ϵ/3κ and hence

∥∥ṽ − v∥∥
L2(R,Wn−r)

< ϵ/3κ for all r = 0, ..., n.

With these adaptions we see that∥∥φδ ∗ ṽ − u∥∥W r,2(R,Wn−r)
≤ κ

∥∥ṽ − v∥∥
L2(R,Wn−r)

+ κ
∥∥v − u∥∥

L2(R,Wn−r)
+
∥∥φδ ∗ u− u∥∥W r,2(R,Wn−r)

< ϵ

holds simultaneously for all r = 0, ..., n. Thus, we have found φδ ∗ ṽ ∈ C∞
0 (R)W∞ with∥∥φδ ∗ ṽ − u∥∥Wn

< (n+ 1) ϵ
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Auxiliary Lemma 2.43 (Convolution inequality)
Let E be a Banach space. Then the convolution of φ ∈ C∞

0 (R) and u ∈ L2(R, E) satisfies∥∥φ ∗ u∥∥
L2(R, E)

≤
∥∥φ∥∥

L1(R)

∥∥u∥∥
L2(R, E)

Proof. The pointwise estimate

∥∥φ ∗ u(x)∥∥
E
≤
∫

dy |φ(x− y)|1/2 |φ(x− y)|1/2
∥∥u(y)∥∥

E
≤
[ ∫

dy |φ(x− y)|
]1/2[ ∫

dy |φ(x− y)| ·
∥∥u(y)∥∥2

E

]1/2
shows that ∥∥φ ∗ u(x)∥∥2

E
≤
∥∥φ∥∥

L1(R)

∫
dy |φ(x− y)| ·

∥∥u(y)∥∥2
E

so by Tonelli’s theorem we obtain∫
dx
∥∥φ ∗ u(x)∥∥2

E
≤
∥∥φ∥∥2

L1(R)

∥∥u∥∥2
L2(R, E)

and therefore
∥∥φ ∗ u∥∥

L2(R, E)
≤
∥∥φ∥∥

L1(R)

∥∥u∥∥
L2(R, E)

.

Let us conclude this chapter by a simple argument showing that unboundedness of the
domain I = R poses an obstruction to W1 ↪→ H being compact. Thus, (Wn)n≥0 may be an
almost sc-Banach space, but it fails to be an honest sc-Banach space, by lack of compact
inclusions:

Lemma 2.44 (Escape argument)
The inclusion operator L2(R,W1) ∩W 1,2(R, H) ↪→ L2(R, H) is non-compact.

Proof. Consider a sequence of bump functions ϕn = ϕ(·−n) ∈ C∞
0 (R,W1) escaping to infin-

ity. The shift map being an isometry, this sequence remains bounded in L2(R,W1) ∩W 1,2(R, H).
However, since for N large enough ϕn and ϕn+N have disjoint support, we cannot find a
Cauchy subsequence even in L2(R, H).

Before resolving this issue in Section 4.1, let us focus on the spectral-theoretic consequences
of our findings so far. This will provide useful tools for our main effort in Chapter 4.
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Chapter 3

Spectral Techniques

In this interlude chapter, we explore consequences of Corollary 2.41. This will give us the
necessary tools to prove Theorem 4.17 as an analogon to Theorem 2.40 in the ’weighted’ case.

From now on let A0 :W1 −→ H be a baseline operator on an honest sc-Hilbert spaceH ⊃W1 ⊃ . . .
Further assume that B(t) ∈ L(H) is a good perturbation (moderate, symmetric, endpoint-
regular) and write A(t) = A0 +B(t). These assumptions ensure that all results from Chap-
ter 2 apply at once.

3.1 The self-adjoint Fredholm operator D−ADA :W2 −→ H
Before applying our own results from Chapter 2, let us explain how observations from [RS]
lead to DA :W1 −→ H being a closed operator. Note that closed operators are characterized
by completeness of their graph norm:

Auxiliary Lemma 3.1 (Completeness of the graph norm)
Let T : D(T ) −→ H be an unbounded operator on a Hilbert space H.
Then T is a closed operator if and only if its graph norm makes D(T ) a Banach space.

Proof. Using the injective map D(T ) idH⊕T−→ H⊕H to identify D(T ) with a
subspace graph(T ) ⊂ H⊕H, the graph norm of T can be understood as pullback of ∥·∥H⊕H .
Now T being a closed operator is synonymous to graph(T ) ⊂ H⊕H being a closed subspace,
which again is equivalent to

(
graph(T ), ∥·∥H⊕H

)
being complete.

Lemma 3.2 D±A :W1 −→ H is a closed operator.

Proof. All assumptions are invariant under ”A→ −A”, so it suffices to consider D+A .
By [RS] Lem 3.9 we can find a constant c0 > 0 such that

c0 · ∥ξ∥W1
≤ ∥ξ∥H + ∥DAξ∥H ∀ ξ ∈ W1

Conversely, both DA and the inclusion ι : W1 ↪→ H are bounded linear operators from W1

to H , so with another constant c1 > 0 we have

∥ξ∥H + ∥DAξ∥H ≤ c1 · ∥ξ∥W1
∀ ξ ∈ W1

The combination of these inequalities means that the graph norm of DA is equivalent to
the norm ∥·∥W1

already there, which by the constructions from Section 2.4.2 is known to be
complete. Using Auxiliary Lemma 3.1 completeness of the graph norm can be rephrased as
saying that ”T” = DA is closed.
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The following rather well-known result provides a recipe to build a self-adjoint operator from
any closed operator:

Lemma 3.3 (von Neumann’s theorem)
Let T : D(T ) −→ H be a densely defined, closed operator on a Hilbert space H and write

D(T ∗T ) := T−1(D(T ∗)) ⊂ D(T )

Then S = T ∗T : D(T ∗T ) −→ H is self-adjoint and non-negative. Its kernel equals kerT

Proof. For x ∈ D(S) = T−1(D(T ∗)) ⊂ D(T ) one has〈
x, Sx

〉
=

D(T )

〈
x ,

D(T ∗)

T ∗ Tx
〉
= ∥Tx∥2 ≥ 0 (3.1)

so S is non-negative. Note that every non-negative operator is symmetric because to prove
that S is a symmetric operator it suffices to verify ⟨x, Sx⟩ ∈ R for all x ∈ D(S).
Equation (3.1) shows that Sx = 0 implies Tx = 0, so we have ker(S) ⊂ ker(T ).
With the reverse inclusion trivially satisfied, we obtain ker(S) = ker(T ).

The statement about self-adjointness is known as ”von Neumann’s Theorem” and can be
found in [Te] Problem 2.12 (p.73). As no proof is given there let us provide one here.

By [Te] Lemma 2.3 (p.63) it suffices to verify ran(S + 1) = H.
Since T : D(T )→ H is a closed operator, the inner product(

·, ·
)
T
:=
〈
T ·, T ·

〉
H +

〈
·, ·
〉
H

induces a complete norm on D(T ) and gives D(T ) itself the structure of a Hilbert space.
Given any z ∈ H we observe that ⟨z, ·⟩|D(T ) is a bounded linear functional on

(
D(T ), ∥·∥T

)
so by the Riesz Representation Theorem there exists z̃ ∈ D(T ) with〈

z, ·
〉∣∣

D(T )
=
(
z̃, ·
)
T

=
〈
T z̃, T ·

〉
H +

〈
z̃, ·
〉
H (3.2)

This shows that ⟨T z̃, T ·⟩H = ⟨z − z̃, ·⟩H is a bounded linear functional on
(
D(T ), ∥·∥H

)
so we get T z̃ ∈ D(T ∗). Thus, we have z̃ ∈ D(T ∗T ) and (3.2) can be rewritten as

⟨z, ·⟩|D(T ) = ⟨(T ∗T + 1)z̃, ·⟩

As D(T ) is dense in H, this implies z = (T ∗T + 1)z̃ ∈ ran(S + 1) and we are done.

Remark. Our proof of Lemma 3.3 was inspired by the Friedrichs extension theorem as in
[Te] Section 2.3 (p.67) and in a sense bypasses the construction of a Friedrichs extension
to T ∗T .

The above observations suggest that the operator S = D−ADA, while sharing features of DA

and D−A, has better properties than the original DA:

Theorem 3.4 ( Characterisation of S = D−ADA )
The operator S = D−ADA :W2 −→ H is non-positive, self-adjoint and Fredholm.
It has the same kernel as DA and the same range as D−A .

Proof. Corollary 2.41 tells us that not only D−A :W1 −→ H but also DA :W2 −→W1 is Fred-
holm, so as the composition of Fredholm operators D−ADA :W2 −→ H is again Fredholm.

For the self-adjointness part let us apply Lemma 3.3 in the case ”T” = DA :
From Proposition 2.42 we know that W1 ⊂ H is a dense subspace and Lemma 3.2 verifies
that DA : W1 −→ H is a closed operator. In Lemma 2.37 we have seen that the adjoint
operator D∗

A is simply −D−A : W1 −→ H, which exhibits S = D−ADA : D−1
A (W1) −→ H as
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minus the operator T ∗T from Lemma 3.3 . Using Proposition 2.36 to identify the domain as

D(T ∗T ) = D−1
A

(
W1

)
=W2

we conclude that D−ADA :W2 −→ H is non-positive self-adjoint with kernel kerDA .

Last but not least, recall that our operators φ± = ±D±A satisfy the conditions of Theorem 2.38
so by the proof of that theorem W1 admits a decomposition

W1 =
[
W1 ∩DA(W1)

]
⊕ kerD−A = DA(W2)⊕ kerD−A

As a direct result, we obtain D−A(W1) = D−ADA(W2) .

3.2 The spectrum of self-adjoint Fredholm operators

In this section, we describe the conditions that the properties from Theorem 3.4 impose on
the spectrum of S = D−ADA. The consequences of being non-positive and self-adjoint are
well-known:

Lemma 3.5 The spectrum of a self-adjoint, non-positive operator S : D(S) −→ H satisfies

σ(S) ⊂ (−∞, 0]

Proof. See [Te] Theorem 2.19 (p.77)

Exploiting the combination of ’Fredholm’ and ’self-adjoint’ requires a bit more work: The
following statement is equivalent to [Wa] Lemma 2.2.5 (p.27). However, we give different,
possibly more intuitive proof.

Lemma 3.6 (Isolated Origin)
Let S : D(S) −→ H be Fredholm and self-adjoint.
Then we can find ϵ > 0 such that Bϵ(0) ∩ σ(S) = {0} ∩ σp(S).

Proof. Self-adjointness implies that S is closed. S being closed has the following advantage:
When equipped with the graph norm of S the domain D(S) is a Banach space in its own
right and the inclusion ι is a bounded map from D(S) to H.
In particular, if for some λ ∈ C it turns out that S − λ ∈ L (D(S),H) is invertible, the
Inverse Mapping Theorem guarantees that (S − λ)−1 ∈ L (H,D(S)) ⊂ L(H) is bounded
as well. This shows that the resolvent set can be described as

σ(S)c = {λ ∈ C| S − λ : D(S) −→ H is invertible }

Taking into account that self-adjoint operators satisfy σ(S) ⊂ R, the spectrum of our oper-
ator S becomes

σ(S) = {λ ∈ R| S − λ : D(S) −→ H is not invertible } (3.3)

Next recall that the set of Fredholm operators from D(S) to H is open in L (D(S),H),
so with ϵ > 0 small enough S − λ : D(S) −→ H is Fredholm for all λ ∈ Bϵ(0). We claim
that Bϵ(0) ∩ σ(S) ⊂ σp(S). Indeed, the Fredholm property guarantees that ran(S − λ) ⊂ H
is a closed subspace and therefore H = ran(S − λ)⊕ ran(S − λ)⊥. Since S is self-adjoint, we
have ran(S − λ)⊥ = ker(S∗ − λ̄) = ker(S − λ̄). Specifying to λ ∈ R ∩Bϵ(0) one gets

S − λ invertible ⇐⇒ ker(S − λ) = 0

so going back to (3.3) we find

σ(S) ∩Bϵ(0) ⊂ {λ ∈ R| ker(S − λ) ̸= 0 } = σp(S) (3.4)
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We claim that it is possible to further shrink ϵ > 0 so that also σ(S) ∩Bϵ(0) ⊂ {0}.
Assume by contradiction that there exists a sequence λn ∈ σ(S) with λn ̸= 0 and λn −→ 0.
Inclusion (3.4) ensures that for n ∈ N large enough the λn are contained in the point spec-
trum σp(S), so we can find ”eigenvectors” xn ∈ D(S) satisfying ∥xn∥D(S) = 1 and (S − λn)xn = 0.
In particular, ∥Sxn∥H = |λn| · ∥xn∥H ≤ |λn| shows that Sxn −→ 0 in H.
By Atkinson’s Theorem our operator S comes with a parametrix S̃ ∈ L (H,D(S)) such that
S̃S = IdD(S)−K with K : D(S)→ D(S) compact. Passing to a subsequence we can assume
that Kxn −→ x converges in D(S), so

L(H,D(S))

xn =

→0

S̃(Sxn) + Kxn −→ x

converges as well. Since S is a bounded operator from
(
D(S), ∥·∥D(S)

)
to H, we have

Sx = lim
n→∞

Sxn = 0 and therefore x ∈ ker(S). As for a self-adjoint operator eigenspaces

with different eigenvalues are always orthogonal, we obtain ⟨x, x⟩H = lim
n−→∞

⟨xn, x⟩H = 0 and

thus x = 0. This is in contradiction to ∥x∥D(S) = lim
n→∞

∥xn∥D(S) = 1.

Taking all three properties together, we arrive at the following picture about the spectrum
of S:

Corollary 3.7 (Characterising the spectrum of S = D−ADA)
Let S : D(S) −→ S be non-positive, self-adjoint and Fredholm.
Then there exists a constant ϵ > 0 such that the spectrum of S satisfies σ(S) \ {0} ⊂ (−∞,−ϵ] .
The maximum possible such ϵ will be called the spectral gap of S.

Proof. Combine Lemmas 3.5 and 3.6

In particular, 0 ∈ C will be isolated from the rest of the spectrum.

3.3 The operator norm of the resolvent

In section 3.4 Lemma 3.14(ii) we will show that around isolated points of the spectrum the
resolvent map R•(S) can only have simple poles. The key ingredient will be Proposition 3.11
for which we will need Lemmas 3.8 and 3.10 as preparations. Proposition 3.12 is an immediate
consequence of Proposition 3.11, but will not be needed until chapter 4 Theorem 4.15.

We begin by the following result which is a simplification of [Ka] Theorem III. 6.15 and
Problem III.6.16 (p.177):

Lemma 3.8 (Spectral mapping for z 7→ z−1)
Let S : D(S) −→ H be a closed (unbounded) operator on H.

i) If S is invertible, we can treat its inverse S−1 as a bounded operator from H to itself.
The spectra σ

(
S : D(S)→ H

)
\ {0} and σ

(
S−1 ∈ L(H)

)
\ {0} are related by z 7→ z−1

ii) Given λ ∈ ρ(S) = σ(S)c we have dist(λ, σ(S)) = inf |σ(S) − λ| > 0 and the resolvent
Rλ(S) := (S − λ)−1 ∈ L(H) has spectral radius spr(Rλ(S)) =

1
dist(λ, σ(S))

Proof. Part (i). Recall from our proof of Lemma 3.6 that the resolvent set of a closed oper-
ator S is simply ρ(S) = {z ∈ C| S− z : D(S) −→ H is bijective }. Moreover, for S invertible
the inverse S−1 ∈ L(H,D(S)) is a bounded operator. Since the inclusion ι : D(S) ↪→ H
is bounded as well, we can consider ”S−1” = ι ◦ S−1 ∈ L(H) as a bounded operator from
H to itself. So as far as S−1 is concerned we will use the resolvent formalism of bounded
operators. Now pick any z ∈ C \ {0}. The calculation

ι ◦ S−1 − z−1 idH = (z ι− S) ◦ (zS)−1
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translates into a commutative diagram

H H

D(S)

S−1 − z−1

z − S (zS)−1

Since (zS)−1 : H −→ D(S) is invertible, we find that

S−1 − z−1 : H → H bijective ⇐⇒ z − S : D(S)→ H bijective

so σ
(
S ∈ L(D(S),H)

)
\ {0} and σ

(
S−1 ∈ L(H)

)
\ {0} are related by z 7→ z−1.

Part (ii). Let S : D(S) −→ H be closed but not necessarily invertible and consider λ ∈ ρ(S).
As the resolvent set ρ(S) ⊂ C is open, there exists ϵ > 0 such that

Ω := σ(S − λ) = σ(S)− λ ⊂ C \Bϵ(0)

In particular, dist(λ, σ(S)) = inf |Ω| ≥ ϵ > 0. Since the property of being closed is sta-
ble under perturbation by bounded operators, we observe that S − λ : D(S) → H is a
closed invertible operator. By part (i) we find that 1

Ω = σ((S − λ)−1) \ {0} and therefore
sup

∣∣ 1
Ω

∣∣ = sup
∣∣σ((S − λ)−1

)∣∣. For general Ω ⊂ C \ {0} one has
∣∣ 1
Ω

∣∣ = 1
|Ω| ⊂ (0,∞) and

sup 1
|Ω| =

1
inf |Ω| ∈ [0,∞], so in our case

spr
(
Rλ(S)

)
=
def.

sup
∣∣σ((S − λ)−1

)∣∣ = 1

dist(λ, σ(S))

dist
(
λ, σ(S)

)
λ∈ρ(S)

possible reach of σ(S)

0

spr
(
Rλ(S)

)
= dist

(
λ, σ(S)

)−1

σ
(
(S − λ)−1

)
z 7−→ (z − λ)−1

spectral mapping

Figure 3.1: Proof idea of Lemma 3.8(ii) for a closed operator S : D(S) −→ H.
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In the remainder of this section we investigate whether not only spr
(
Rλ(S)

)
but also

∥∥Rλ(S)∥∥L(H)
can be identified with 1

dist(λ,σ(S)) . Unfortunately, if S is a general closed operator, we only
get a lower bound:

Corollary 3.9 (Resolvent norm of a closed operator)
Let S : D(S) −→ H be a closed operator. Given λ ∈ ρ(S) the resolvent satisfies

∥Rλ(S)∥L(H) ≥
1

dist(λ, σ(S))

Proof. The spectral radius of a bounded operator R ∈ L(H) is constrained by

∥R∥L(H) ≥ spr(R)

so our claim follows from Lemma 3.8(ii)

Part (ii) of our next result shows that [ReSi] Thm. VI.7 (p.192) extends to closed unbounded
operators. Moreover, as stated in part (iii), self-adjointness of S can be used to guarantee
that the resolvent is a normal operator. This will be key to improving on Corollary 3.9.

Lemma 3.10 (Adjoint of the resolvent)
Let S : D(S) −→ H be a closed, densely defined operator.

i) If S is invertible, then so is S∗ : D(S∗) −→ H. Its inverse is given by (S∗)−1 = (S−1)∗

where in taking the adjoint we consider S−1 ∈ L(H) as a bounded operator.

ii) If λ ∈ C is in the resolvent set of S, then λ̄ is in the resolvent set of S∗ and we have

Rλ̄(S
∗) =

(
Rλ(S)

)∗
where in taking the adjoint we consider Rλ(S) ∈ L(H) as a bounded operator.

iii) If S : D(S) −→ H is self-adjoint and λ ∈ ρ(S) is in the resolvent set,
then Rλ(S) ∈ L(H) is a bounded normal operator.

Proof. Part (i). Assume that S : D(S) −→ H is invertible and consider x ∈ D(S∗).
Then for all y ∈ H we have〈

x, y
〉
=

D(S∗)

〈
x ,

D(S)

S S−1y
〉
=
〈
S ∗x

L(H)

, S−1y
〉
=
〈
(S−1)∗S ∗x, y

〉
which implies (S−1)∗S∗ = idD(S∗). Conversely, consider y ∈ H.
Then for all w ∈ D(S) we calculate〈

y, w
〉
=
〈
y
L(H)

, S−1Sw
〉
=
〈
(S−1)∗y, Sw

〉
so
〈
(S−1)∗y, S ·

〉
=
〈
y, ·
〉
is a bounded linear functional on

(
D(S), ∥·∥H

)
. This shows that

given y ∈ H we have (S−1)∗y ∈ D(S∗). Since D(S) ⊂ H is dense, our observation that
⟨S∗(S−1)∗y, w⟩ = ⟨y, w⟩ holds for all y ∈ H and w ∈ D(S) implies S∗(S−1)∗ = idH.

Part (ii). Assume S : D(S) −→ H is closed and densely defined but not necessarily invertible.
Consider λ ∈ ρ(S) from the resolvent set. Then S − λ : D(S) −→ H is closed and invertible.
Its adjoint is (S − λ)∗ = S ∗ − λ̄ : D(S ∗) −→ H and with part (i) we obtain

(S ∗ − λ̄)−1 =
(
(S − λ)∗

)−1
=
(
(S − λ)−1

)∗ ∈ L(H)
Part (iii) The resolvent formula

(µ− λ)Rλ(S)Rµ(S) = Rλ(S) [(S − λ)− (S − µ)] Rµ(S) = Rµ(S)−Rλ(S) (3.5)

shows that for any pair µ, λ ∈ ρ(S) the operators Rµ(S), Rλ(S) ∈ L(H) commute.
For S = S∗ self-adjoint and λ ∈ ρ(S) part (ii) yields Rλ(S)∗ = Rλ̄(S) ∈ L(H)
so Rλ(S) commutes with its adjoint.
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After these preparations, we are ready to prove that, for a self-adjoint operator, the norm∥∥Rλ(S)∥∥L(H) is completely determined in terms of the distance to the spectrum σ(S).

This generalizes the formulae obtained in [Te] Thm. 2.18 (p.77).

Proposition 3.11 (Norm of the resolvent I)
Let S : D(S) −→ H be self-adjoint. Given λ ∈ ρ(S) the resolvent satisfies

∥Rλ(S)∥L(H) =
1

dist(λ, σ(S))
(3.6)

Proof. Lemma 3.10(iii) shows that Rλ(S) ∈ L(H) is a bounded normal operator. In view of
Lemma 3.8(ii) it remains to prove that the spectral radius of any bounded normal operator
R ∈ L(H) is given by

spr(R) = ∥R∥L(H)
To do so, we combine ideas from the discussion at “https://math.stackexchange.com/q/1052614”
(version: 2017-11-23). By [ReSi] Thm IV.3(f) (p.186) every bounded operator R ∈ L(H)
satisfies ∥R∗R∥ = ∥R∥2. If R is normal, this generalizes to ∥(R∗R)n∥ = ∥(Rn)∗Rn∥ = ∥Rn∥2.
Since R∗R ∈ L(H) is self-adjoint, [ReSi] Thm. VI.6 (p.192) tells us that

∥R∥2 = ∥R∗R∥ = lim
n→∞

∥(R∗R)n∥
1
n = lim

n→∞
∥Rn∥

2
n =

(
lim
n→∞

∥Rn∥
1
n

)2
= spr(R)2

so spr(R) = ∥R∥.

Formula (3.6) can be used to constrain the spectrum of perturbed operators S−K : D(S)−→H
with K ∈ L(H): As illustrated by Figure 4.2, the perturbed spectrum σ(S−K) will be con-
tained in a

∥∥K∥∥L(H)− thickening of σ(S). In the proof of Theorem 4.15, however, we will be

dealing with unbounded perturbations K ∈ L
(
D(S),H

)
which means that spectral pertur-

bation theory relies on an upper bound for
∥∥Rλ(S)∥∥L(H,D(S)) instead of just

∥∥Rλ(S)∥∥L(H):
Proposition 3.12 (Norm of the resolvent II)
Let S : D(S) −→ H be self-adjoint and assume that W := D(S) is equipped with a complete
norm such that S and the inclusion ι :W −→ H belong to L(W,H) . Then for any λ ∈ ρ(S)
the resolvent satisfies

∥Rλ(S)∥L(H,W) ≤
∥∥(S − i)−1

∥∥
L(H,W)

(
1 +

1 + |λ|
dist

(
λ, σ(S)

)) (3.7)

Proof. Self-adjointness of S ensures that (S − i) ∈ L(W,H) is invertible. Since ∥·∥W is
complete, the Inverse Mapping Theorem shows that (S− i)−1 ∈ L(H,W) is bounded as well.
Thus, for λ ∈ ρ(S) and u ∈ H we obtain∥∥(S − λ)−1u

∥∥
W ≤

∥∥(S − i)−1
∥∥
L(H,W)

(S−λ)+(λ−i)∥∥(S − i)(S − λ)−1u
∥∥
H

≤
∥∥(S − i)−1

∥∥
L(H,W)

(
1 + |λ− i| · ∥Rλ(S)∥L(H)

)
∥u∥H

Using Proposition 3.11 to identify ∥Rλ(S)∥L(H) =
1

dist
(
λ,σ(S)

) we arrive at

∥Rλ(S)∥L(H,W) ≤
∥∥(S − i)−1

∥∥
L(H,W)

(
1 +

|λ− i|
dist

(
λ, σ(S)

)) (3.8)

so the claimed formula follows with |λ− i| ≤ 1 + |λ| .

Note that the r.h.s. of (3.7) is a continuous function of λ ∈ ρ(S) and will be uniformly
bounded on compact subsets of ρ(S). We will come back to this point in Theorem 4.15. For
the next section, however, formula (3.6) will be enough.
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3.4 An operator-valued Laurent expansion and its consequences

Even if λ0 = 0 belongs to the spectrum of S = D−ADA, it will be an isolated point, with
the rest of the spectrum satisfying σ(S) \ {0} ⊂ (−∞, −ϵ]. In this section, we prove that the
resolvent of a general closed operator S can be Laurent-expanded around isolated points of
the spectrum, with the stronger requirement of S being a self-adjoint operator leading to a
truncation of higher poles in the Laurent expansion. This implies a set of algebraic conditions
on the coefficients, allowing us to dramatically simplify the expansion and geometrically
interpret the two ’fundamental coefficients’ P and Q.1

In proving Lemma 3.14, we will repeatedly apply the following calculation rule:

Auxiliary Lemma 3.13 (Permutation of limit and Bochner-integral)
Let B be a Banach space and consider a sequence of continuous functions fn : S1 −→ B,
uniformly convergent to f : S1 −→ B. Then f and all the fn are Bochner-integrable and we
have

lim
n→∞

∫
S1

fn =
∫
S1

f ∈ B

Proof. As the uniform limit of a sequence of continuous functions, f : S1 −→ B is contin-
uous itself. Since S1 is compact, all continuous functions S1 → B are Bochner-integrable.
Moreover, one has∥∥∥ ∫

S1

fn −
∫
S1

f
∥∥∥

B
≤

∫
S1

∥fn − f∥B ≤ ∥fn − f∥∞ · µ(S
1) −→ 0 as n→∞

As we will see next, analyticity of the resolvent map allows us to deform integration contours,
leading to the following fundamental but still to be refined result:

Lemma 3.14 (Laurent expansion I)
Let S : D(S) −→ H be a closed, densely defined operator.

i) The resolvent map R•(S) : ρ(S) −→ L(H,D(S)) is analytic. In the vicinity of an
isolated point of the spectrum λ0 ∈ σ(S) it admits the Laurent expansion

Rλ0+µ(S) =

∞∑
n=1

1

µn
Q−n +

∞∑
n=0

µnQn

where the coefficients Qn ∈ L(H,D(S)) are uniquely given by Bochner contour integrals

Qn =
1

2πi

∫
⟲

dµ

µ

1

µn
Rλ0+µ(S) around the origin µ = 0.

ii) If S is self-adjoint, all Laurent coefficients with n ≤ −2 vanish.
This means isolated points of the spectrum λ0 ∈ σ(S) correspond to simple poles
of the resolvent and the Laurent expansion reads

Rλ0+µ(S) = −
1

µ
P +

∞∑
n=0

µnQn with P = −Q−1

The coefficients P,Qn ∈ L(H,D(S)) obey

(S − λ0)P = 0

(S − λ0)Q0 = idH − P
(S − λ0)Qn+1 = Qn

P (S − λ0) = 0

Q0 (S − λ0) = [id− P ]D(S)

Qn+1 (S − λ0) = Qn|D(S)

where the bottom row holds for n ≥ 0.

When considered as bounded operators from H to itself, all coefficients ”Qn” = ι ◦Qn ∈ L(H)
are self-adjoint, i.e. for all n ∈ Z we have Q∗

n = Qn
1Disclaimer: This has nothing to do with position and momentum.
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Proof. Part (i). First, let us study how R•(S) behaves in the vicinity of a point µ ∈ ρ(S).
By Corollary 3.9 we already know that

rµ :=
1

∥Rµ(S)∥L(H)
≤ dist

(
µ, σ(S)

)
and therefore µ + Brµ(0) ⊂ ρ(S). Now fix a constant 0 < q < 1. Choosing λ ∈ Bq·rµ(0)
guarantees |λ| ∥Rµ(S)∥L(H) < q, so we observe that the series expansion

Rµ+λ(S) = [S − µ− λ]−1 = Rµ(S)

L(H,D(S))

[
idH − λRµ(S)

L(H)

]−1
= Rµ(S)

∞∑
n=0

[
λRµ(S)

]n
converges uniformly on Bqrµ(0). This shows that R•(S) : ρ(S) −→ L(H,D(S)) is analytic.

Note that analytic functions f : U −→ B (where U ⊂ C is an open subset and B a Banach
space) automatically satisfy Cauchy’s integral formula. Indeed, when Γ : S1 −→ U \ {µ}
is a contour of winding number w(Γ, µ) = 1 that stays within the radius of convergence

of f(µ+ λ) =
∞∑
n=0

fn λ
n, we simply calculate

1

2πi

∫
Γ

dλ

λ
f(µ+ λ) =

1

2πi

∫
Γ

dλ

λ

∞∑
n=0

fnλ
n =

∞∑
n=0

fn
1

2πi

∫
Γ

dλ

λ
λn = f0 = f(µ)

where by Auxiliary Lemma 3.13 we were allowed to commute limit and integral.

Similarly, 1
2πi

∫
Γ dλ f(µ + λ) = 0 can be used to prove that contour integrals of analytic

functions are homotopy-invariant.

To obtain the Laurent expansion around an isolated point of the spectrum λ0 ∈ σ(S)
pick ϵ > 0 such that Bϵ(λ0) ∩ σ(S) = {λ0} and consider the contour shown in Figure 3.2.
Using Cauchy’s integral formula and homotopy-invariance of the contour integral we get

Rλ0+µ(S) =
1

2πi

∫
Γµ

dλ
Rλ0+λ(S)

λ− µ
=

1

2πi

(∫
−Γ−

+

∫
Γ+

)
dλ

Rλ0+λ(S)

λ− µ

Along Γ+ we have |λ| > |µ|, so a geometric series expansion yields

1

2πi

∫
Γ+

1

λ

∞∑
n=0

(µ
λ

)n
dλ

1

λ− µ
Rλ0+λ(S) =

∞∑
n=0

µn
1

2πi

∫
Γ+

dλ

λ

Rλ0+λ(S)

λn

def. Qn

where we have used Auxiliary Lemma 3.13 to commute limit and integral.
Along Γ− one has |λ| < |µ|, so we obtain

1

2πi

∫
−Γ−

dλ
1

λ− µ
Rλ0+λ(S) =

1

2πi

∫
Γ−

1

µ

∞∑
n=0

(
λ

µ

)n
dλ

1

µ− λ
Rλ0+λ(S) =

∞∑
n=0

1

µn+1

1

2πi

∫
Γ−

dλ

λ
λn+1Rλ0+λ(S)

Q−(n+1)

In summary we have found that at each µ ∈ Bϵ(0) \ {0} the resolvent can be written as

Rλ0+µ(S) =

∞∑
n=1

Q−n
µn

+

∞∑
n=0

µnQn (3.9)

Our derivation shows that convergence of (3.9) is uniform on sets Bqϵ(0) \Bq′ϵ(0) with 0 < q′ < q < 1.
Thus, using Auxiliary Lemma 3.13, the coefficients can be uniquely extracted by contour in-
tegrals

Qn =
1

2πi

∫
Γ

dµ

µ

Rλ0+µ(S)

µn
∈ L

(
H,D(S)

)
where Γ is a sufficiently small circle around the origin.
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Part (ii). Now assume in addition that S : D(S) −→ H is self-adjoint. If ϵ > 0 is such that
Bϵ(λ0) ∩ σ(S) = {λ0}, then for every µ ∈ Bϵ/2(0) we have dist(λ0 + µ, σ(S)) = |µ| so using

Proposition 3.11 we obtain ∥Rλ0+µ(S)∥L(H) =
1
|µ| . Choosing Γ to be the contour µ(θ) = re2πiθ

with θ ∈ [0, 1] and constant 0 < r < ϵ/2, we observe that

∥Qn∥L(H) =
∥∥∥∥ 1

2πi

∫
Γ

dµ

µ

Rλ0+µ
µn

∥∥∥∥ =

∥∥∥∥∫ 1

0
dθ
Rλ0+µ
µn

∥∥∥∥ ≤ ∫ 1

0
dθ
∥Rλ0+µ∥L(H)
|µ|n

=
1

rn+1

For n ≤ −2 we have ∥Qn∥L(H) ≤ r−n−1 −→ 0 as r → 0, so in this case ∥Qn∥L(H) = 0 and
therefore Qn = 0 even in L(H,D(S)).
Thus, for a self-adjoint operator the Laurent expansion reads

Rλ0+µ(S) =
Q−1

µ
+

∞∑
n=0

µnQn

Multiplication by S − λ0 = const. ∈ L(D(S),H) produces competing Laurent expansions

(S − λ0)Rλ0+µ(S) =
1

µ
(S − λ0)Q−1 + (S − λ0)Q0 +

∞∑
n=0

µn+1(S − λ0)Qn+1

(S − λ0)Rλ0+µ(S) = idH + µRλ0+µ(S) = 0 +
[
idH +Q−1

]
+

∞∑
n=0

µn+1Qn

As the coefficients are unique, we obtain the relations

(S − λ0)Q−1 = 0 , (S − λ0)Q0 = idH +Q−1 and (S − λ0)Qn+1 = Qn for n ≥ 0

Similarly, comparison of the Laurent expansions

Rλ0+µ(S) (S − λ0) =
1

µ
Q−1 (S − λ0) +Q0 (S − λ0) +

∞∑
n=0

µn+1Qn+1 (S − λ0)

Rλ0+µ(S) (S − λ0) = idD(S) + µRλ0+µ(S)|D(S) = 0 +
[
idD(S) +Q−1|D(S)

]
+

∞∑
n=0

µn+1Qn|D(S)

produces relations

Q−1 (S − λ0) = 0 , Q0 (S − λ0) = idD(S) +Q−1|D(S) and Qn+1 (S − λ0) = Qn|D(S) for n ≥ 0

Recall that the spectrum of a self-adjoint operator satisfies σ(S) ⊂ R, so we necessarily are in
the situation λ0 ∈ R. Lemma 3.10(ii) shows that if we consider Rλ0+µ(S) ∈ L(H,D(S)) ⊂ L(H)
as a bounded operator from H to itself, the adjoint is simply Rλ0+µ(S)

∗ = Rλ0+µ̄(S).
A straightforward calculation involving the inner product ⟨·, ·⟩H shows that the Bochner
integral of an L(H)-valued function commutes with the operation of taking adjoints.
So in our case we find

Q ∗
n =

 1

2πi

∫
⟲

dµ

µ

Rλ0+µ(S)

µn

∗

= − 1

2πi

∫
⟲

dµ̄

µ̄

Rλ0+µ̄(S)

µ̄n

= − 1

2πi

∫
⟳

dµ

µ

Rλ0+µ(S)

µn
= +

1

2πi

∫
⟲

dµ

µ

Rλ0+µ(S)

µn
= Qn

which verifies our claim that the coefficients Qn ∈ L(H) are bounded self-adjoint operators.
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λ0

µ+ λ0

Γ+

|λ| > |µ|

|λ| < |µ|

−Γ−

Γµ

Bϵ(λ0)

Figure 3.2: Integration contour used to derive the
Laurent expansion of Lemma 3.14(i)
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The algebraic relations from Lemma 3.14(ii) contain enough information to obtain the fol-
lowing refinement, together with a useful interpretation of the Laurent coefficients:

Proposition 3.15 (Laurent expansion II)
Let S : D(S) −→ H be a densely defined, self-adjoint operator and assume that λ0 ∈ C is an
isolated point of the spectrum, i.e. Bϵ(λ0) ∩ σ(S) = {λ0} for some ϵ > 0.

Then the Laurent expansion from Lemma 3.14(ii) leads to the following consequences:

i) λ0 belongs to the point spectrum, ran(S − λ0) ⊂ H is a closed subspace
and we have an orthogonal decomposition H = ran(S − λ0)⊕ ker(S − λ0).
P = −Q−1 and (S − λ0)Q0 are the orthogonal projections
onto ker(S − λ0) and ran(S − λ0), respectively.

ii) For all n ≥ 0 the operators P,Qn ∈ L(H) satisfy

PQn = QnP = 0

Qn = Qn+1
0

In particular, the Laurent expansion can be rewritten as

Rλ0+µ(S) = −
P

µ
+Q0

∞∑
n=0

(µQ0)
n = −P

µ
+Q0 · (idH − µQ0)

−1

Proof. The spectrum of a self-adjoint operator satisfies σ(S) ⊂ R so we necessarily have
λ0 ∈ R. The shifted operator S − λ0 is self-adjoint with spectrum σ(S − λ0) = σ(S) − λ0
so there is no loss of generality in assuming λ0 = 0. All our claims will be derived from the
algebraic relations of Lemma 3.14(ii) which upon setting λ0 = 0 take a more appealing form.

Part (i). The relation ”Q0S = idD(S) − P |D(S)” shows that P |ker(S) = id. On the other
hand, ”PS = 0” means that P |ran(S) = 0. Since P ∈ L(H) is a bounded operator, this
implies P |

ran(S)
= 0. Recall that every self-adjoint operator comes with an orthogonal

decomposition H = ran(S) ⊕ ker(S) so by the above remarks P = −Q−1 is the orthogonal
projection operator onto ker(S). As a result, the relation ”SQ0 = idH−P” shows that SQ0

is the orthogonal projector onto ran(S) = ker(S)⊥ . In particular, we have SQ0|ran(S) = id,

which implies ran(S) ⊂ ran(S) and therefore proves that ran(S) ⊂ H is a closed subspace.
The decomposition H = ran(S)⊕ker(S) shows that in our case ker(S) ̸= 0 because otherwise
S would be bijective and λ0 = 0 would belong to the resolvent set.

Part (ii). For n ≥ 0 we can argue as follows: ”Qn+1S = Qn|D(S)” implies Qn|ker(S) = 0
and ”SQn+1 = Qn” shows Qn(H) ⊂ ran(S). Since by Part (i) P satisfies P (H) ⊂ ker(S)
and P |ran(S) = 0, we obtain QnP = PQn = 0.

To prove the second part of our claim we iteratively define

D0(S) = H D1(S) = D(S) Dn+1(S) = S−1(Dn(S)) ⊂ Dn(S)

and consider the filtration

..... ⊂ ran(S) ∩ Dn(S) ⊂ ... ⊂ ran(S) ∩ D2(S) ⊂ ran(S) ∩ D(S) ⊂ ran(S)

At each n ≥ 0 the relation ”SQ0 = idH − P” restricts to SQ0|ran(S)∩Dn(S) = idran(S)∩Dn(S)

and similarly the relation ”Q0S = idD(S)−P |D(S)” yieldsQ0S|ran(S)∩Dn+1(S) = idran(S)∩Dn+1(S).
Thus, S and Q0 provide a ladder of mutually inverse isomorphisms

.....

S
−−−−−−−→

∼=
←−−−−−−−

Q0

ran(S) ∩ D2(S)

S
−−−−−−−→

∼=
←−−−−−−−

Q0

ran(S) ∩ D(S)
S

−−−−−−−→
∼=

←−−−−−−−
Q0

ran(S)
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In particular, we get Qn+1
0 Sn+1|ran(S)∩Dn+1(S) = idran(S)∩Dn+1(S) which means that Qn+1

0 is a
left-inverse to Sn+1. On the other hand, iterative application of ”SQn+1 = Qn” shows that
Qn(H) ⊂ S−1(Dn(S)) = Dn+1(S) and

Q0 = SQ1 = S2Q2 = ... = SnQn = ....

idH − P = SQ0 = Sn+1Qn

The bottom line restricts to Sn+1Qn|ran(S) = idran(S) so Qn : ran(S)→ ran(S) ∩ Dn+1(S) is
a right-inverse to Sn+1. The idea behind our proof is that we can identify right-inverse and
left-inverse. Indeed,

Qn

idran(S)∩Dn+1(S)

= Qn+1
0

idH−P

Sn+1Qn = Qn+1
0 −Qn+1

0 P

=0

= Qn+1
0

Remark 3.16 (Double Helix II)
Note that the condition of A(t) = A0 + B(t) : W1 −→ H being a good perturbation is
invariant under A → −A. Hence Theorem 3.4 shows that the operators S+ = D−ADA and
S− = DAD−A are non-positive, self-adjoint and Fredholm. We have

kerS± = kerD±A

ran S± = D∓A(W1)

and for S = S± the spaces Dn+1(S) = S−1
(
Dn(S)

)
and ran(S) ∩ Dn(S) are given as

Dn(S) =W2n

ran (S) ∩Dn(S) = D∓A(W2n+1)

Writing Q± := Q0(S±) we can interpret the proof of Proposition 3.15(ii) as providing a tower
of mutually inverse maps

.....

S±
−−−−−−−→

∼=
←−−−−−−−

Q±

D∓A(W5)

S±
−−−−−−−→

∼=
←−−−−−−−

Q±

D∓A(W3)

S±
−−−−−−−→

∼=
←−−−−−−−

Q±

D∓A(W1)

Recall from Remark 3.16 that the maps φ± = ±D±A can be organised into a double helix of
isomorphisms

HkerDA ⊕D−A(W1) DA(W1)⊕ kerD−A= =

kerDA ⊕D−A(W2) DA(W2)⊕ kerD−A= =

kerDA ⊕D−A(W3) DA(W3)⊕ kerD−A= =

kerDA ⊕D−A(W4) DA(W4)⊕ kerD−A= =

W1

W2

W3

D−A DA

D−A DA

D−A DA
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from which we now extract a triangle of bijective maps

DA(W1)

D−A(W2)

DA(W3)
D−A

∼=

DA

∼=
Q−

∼=

The new insight from Lemma 3.14 and Proposition 3.15 is that Q = S|−1
ran(S) can be expressed

as a Bochner integral

Q− =
1

2πi

∫
S1

dµ

µ
[DAD−A − µ]−1 ∈ L(H,W2)

where S1 ⊂ ρ(S−) is a small circle around the origin. This observation will be key to our
proof of Theorem 4.15 Step 1.

To conlude this section, let us remark that the coefficient Q− can be used to obtain an
integral representation for a quasi-inverse to DA, in a way similar to a Green’s function:

Corollary 3.17 (Parametrix)
The operator D−AQ− : H −→W1 is a parametrix to DA :W1 −→ H .
In particular, we have D−AQ−DA

∣∣
D−A(W2)

= id

Proof. In Remark 3.16 we have seen that

S−Q− = DAD−AQ− = idDA(W1)

fits into a triangle of bijective maps. Thus, with Auxiliary Lemma 3.18 (applied in the
category Sets) we obtain

D−AQ−DA = idD−A(W2) (3.10)

Recall from Proposition 3.15 that w.r.t. the decomposition W1 = kerDA ⊕D−A(W2)
the Laurent coefficient P− := P (S−) serves as the projector onto kerDA.
Thus, Eq. (3.10) can be augmented to

D−AQ−DA = idW1 − P−

Note that P− is finite rank and therefore compact.

Auxiliary Lemma 3.18 (Cyclic reshuffling)
Assume that in any category we are given a triangle of isomorphisms

A

B

C
β

∼=

α
∼=

γ∼=

Then αβγ = idA implies βγα = idB .

Proof. Since α is invertible, our claim follows from the simple calculation

idB = α−1 ◦ idA ◦ α = α−1 ◦ αβγ ◦ α = βγα
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Chapter 4

APS operators on weighted Floer
path spaces

4.1 An abstract twisting procedure turning almost into hon-
est sc-Banach spaces

As mentioned at the end of section 2.7, our filtration (Wn)n≥0 fails to be an honest sc-Banach
space, by lack of compact inclusions. In this section, however, we describe a systematic
procedure by which any almost sc-Banach space (Wn)n≥0 gives rise to a k-family of honest
sc-Banach spaces (Wδn

n+k)n≥0. This involves adopting an inverse perspective on the standard
technique of ’weight factors’ that is used for example in [FW].

Given δ > 0 and η ∈ C∞(R) such that η(t) = |t| for |t| ≥ 1, we consider the inverse weight
function γ−δ(t) = e−δη(t) ≤ 1

Working at fixed t∈R, we observe that λ= γ−δ(t)∈R defines a sc-operator λ: (Wk)k≥0−→(Wk)k≥0

with ∥λ∥L(Wk)
= |λ|. Moreover, t 7−→ γ−δ(t) ∈ R being smooth with bounded derivatives

ensures that γ−δ(t) : (Wk)k≥0 −→ (Wk)k≥0 is a moderate family of sc-operators in the
sense of Definition 2.23. As a result, the map γ−δ : H −→ H preserves the bifiltration
W r
k =W r,2(R,Wk) ⊂ L2(R, H) in the sense that

γ−δ
(
W r
k

)
⊂W r

k and γ−δ ∈ L(W r
k )

where the operator norms
∥∥γ−δ∥∥L(W r

k )
can be constructed with Lemma 2.28.

By a suitable restriction, γ−δ can be regarded as a compact operator:

Lemma 4.1 (γ−δ as a compact operator between tiles of the bifiltration)
At every r, k ≥ 0 the map γ−δ : H −→ H restricts to a compact operator γ−δ :W r+1

k −→W r
k

Proof. The statement that for a fixed Banach space B =Wk the map

γ−δ :W r+1,2(R,Wk) −→W r,2(R,Wk)

is compact, can be seen as a reinterpretation of [FW] Lem. 8.4 and [FW] Lem. 8.5 .
For instance, to account for the case r = 0, the proof of [FW] Lem. 8.4 can be rephrased as
follows: At finite T ≥ 1 the ”truncation map”

cT :W 1,2(R,B) −→W 1,2
(
(−T, T ),B

)
−→ L2

(
(−T, T ),B

)
−→ L2(R,B)

is compact and the calculation∥∥γ−δ · (v − v|(−T,T ))∥∥L2(R,B)
≤ e−δT ∥v∥L2(R,B) ≤ e−δT ∥v∥W 1,2(R,B)

shows that γ−δ ◦ cT −→γ−δ converges in the operator norm. Hence, γ−δ :W 1,2(R,B)−→L2(R,B)
is compact itself.

The case r ≥ 1, as covered by [FW] Lem. 8.5 , can be seen by a subsequence argument
similar to the one encountered in Auxiliary Lemma 4.2(b) and relies on the fact that all

derivatives γ
(m)

−δ (t) are again multiples of the exponentially decaying γ−δ(t).
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As a follow-up, Lemma 4.3 will show that not only γ−δ :W r+1
k −→W r

k

but also γ−δ :Wn+1 −→Wn is a compact operator. This requires a two-step process:

Auxiliary Lemma 4.2 (Restriction of the domain and restriction of the target)
Let H, X, Y, Z and W be Banach spaces.
Assume we are given bounded linear inclusions X ↪→ H←↩ Y
and consider the canonical inclusions X

ιX←↩ X ∩ Y
ιY
↪→ Y from Auxiliary Lemma 2.30.

a) If f : X −→ Z is compact, then so is the restricted map X ∩ Y ↪→ X
f−→ Z.

b) If g : W −→ X ∩ Y is a bounded linear map such that ιX ◦ g and ιY ◦ g are compact,
then g is compact itself.

Proof. a) Since f is compact and ιX bounded linear, the composition f ◦ιX is again compact.
b) Consider a bounded sequence wn ∈W . As ιX◦g is compact, we can find a subsequence wnk

such that g(wnk
) converges in X. Since ιY ◦g is compact, we can pass to a subsequence of wnk

whose image converges in Y . The resulting sequence converges w.r.t. ∥·∥X ∩ Y = ∥·∥X+∥·∥Y

Lemma 4.3 (γ−δ as a compact operator between nested Sobolev spaces)
Fix an arbitrary δ > 0. Then γ−δ :H−→H restricts to compact operators γ−δ :Wn+1−→Wn

Proof. Consider a fixed W r
k with k + r = n. Lemma 4.1 shows that γ−δ ∈ L(H) restricts to

a compact operator γ−δ :W r+1
k −→W r

k , so by Auxiliary Lemma 4.2(a) the restriction

γ−δ :Wn+1 ⊂W r+1
k −→W r

k

is compact as well. Now that γ−δ : Wn+1 −→ W r
k is compact for all r + k = n, we can use

Auxiliary Lemma 4.2(b) to conclude that also

γ−δ :Wn+1 −→Wn =
⋂

k+r=n

W r
k is compact.

The operator γ−δ : (Wn)n≥0 −→ (Wn)n≥0 serves as an inspiration for the following abstract,
but very useful definition:

Definition 4.4 (Twisting sequence)
Let W = (Wn)n≥0 be an almost sc-Banach space. Given a sequence of injective sc-operators

αi : (Wn)n≥0 −→ (Wn)n≥0 , i ∈ N
we say that (αi)i∈N is a twisting sequence on W if

1. For all i, n ≥ 0 the restricted operator αi :Wn+1 −→Wn is compact.

2. There exists a subset S ⊂ W∞ such that S is dense in every Wn

and all αi satisfy αi(S) = S

Let us elaborate on the implications of condition (2):

Remark 4.5 (Cumulated twisting sequence)
Along with a twisting sequence (αi)i∈N we consider the injective sc-operators
βi : (Wn)n≥0 −→ (Wn)n≥0 defined by β0 = idH , βi+1 = βi ◦ αi
The collection (βi)i∈N will be called the cumulated twisting sequence associated to (αi)i∈N

Observe that Definition 4.4 immediately implies βi(S) = S for all i ≥ 0.
In fact, by bootstrapping condition (2) we get S ⊂ α0(S) ⊂ α0(α1(S)) ⊂ . . .
as well as S ⊃ α0(S) ⊃ α0(α1(S)) ⊃ . . .

Moreover, we claim that, when βi(Wn) is equipped with the norm coming from βi :Wn
∼−→ βi(Wn),

S ⊂ βi(Wn) is a dense subset for all i, n ≥ 0. Indeed, since S ⊂ Wn is dense sub-
set, every x ∈ Wn can be approximated by a sequence xm ∈ S. Using the injective
map βi : Wn −→ Wn to identify Wn with βi(Wn), this can be rephrased as having
βi(xm) −→ βi(x) converge w.r.t the norm

∥∥β−1
i (·)

∥∥
Wn

coming from above.
Note that by βi(S) ⊂ S not only the xm but also the βi(xm) belong to S.
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Let us check that the conditions from Definition 4.4 are fulfilled in our case of interest:

Lemma 4.6 (Verifying the conditions of Definition 4.4)
Consider a ”weight sequence” 0 = δ0 < δ1 < ...... and write ∆δi := δi+1 − δi > 0
Then αi := γ−∆δi : (Wn)n≥0 −→ (Wn)n≥0 is a twisting sequence in the sense of Definition 4.4
and we have βi = γ−δi
Proof. Having γ−δ(t) = e−δη(t) > 0 at every t ∈ R ensures that γ−δ : H −→ H is injective.
Moreover, Lemma 4.3 shows that γ−∆δi :Wn+1 −→Wn is a compact operator for all i, n ≥ 0,
which accounts for the first condition of Definition 4.4.

So it remains to verify the second condition: In Proposition 2.42 we have seen that the set

S := C∞
0 (R)W∞

is dense in every Wn. Since multiplication by γ±δ ∈ C∞(R) preserves C∞
0 (R),

we immediately find γ−δ(S) ⊂ S and S = γ−δ
(
γ+δ(S)

)
⊂ γ−δ(S).

Next we have to explain how the compact operators γ−∆δ : Wn+1 −→ Wn translate into

compact inclusions Wδ+∆δ
n+1 ↪→Wδ

n:

Remark 4.7 (Keeping track of compact inclusions)
Let us consider the following category, denoted by (B/H)inj :

� The objects are pairs (X, ρ) where X is a Banach space and
ρ : X ↪→ H a bounded linear injective map to our favorite ambient Banach space H

� A morphism (X, ρ)
f−→ (Y, κ) is bounded linear map f : X −→ Y such that

X Y

H

f

ρ κ

commutes.
The reason for introducing (B/H)inj is the following functor (B/H)inj −→ B
to the category of Banach spaces and bounded linear maps:

� To a bounded linear injective map ρ : X ↪→ H we associate the subspace ρ(X) ⊂ H.
The linear isomorphism ρ : X

∼−→ ρ(X) makes ρ(X) a Banach space
such that the inclusion ρ(X) ⊂ H is a bounded linear map.

� Crucially, every commutative triangle

X Y

H

f

ρ κ

induces a bounded linear inclusion ρ(X) ⊂ κ(Y ) whose operator norm equals ∥f∥L(X,Y ) .

If the operator f : X −→ Y is compact, then so is the inclusion ρ(X) ⊂ κ(Y ).

Notation. Given a bounded linear injective map ρ : X ↪→ H we abbreviate Xρ := ρ(X)

Example. Going back to our operator γ−δ ∈ L(H), the maps γ−δ :Wk −→ H
induce linear isomorphisms Wk

∼−→ γ−δ(Wk) ⊂ H by which we can regard each

W δ
k := γ−δ(Wk)

as a Banach space with norm ∥·∥Wδ
k
= ∥γ+δ(·)∥Wk

.

Given ∆δ := δ − δ′ > 0 Lemma 4.3 shows that γ−∆δ : Wn+1 −→ Wn is compact, so the
commutative triangle

Wn+1 Wn

H

γ−∆δ

γ−δ γ−δ′

induces a compact inclusion W δ
n+1 ⊂ W δ′

n .
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Returning to the abstract picture of Definition 4.4 and Remark 4.5, we observe that every
twisting sequence αi : (Wn)n≥0 −→ (Wn)n≥0 comes with a commutative diagram

(H, idH)(W1, idH)(W2, idH)(W3, idH)

(H, β1)(W1, β1)(W2, β1)(W3, β1)

(H, β2)(W1, β2)(W2, β2)(W3, β2)

ι ι ι

ι ι ι

ι ι ι

α1

α0

α1

α0

α1

α0

α1

α0

that under the functor (B/H)inj −→ B translates to a bifiltration

HW1W2W3

β1(H)β1(W1)β1(W2)β1(W3)

β2(H)β2(W1)β2(W2)β2(W3)

(4.1)

It turns out that the diagonals of this bifiltration are the desired ’honest sc-Banach spaces’:

Lemma 4.8 (Honest sc-Banach spaces from a twisting sequence)
Let (αi)i∈N be a twisting sequence on an almost sc-Banach space W = (Wn)n≥0

and denote by (βi)i∈N the cumulated twisting sequence from Remark 4.5

Then at every k ≥ 0 we have an honest sc-Banach space
(
βn(Wn+k)

)
n∈N

Proof. From the definition of a twisting sequence we get a string of compact operators

Wk
α0←−Wk+1

α1←−Wk+2 ←− . . .

Writing β0 = idH, βi+1 = βi ◦ αi this can be augmented to a string of morphisms
in the category (B/H)inj :(

Wk, β0
) α0←−

(
Wk+1, β1

) α1←−
(
Wk+2, β2

)
←− . . .

By applying the functor (B/H)inj −→ B from Remark 4.7 we conclude that

Wk ⊃ β1(Wk+1) ⊃ β2(Wk+2) ⊃ . . .
is a filtration of Banach spaces with compact inclusions.

Now let S ⊂ W∞ be the mysterious set from the second condition of Definition 4.4. In
Remark 4.5 we have seen that S is densely contained in βi(Wn) for all combinations i, n ≥ 0.
Thus, we have found a subset S ⊂

⋂
n≥0 βn(Wn+k) such that S is dense in every βn(Wn+k).
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4.2 Twistable and twist-regularizing operators
We introduce a class of operatorsD :W1−→H that act as sc-operators on the bifiltration (4.1):

Definition 4.9 (Twistable operator)
Let (αi)i∈N be a twisting sequence on an almost sc-Banach space W = (Wn)n≥0

and denote by (βi)i∈N the cumulated twisting sequence from Remark 4.5

An operator D :W1 −→ H will be called twistable if for every i ∈ N
there exists a sc-operator Di : (Wn+1)n≥0 −→ (Wn)n≥0 such that

W1 H
Di

W1 HD
βi βi

commutes.

Moreover, we will say that D :W1 −→ H is strongly twistable
if the Di : (Wn+1)n≥0 −→ (Wn)n≥0 are regularizing sc-operators.

Remark. β0 = idH impliesD = D0 , so only (regularizing) sc-operators can be (strongly) twistable.

Lemma 4.10 (Families of sc-operators induced by a twistable operator)
Let D :W1 −→ H be a twistable operator in the sense of Definition 4.9

Then for all i, n ≥ 0 we have D
(
βi(Wn+1)

)
⊂ βi(Wn) and ∥D∥L(W βi

n+1 , W
βi
n

) = ∥Di∥L(Wn+1,Wn)

In particular, we observe that

� for every fixed i ≥ 0,
D :

[
βi(Wn+1)

]
n≥0
−→

[
βi(Wn)

]
n≥0

is a sc-operator between almost sc-Banach spaces

� for every fixed k ≥ 0,
D :

[
βn(Wn+k+1)

]
n≥0
−→

[
βn(Wn+k)

]
n≥0

is a sc-operator between honest sc-Banach spaces

Proof. Using Di(Wn+1) ⊂ Wn we obtain D ◦ βi(Wn+1) = βi ◦Di(Wn+1) ⊂ βi(Wn).
Given x ∈ Wn+1 we combine the calculations

∥Dβi(x)∥βi(Wn)
= ∥βiDi(x)∥βi(Wn)

= ∥Di(x)∥Wn
and ∥βi(x)∥βi(Wn+1)

= ∥x∥Wn+1

to conclude that the operator norms ∥D∥ = ∥Di∥ agree.

While being ’twistable’ is enough to make D a sc-operator, D has to be ’strongly twistable’
to become a regularizing sc-operator. This kind of regularization, however, only works at
fixed weight level βi, i.e. for the horizontal filtrations in (4.1):

Lemma 4.11 (Regularization property of ’strongly twistable’ operators)
Let D :W1 −→ H be strongly twistable. Then for every fixed i ≥ 0

D :
[
βi(Wn+1)

]
n≥0
−→

[
βi(Wn)

]
n≥0

is a regularizing sc-operator between almost sc-Banach spaces.

Proof. We work at fixed i ≥ 0 . With Auxiliary Lemma 2.12 in mind let us verify that
D : βi(W1) −→ βi(H) is an escalator for

[
βi(Wn)

]
n≥0

:

Given n ≥ 1 assume that for u ∈ βi(Wn) it so happens that Du belongs to βi(Wn) instead
of just βi(Wn−1). This means can find v, w ∈ Wn with

u = βiv and Du = βiw

By definition of a strongly twistable operator there exists a regularizing sc-operator
Di : (Wn+1)n≥0 −→ (Wn)n≥0 such that W1 H

Di

W1 HD
βi βi

commutes.

Combining the two identities above we obtain βiw = Du = βiDiv .
As βi : H −→ H is injective, this implies Div = w ∈ Wn . Now since Di is regularizing,
we conclude that v ∈ Wn+1 and therefore u = βiv ∈ βi(Wn+1) .
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In order to increase the weight level, we need an additional, more subtle property:

Definition 4.12 (Twist-regularizing operator)
Let (αi)i∈N be a twisting sequence on an almost sc-Banach space W = (Wn)n≥0

and denote by (βi)i∈N the cumulated twisting sequence from Remark 4.5

An operator D :W1 −→ H will be called twist-regularizing if it satisfies

D−1
(
βi(H)

)
⊂ βi(W1) for all i ≥ 0

Finally, we have accumulated enough structure to conclude that operators D : W1 −→ H
which are both ’strongly twistable’ and ’twist-regularizing’ lead to regularizing sc-operators
between honest sc-Banach spaces:

Proposition 4.13 (Combination of ’strongly twistable’ and ’twist-regularizing’)
Let D :W1 −→ H be strongly twistable and twist-regularizing.

Then D :W1 −→ H satisfies D−1
(
βi(Wn)

)
= βi(Wn+1) for all pairs i, n ≥ 0 .

In particular, for every fixed k ≥ 0

D :
[
βn(Wn+k+1)

]
n≥0
−→

[
βn(Wn+k)

]
n≥0

is a regularizing sc-operator between honest sc-Banach spaces.

Proof. Fix any i ≥ 0. By Lemma 4.11 we know that

D :
[
βi(Wn+1)

]
n≥0
−→

[
βi(Wn)

]
n≥0

is a regularizing sc-operator. Hence, the original operator D :W1 −→ H satisfies

βi(W1) ∩D−1
(
βi(Wn)

)
= βi(Wn+1)

Since D is twist-regularizing, we have βi(W1) = D−1(βi(H)) and conclude that

βi(Wn+1) = D−1
(
βi(H)

)
∩D−1

(
βi(Wn)

)
= D−1

(
βi(Wn)

)
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4.3 The sc-Fredholm property of DA : (Wδn
n+1)n≥0 −→ (Wδn

n )n≥0

Inspired by Theorem 2.38, let us investigate whether not only DA : (Wn+1)n≥0 −→ (Wn)n≥0

but in fact also DA : (Wδn
n+1)n≥0 −→ (Wδn

n )n≥0 is a regularizing sc-operator.

According to Proposition 4.13 we have to verify that DA : W1 −→ H is both ’strongly
twistable’ and ’twist-regularizing’.

First of all, being ’strongly twistable’ is fairly straightforward:

Lemma 4.14 (DA is strongly twistable)
Let A0 :W1 −→ H be a baseline operator on an almost sc-Hilbert space H ⊃W1 ⊃ . . .
Assume that B(t) ∈ L(H) is a moderate perturbation and write A(t) = A0 +B(t).

Then given any weight sequence 0 = δ0 < δ1 < . . . (bounded or not)
the operator DA :W1 −→ H is strongly twistable w.r.t. βi = γ−δi = e−δiη

Proof. Fix any δ > 0. Given ξ ∈ W1 we have DA γ−δξ = γ−δ
[
DA − δη′

]
ξ , so the diagram

H W1
DA − δη′

H W1
DA

γ−δ γ−δ

commutes.

It remains to verify that DA − δη′ is a regularizing sc-operator.
Indeed, for moderate perturbations B(t) ∈ L(H) the combination of Corollary 2.34 and
Proposition 2.36 shows that DA : (Wn+1)n≥0 −→ (Wn)n≥0 is a regularizing sc-operator.
On the other hand, its derivative d

dtδη
′ ∈ C∞

0 (R) being a bump supported in [−1, 1] ensures
that the function δη′ is smooth with bounded derivatives, so multiplication by δη′ preserves
the bifiltration W r

k =W r,2(R,Wk). In particular, we have δη′(Wn) ⊂ Wn and δη′ ∈ L(Wn),
so with Auxiliary Lemma 2.13 we conclude that the perturbedDA − δη′ : (Wn+1)n≥0 −→ (Wn)n≥0

is a regularizing sc-operator as well.

Being twist-regularizing, on the other hand, poses constraints on the weight sequence

0 = δ0 < δ1 < . . .

in a way that depends on the specific operator family A(t) :W1 −→ H.
This requires a subtle two-step proof, probably the most interesting of this thesis:

Theorem 4.15 (DA is twist-regularizing)
Let A0 :W1 −→ H be a baseline operator on an honest sc-Hilbert space H ⊃W1 ⊃ . . .
Assume that B(t) ∈ L(H) is a very good perturbation and write A(t) = A0 +B(t).

Then there exists δ∞ > 0 such that the operator DA :W1 −→ H satisfies

D−1
A (Hδ) ⊂ Wδ

1 for all δ ∈ [0, δ∞)

In particular, for any weight sequence 0 = δ0 < δ1 < . . . bounded by δ∞
the operator DA :W1 −→ H is twist-regularizing w.r.t. βi = γ−δi

52



Proof strategy. The ”double helix” of Remark 3.16 contains a triangle

H

W1

W2

=

=

=

DA(W1) ⊕ kerD−A

DA(W3) ⊕ kerD−A

kerDA ⊕D-A(W2)

DA

D-A

DAD-A Q ∈ L(H,W2)

where the Laurent coefficient

Q =
1

2πi

∫
S1

dλ

λ
[DAD−A − λ]−1 ∈ L(H,W2)

serves as a parametrix (quasi-inverse) to S = DAD−A.
Our proof of Theorem 4.15 consists of two independent steps: Given u ∈ W1 such that
DAu ∈ Hδ, we decompose u = v + w into v ∈ kerDA and w ∈ D−A(W2), allowing us to
verify v ∈ Wδ

1 and w ∈ Wδ
1 individually.

� Step 1 (Spectral perturbation theory)

Corollary 3.17 shows that w = D−AQDAu. Since from Lemma 4.14 we know that
D−A(Wδ

2) ⊂ Wδ
1 , it suffices to prove Q(Hδ) ⊂ Wδ

2 . We will find this condition to hold
as long as δ stays below a threshold δmax related to the spectral gap of S = DAD−A.

� Step 2 (Exponential decay of solutions to DAv = 0)

Note that DAv = 0 is agnostic about our particular choice of δ > 0 in Hδ ⊂ H.
Instead, v will belong to Wδ

1 for an intrinsic reason related to the operator family
A(t) ∈ L(W1, H) approaching invertible endpoints A± as t −→ ±∞. More precisely,
choosing δ̄ = min(δ±) where δ± = r(A±) denotes the invertibility radius at A± we will
observe that kerDA ⊂ Wδ

1 for all δ ∈ [0, δ̄).

After steps 1 and 2 have been accomplished, Theorem 4.15 holds with δ∞ := min(δ̄, δmax).
Step 2 will be the only part of our argument that relies on B(t) ∈ L(H) being a localized
perturbation in the sense of Definition 2.21.
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Let us now carry out the two steps of Theorem 4.15:

Step 1. There exists δmax > 0 such that Q(Hδ) ⊂ Wδ
2 for all δ ∈ [0, δmax).

Proof. Fix any δ > 0. Given ξ ∈ W1 we have D±A γ−δξ = γ−δ
[
D±A − δη′

]
ξ .

Since for ξ ∈ W2 the term
[
D−A − δη′

]
ξ itself belongs to W1 , iterating this formula yields

DAD−A γ−δξ = γ−δ
[
DA − δη′

][
D−A − δη′

]
ξ

= γ−δ
[
DAD−A − δη′D−A −DA δη

′ + (δη′)2
]
ξ = γ−δ

[
DAD−A − δ ·Kδ

]
ξ

(4.2)

where the perturbation

Kδ := η′
[
DA +D−A

]
2 d
dt

+η′′ − δ(η′)2 ∈ L(W2,H)

is universal in the sense that it no longer depends on A(t) but only on the chosen η and
δ > 0. Given any λ ∈ C, Equation (4.2) shows that by restricting the domain of DAD−A−λ
to Wδ

2 ⊂ W2 we obtain a commutative diagram

H W2

DAD−A − λ

Hδ Wδ
2

DAD−A − λ

H W2
DAD−A − δ ·Kδ − λ

γ−δ∼ =
⊂

γ−δ∼ =
⊂

(4.3)

Thus, treating DAD−A on the subspaces Wδ
2 , Hδ is equivalent to considering a perturbed

operator DAD−A−δ ·Kδ on the original spacesW2, H . In particular, DAD−A − λ :Wδ
2 −→ Hδ

being invertible is equivalent to DAD−A − δ ·Kδ − λ :W2 −→ H being invertible, so the two
operators share the same resolvent set

ρ
(
DAD−A :Wδ

2 −→ Hδ
)
= ρ

(
DAD−A − δ ·Kδ :W2 −→ H

)
⊂ C

As we will see below, this set inherits the relevant features of ρ
(
DAD−A : W2 −→ H

)
provided that δ > 0 is small enough. Recall from Theorem 3.4 that S = DAD−A :W2 −→ H
is self-adjoint and Fredholm, so by Lemma 3.6 its spectrum admits a constant ϵ > 0, called
spectral gap, such that σ(S) ∩Bϵ(0) ⊂ {0}. For instance, we have

S1
ϵ/2 :=

{
|λ| = ϵ/2

}
⊂ ρ(S)

Given any λ ∈ C from the resolvent set of the unperturbed S = DAD−A :W2 −→ H, consider
the resolvent Rλ(S) = (S − λ)−1 as an operator in L(H,W2) and observe that

DAD−A − λ− δ ·Kδ =
[
idH − δ ·

L(H)

Kδ

idW2

Rλ(S)
]
(DAD−A − λ)

Now assume that the given combination of δ > 0 and λ ∈ ρ(S) satisfies

δ · ∥KδRλ(S)∥L(H) < 1 (4.4)
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Then idH − δ ·KδRλ(S) ∈ L(H) is invertible with inverse

[
idH − δ ·KδRλ(S)

]−1
=

∞∑
n=0

[
δ ·KδRλ(S)

]n ∈ L(H)
and therefore also DAD−A − λ− δ ·Kδ ∈ L(W2,H) is invertible with inverse

[
DAD−A − λ− δ ·Kδ

]−1
= Rλ(S)

L(H,W2)

∞∑
n=0

[
δ ·KδRλ(S)

]n ∈ L(H,W2)

We claim that with a suitable δmax the constraint (4.4) can be simultaneously satisfied for
all δ ∈ (0, δmax) and λ ∈ S1

ϵ/2 , hence proving that S1
ϵ/2 ⊂ ρ

(
DAD−A − δ ·Kδ

)
.

First of all, by fixing an arbitrary δcut > 0 we guarantee that

∥Kδ∥L(W2,H) ≤
∥∥∥∥2η′ ddt + η′′

∥∥∥∥
L(W2,H)

+ δ ·
∥∥(η′)2∥∥L(W2,H)

≤ κ = const.

is uniformly bounded for all δ ∈ (0, δcut). Now the bound

∥KδRλ(S)∥L(H) ≤ ∥Kδ∥L(W2,H) ∥Rλ(S)∥L(H,W2)
≤ κ ∥Rλ(S)∥L(H,W2)

forces us to study ∥Rλ(S)∥L(H,W2)
instead of the better-behaved ∥Rλ(S)∥L(H) =

1

dist
(
λ, σ(S)

) .
However, in Proposition 3.12 we have found the formula

∥Rλ(S)∥L(H,W2)
≤
∥∥(S − i)−1

∥∥
L(H,W2)

(
1 +

1 + |λ|
dist

(
λ, σ(S)

)) (4.5)

which for λ ∈ S1
ϵ/2 turns into a uniform bound

∥Rλ(S)∥L(H,W2)
≤
∥∥(S − i)−1

∥∥
L(H,W2)

(
2 +

2

ϵ

)
Hence, a suitable 0 < δmax < δcut can be obtained by satisfying the requirement

δmax · ∥KδRλ(S)∥L(H) ≤ δmax · κ
∥∥(S − i)−1

∥∥
L(H,W2)

(
2 +

2

ϵ

)
!
< 1

Now that we have achieved S1
ϵ/2 ⊂ ρ

(
DAD−A : Wδ

2 −→ Hδ
)
for δ ∈ (0, δmax), recall that,

with DAD−A :Wδ
2 −→ Hδ and the inclusion ι :Wδ

2 −→ Hδ being bounded operators between
Banach spaces, we immediately know that the map

λ ∈ ρ
(
DAD−A :Wδ

2 −→ Hδ
)
7−→ (DAD−A − λ)

∣∣−1

Wδ
2
∈ L(Hδ,Wδ

2)

is analytic and therefore continuous. As a result, the expression

Q̄ =
1

2πi

∫
S1
ϵ/2

dλ

λ
(DAD−A − λ)

∣∣−1

Wδ
2

can be defined as a Bochner integral in L(Hδ,Wδ
2). The idea behind our proof is that this

Q̄ ∈ L(Hδ,Wδ
2) can be compared with the Laurent coefficient

Q =
1

2πi

∫
S1
ϵ/2

dλ

λ
(DAD−A − λ)−1 ∈ L(H,W2)

To do so, let us focus on the upper half of the diagram (4.3).
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Given λ ∈ S1
ϵ/2 ⊂ ρ

(
DAD−A :W2 −→ H

)
∩ ρ
(
DAD−A :Wδ

2 −→ Hδ
)
we can invert the horizontal

arrows to obtain a commutative square

H W2

(
DAD−A − λ

)−1

Hδ Wδ
2(

DAD−A − λ
)∣∣−1

Wδ
2

ιHHδ ιW2Wδ
2

showing that
(DAD−A − λ)−1 ◦ ιHHδ = ιW2Wδ

2
◦ (DAD−A − λ)

∣∣−1

Wδ
2

(4.6)

Observe that the two sides of Equation (4.6) arise from bounded linear maps

L(H,W2) L(Hδ,W2) L(Hδ,Wδ
2)

◦ ιHHδ ιW2Wδ
2
◦

Since Bochner integrals commute with bounded linear maps, Equation (4.6) translates into

an identity Q ◦ ιHHδ = ιW2Wδ
2
◦ Q̄ . This proves our claim that Q(Hδ) ⊂ Wδ

2

σ(S)
S1
ϵ/2

Perturbations
σ(S − δ ·K)

Figure 4.1: Spectral perturbation theory for an unbounded perturbation K ∈ L(H,W2) as
required by Step 1 of Theorem 4.15. Since the contour S1

ϵ/2 is a compact subset of ρ(S), it

will continue to be contained in ρ(S − δ ·K), provided that our tuning parameter δ is small
enough.

∥∥K∥∥L(H)

λ dist
(
λ, σ(S)

)
>
∥∥K∥∥L(H)

C

σ(S)

Figure 4.2: Spectral perturbation theory with bounded perturbations K ∈ L(H): Given a
self-adjoint operator S : D(S) −→ H and λ ∈ ρ(S), the calculation

S − λ−K =
[
idH −KRλ(S)

]
(S − λ)

shows that demanding
∥∥Rλ(S)∥∥−1

L(H) = dist
(
λ, σ(S)

)
>
∥∥K∥∥L(H) is sufficient to guarantee

invertibility of (S −K − λ) : D(S) −→ H. Thus, the perturbed spectrum σ(S −K) will be
contained in a

∥∥K∥∥L(H)− thickening of the original σ(S).
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Step 2. There exists δ̄ > 0 such that kerDA ⊂ Wδ
1 for all δ ∈

[
0, δ̄

)
Proof. As a preparation recall that A : R −→ L(W1, H) is continuous with invertible end-
points A± ∈ Linv(W1, H) such that lim

t→±∞

∥∥A(t)−A±
∥∥
L(W1, H)

= 0. In particular, for |t| large
enough A(t) will be contained in the open subset Linv(W1, H) ⊂ L(W1, H), so according to
Auxiliary Lemma 4.16 we have a composition of continuous maps

R

L(W1, H)

Linv(W1, H) L(H,W1) R

A

large |t|
( · )−1 ∥·∥L(H,W1)

⊂

open

Hence, given our favourite constant c > 1 we can find T0 such that for |t| > T0 the operator
A(t) :W1 −→ H is invertible and satisfies∥∥A(t)−1

∥∥
L(H,W1)

≤ c
∥∥A−1

±
∥∥
L(H,W1)

with ”− ” for t < −T0 and ” + ” for t > T0. Recall from Auxiliary Lemma 4.16 that
r(A±) = 1/

∥∥A−1
±
∥∥
L(H,W1)

is exactly the radius below which convergence of the Neumann series
at A± is guaranteed.

Turning to our main business, assume that v ∈ W1 satisfies DAv = 0, so with DA being a
regularizing operator on (Wn)n≥0 we obtain

v ∈ W∞ ⊂ W4 ⊂W 2,2(R,W2)

Now Sobolev embedding W 2,2(R,W2) ↪→ C1(R,W2) implies that the pointwise value v(t) is
well-defined and v belongs to C1(R,Wk) for all k ≤ 2.

By using v ∈ C1(R,W1) and A ∈ C1
(
R,L(W1, H)

)
we see that the function

g(t) =
1

2

〈
A(t)v(t), A(t)v(t)

〉
H

=
1

2
∥Av∥2H ≥ 0

is differentiable with continuous derivative

ġ(t) = Re
[
⟨Ȧv, Av⟩+ ⟨Av̇,Av⟩

]
Since the pair v̇(t) ∈W1, v(t) ∈W2 satisfies v̇(t) = A(t)v(t), this can be rewritten as

ġ(t) = Re
[
⟨Ȧv, Av⟩+ ⟨AAv,Av⟩

]
Thus, by invoking A ∈ C2

(
R,L(W1, H)

)
∩ C1

(
R,L(W2,W1)

)
and v ∈ C1(R,W2) we conclude

that ġ is differentiable with continuous derivative

g̈(t) = Re
[

(I)

⟨Äv, Av⟩ +
(II)

⟨Ȧv̇, Av⟩ + ⟨Ȧv, Ȧv⟩ +
(III)

⟨Ȧv, Av̇⟩ (4.7)

+

(II)

⟨ȦAv,Av⟩ +
(III)

⟨AȦv,Av⟩ + ⟨AAv̇,Av⟩ +
(III)

⟨AAv, Ȧv⟩ + ⟨AAv,Av̇⟩
]

Using the symmetry of A(t) :W1 −→ H to rewrite ⟨AȦv,Av⟩ = ⟨Ȧv, AAv⟩ , ⟨AAv̇,Av⟩ = ⟨Av̇,AAv⟩
and once again substituting v̇ = Av with v̇ ∈W1, v ∈W2 , Equation (4.7) can be brought into
the form

g̈(t) = 2 ∥AAv∥2H +
∥∥Ȧv∥∥2

H
+ Re

[
(I)

⟨Äv, Av⟩ + 2

(II)

⟨ȦAv,Av⟩ + 3

(III)

⟨Ȧv, AAv⟩
]

(4.8)
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In the following we would like to establish a lower bound g̈(t) ≥ ?

In doing so, the term
∥∥Ȧv∥∥2

H
≥ 0 can be neglected. Note that ∥AAv∥2H is the only term in

(4.8) that does not involve a derivative of A, whereas we will see that the terms containing Ȧ
and Ä decay in the limit t −→ ±∞. To obtain a clean estimate, let us bound (I), (II), (III)
in relation to the leading term ∥AAv∥2H . From now on we will work at |t| > T0 such that
A(t) :W1 −→ H is invertible with∥∥A(t)−1

∥∥
L(H,W1)

≤ c
∥∥A−1

±
∥∥
L(H,W1)

for our favourite constant 1 < c < 2. For v ∈W1 we have∥∥v∥∥
W1
≤
∥∥A(t)−1

∥∥
L(H,W1)

∥∥A(t)v∥∥
H
≤ c

∥∥A−1
±
∥∥
L(H,W1)

∥∥Av∥∥
H

so for v ∈W2 we obtain ∥∥Av∥∥
H
≤
∥∥Av∥∥

W1
≤ c

∥∥A−1
±
∥∥
L(H,W1)

∥∥AAv∥∥
H

Turning to the terms (I), (II), (III) encountered above, we get upper estimates∣∣∣⟨Äv, Av⟩∣∣∣ ≤ ∥∥Ä∥∥L(W1, H)

∥∥v∥∥
W1

∥∥Av∥∥
H
≤
∥∥Ä∥∥L(W1, H)

c3
∥∥A−1

±
∥∥3
L(H,W1)

·
∥∥AAv∥∥2

H∣∣∣⟨ȦAv,Av⟩∣∣∣ ≤ ∥∥Ȧ∥∥L(W1, H)

∥∥Av∥∥
W1

∥∥Av∥∥
H
≤
∥∥Ȧ∥∥L(W1, H)

c2
∥∥A−1

±
∥∥2
L(H,W1)

·
∥∥AAv∥∥2

H∣∣∣⟨Ȧv, AAv⟩∣∣∣ ≤ ∥∥Ȧ∥∥L(W1, H)

∥∥v∥∥
W1

∥∥AAv∥∥
H
≤
∥∥Ȧ∥∥L(W1, H)

c2
∥∥A−1

±
∥∥2
L(H,W1)

·
∥∥AAv∥∥2

H

Note that in our setup we consider A(t) = A0 + B(t) with a constant A0 ∈ L(W1, H) and
potentially varying B(t) ∈ L(H), so for derivatives of A we have the simplifications∥∥Ȧ∥∥L(W1, H)

≤
∥∥Ḃ∥∥L(H)∥∥Ä∥∥L(W1, H)

≤
∥∥B̈∥∥L(H)

The above ingredients show that for |t| ≥ T0 the second derivative of g(t) = 1

2

∥∥Av∥∥2
H
obeys

g̈(t) ≥
∥∥AAv∥∥2

H
·
[
2 − c3

∥∥A−1
±
∥∥3
L(H,W1)

∥∥B̈(t)
∥∥
L(H)
− 5 c2

∥∥A−1
±
∥∥2
L(H,W1)

∥∥Ḃ(t)
∥∥
L(H)

]
With our assumption that

∥∥Ḃ(t)
∥∥
L(H)

,
∥∥B̈(t)

∥∥
L(H)
−→ 0 for t −→ ±∞ we can find T1 ≥ T0

such that for |t| ≥ T1 one has

c3
∥∥A−1

±
∥∥3
L(H,W1)

∥∥B̈(t)
∥∥
L(H)

+ 5 c2
∥∥A−1

±
∥∥2
L(H,W1)

∥∥Ḃ(t)
∥∥
L(H)
≤ 2− c2

2

and therefore

g̈(t) ≥ c2

2

∥∥AAv∥∥2
H
≥ δ̄ 2± g(t) (4.9)

with δ̄± := 1
/∥∥A−1

±
∥∥
L(H,W1)

= r(A±)

As shown in the proof of [Sa] Lem. 2.11 the differential inequality (4.9) implies a bound

g(t) ≤ const.× e−δ̄±|t|

with decay rates δ̄− for t < −T1 and δ̄+ for t > +T1. Thus, we have proven that the quantity

2 g(t) =
∥∥A(t)v(t)∥∥2

H
decays exponentially, with decay rates set by the convergence radius of

the Neumann series at A− and A+, respectively.
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Finally, let us unveil the reason for considering
∥∥A(t)v(t)∥∥

H
instead of the much simpler∥∥v(t)∥∥

H
that has been treated in [RS] Prop. 3.14 for instance:

Exponential decay of
∥∥A(t)v(t)∥∥

H
guarantees that the quantities∥∥v̇(t)∥∥

H
=
∥∥A(t)v(t)∥∥

H

and
∥∥v(t)∥∥

W1
≤ c

∥∥A−1
±
∥∥
L(H,W1)

∥∥A(t)v(t)∥∥
H

decay exponentially as well. Hence, choosing δ̄ := min(δ±) we have arranged for∥∥γδv∥∥W1
=
∥∥γδv∥∥L2(R,W1)

+
∥∥γδv∥∥L2(R, H)

+
∥∥γδ[ δη̇ v + v̇

]∥∥
L2(R, H)

<∞

and thus v = γ−δ
(
γδv
)
∈ Wδ

1 at every δ ∈ [0, δ̄).

Auxiliary Lemma 4.16 (Topological properties of the inversion map)
Let W,H be Banach spaces. Then the invertible operators Linv(W,H) form an open subset

of L(W,H) and the map Linv(W,H)
(·)−1

−→ L(H,W ) is continuous.

Proof. Given an invertible L0 ∈ L(W,H) the Inverse Mapping Theorem ensures that L−1
0 ∈ L(H,W )

is bounded as well. For perturbations L ∈ L(W,H) we can rewrite

L0 + L =
[
idH +

L(H)

L

idW

L−1
0

]
L0

where
∥∥LL−1

0

∥∥
L(H)
≤ ∥L∥L(W,H)

∥∥L−1
0

∥∥
L(H,W )

motivates the definition

r(L0) := 1
/∥∥L−1

0

∥∥
L(H,W )

Choosing ∥L∥L(W,H) < r(L0) guarantees that
∥∥LL−1

0

∥∥
L(H)

< 1, so L0+L ∈ L(W,H) is invertible
with inverse

(L0 + L)−1 = L−1
0

L(H,W )

∞∑
n=0

[
−LL−1

0

L(H)

]n ∈ L(H,W ) (4.10)

Note that on any ball Bqr(L0)(L0) ⊂ L(W,H) with 0 < q < 1 the expression (4.10) is the
uniform limit N −→∞ of continuous functions

L 7−→ L−1
0

N∑
n=0

[
−LL−1

0

]n
Hence, the map L ∈ Bqr(L0)(L0) 7−→ (L0 + L)−1 ∈ L(H,W ) is continuous itself.

L(W1, H)

Invertibles

A−

r(A−)

Invertibles

A+

r(A+)A(t)

Figure 4.3: Preparation for our proof of Theorem 4.15 Step 2. The invertible operators
Linv(W1, H) ⊂ L(W1, H) form an open subset. Since our operator family, while describing
a continuous path in L(W1, H), approaches invertible endpoints A± ∈ Linv(W1, H), it is
possible to find T > 0 such that A(t) itself is invertible for all |t| > T .
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Having completed the proof of Theorem 4.15, we are ready to address our main result:

Theorem 4.17 (DA as an sc-Fredholm operator)
Given a baseline operator A0 : W1 −→ H on an honest sc-Hilbert space H ⊃ W1 ⊃ . . .
let us assume that B(t) ∈ L(H) is a very good perturbation and consider the operator family
A(t) = A0 + B(t). Moreover, let δ0 = 0 < δ1 < . . . be a weight sequence bounded by δ∞ as
determined in the proof of Theorem 4.15.

Then by restriction of DA :W1 −→ H we obtain a sc-Fredholm operator

DA : (W δn
n+1)n≥0 −→ (W δn

n )n≥0

between honest sc-Banach spaces.

Proof. Let us first comment on the spacesW δn
n+k : In Lemma 4.6 we have identified βi = γ−δi

as a cumulated twisting sequence on the almost sc-Banach space (Wn)n≥0. Thus, Lemma 4.8
ensures that by using spaces of type W δ

m := γ−δ(Wm) ⊂ Wm we obtain an honest sc-Banach

space (W δn
n+k)n≥0 for every k ≥ 0.

Now let us turn to the operator DA: In Lemma 4.14 we have seen that DA : W1 −→ H
is strongly twistable w.r.t. βi = γ−δi , whereas the more difficult Theorem 4.15 confirms
that DA is also twist-regularizing. Note that all assumptions remain true when ”A” is
replaced by ”−A”. Thus, we can apply Proposition 4.13 to obtain regularizing sc-operators
D±A : (W δn

n+k+1)n≥0 −→ (W δn
n+k)n≥0 at every k ≥ 0.

With this information we are in a position to suitably adapt the proof of Theorem 2.38:

Since D±A : (W δn
n+1)n≥0 −→ (W δn

n )n≥0 is regularizing, we have

kerD±A ⊂
⋂
n≥0

W δn
n+1 ⊂

⋂
n≥0

W δn
n

and as before D±A :W1 −→ H being Fredholm guarantees that kerD±A is finite-dimensional
whereas D±A(W1) ⊂ H is a closed subspace.

Now comes the only tricky part: With D−A : (W δn
n+2)n≥0 −→ (W δn

n+1)n≥0 being a regularizing
sc-operator, the decomposition W1 = D−A(W2)⊕ kerDA can be augmented to

W δn
n+1 = W δn

n+1 ∩D−A
(
W δ0

0+2

)
D−A

(
W δn
n+2

) ⊕ kerDA

whereas the regularizing sc-operator DA : (W δn
n+1)n≥0 −→ (W δn

n )n≥0

turns H = DA(W1)⊕ kerD−A into

W δn
n = W δn

n ∩DA

(
W δ0

0+1

)
DA

(
W δn
n+1

) ⊕ kerD−A

It remains to summarize our findings in the language of Definition 2.7: The sc-Banach spaces
Un=W δn

n+1 and Vn=W δn
n admit finite-dimensional subspaces kerDA⊂ U∞ and kerD−A⊂ V∞.

Moreover, since the regularizing sc-operator DA : (W δn
n+1)n≥0 −→ (W δn

n )n≥0 has closed range

DA(W1) ⊂ H while the regularizing sc-operator D−A : (W δn
n+2)n≥0 −→ (W δn

n+1)n≥0 has closed
range D−A(W2) =W1 ∩D−A(W1) ⊂ W1, Corollary 2.6 confirms

Xn = D−A
(
W δn
n+2

)
and Yn = DA

(
W δn
n+1

)
as honest sc-subspaces of U = (W δn

n+1)n≥0 and V = (W δn
n )n≥0 , respectively.

Clearly,
DA :W δn

n+1 = kerDA ⊕D−A
(
W δn
n+2

)
Xn

DA(W δn
n+1)

Yn

⊕ kerD−A =W δn
n

restricts to an isomorphism DA : Xn
∼−→ Yn at every n ≥ 0.
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Chapter 5

Applicability to Floer theory

5.1 Construction of the Banach scale and baseline operator

5.1.1 ... in the general case of non-local Lagrangian boundary conditions
It is now time to provide examples for the baseline operator and admissible perturbations
that were postulated in Chapter 2.

Since our arguments do not involve any reference to finite dimension, we will consider the
infinite-dimensional case right away. Let

(
H, ⟨·, ·⟩H

)
be a real Hilbert space. Given an ”almost

complex structure” J0 ∈ L(H) with J2
0 = −id and ⟨J0·, J0·⟩H = ⟨·, ·⟩H, the ”symplectic form”

ω(u, v) := ⟨J0u, v⟩H ∈ R
is non-degenerate and satisfies |ω(u, v)| ≤ ∥J0∥L(H) ∥u∥ ∥v∥. The antisymmetry of ω relies on
the symmetry of ⟨·, ·⟩H, thus requiring us to work with a real Hilbert space H.

Now let us consider the bounded open interval I = (0, 1). The operator

A0 = J0∂s :W
1,2(I,H) −→ L2(I,H)

is defined on all of W 1,2(I,H). However, Sobolev embedding yields bounded linear maps

W 1,2(I,H) C0(Ī ,H)
Hev0

Hev1
unique representative

so given any (closed) subspace Λ ⊂ H⊕H, we can restrict A0 = J0∂s to the (closed) subspace

W 1,2
Λ (I,H) :=

(
ev0 × ev1

)−1(
Λ
)
⊂W 1,2(I,H)

consisting of functions u ∈W 1,2(I,H) ⊂ C0(Ī ,H) such that
(
u(0), u(1)

)
∈ Λ.

In Corollary 5.5 we will give a full classification for which spaces Λ ⊂ H ⊕ H the operator
A0 :W

1,2
Λ (I,H) −→ L2(I,H) is symmetric (resp. self-adjoint).

As a first step, we observe the following:

Lemma 5.1 (Regularity of the adjoint)
Let Λ ⊂ H⊕H be any subspace.
Then the adjoint domain of A0 = J0∂s :W

1,2
Λ (I,H) −→ L2(I,H) satisfies D(A∗

0) ⊂W 1,2(I,H)
and A∗

0 can be obtained by restricting J0∂s :W
1,2(I,H) −→ L2(I,H) to D(A∗

0).

Proof. Let us abbreviate H = L2(I,H) and consider an element u ∈ L2(I,H). The Riesz
Representation Theorem shows that u ∈ D(A∗

0) implies the existence of another u1 ∈ L2(I,H)
such that ⟨u,A0f⟩H + ⟨u1, f⟩H = 0 for all f ∈W 1,2

Λ (I,H).

We claim that consequently the expression

δϕ(u, J0u1) =

∫
I
u · ∂ϕ +

∫
I
J0u1 · ϕ ∈ H

vanishes for all test functions ϕ ∈ C∞
0 (I), exhibiting J0u1 ∈ L2(I,H) as the weak derivative

of u so that the adjoint can be expressed as A∗
0u = −u1 = J0∂u.
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Indeed, given any test function ϕ ∈ C∞
0 (I) and constant vector v ∈ H, the product ”f” = ϕv

belongs to W 1,2
Λ (I,H). As a bounded linear map, ⟨·, J0v⟩H : H −→ R commutes with the

Bochner integral and with ⟨·, ·⟩H being non-degenerate, having〈
δϕ(u, J0u1), J0v

〉
H =

∫
I
⟨u, J0 ∂[ϕv] ⟩H +

∫
I
⟨ J0u1, J0 ϕv ⟩H = ⟨u,A0f⟩H + ⟨u1, f⟩H = 0

for all v ∈ H implies δϕ(u, J0u1) = 0.

With the Fundamental Theorem of Calculus in mind, the boundary behaviour of our operator
J0∂s seems rather unsurprising. Yet, since our Sobolev spaces are defined on a bounded open
interval, a little argument involving the non-trivial Meyers-Serrin theorem is required:

Lemma 5.2 (Partial integration for A0 = J0∂s on I = (0, 1) )

For u, v ∈W 1,2(I,H) ⊂ C0(Ī ,H) we have the formulae

a) ⟨u′, v⟩H + ⟨u, v′⟩H =
〈
u(1), v(1)

〉
H −

〈
u(0), v(0)

〉
H

b) ⟨A0u, v⟩H − ⟨u,A0v⟩H = ω
(
u(1), v(1)

)
− ω

(
u(0), v(0)

)
Proof. a) By the Meyers-Serrin theorem there exist sequences un, vn ∈ C∞ ∩ W 1,2(I,H)
such that un −→ u and vn −→ v in W 1,2(I,H). Continuity of the evaluation maps
evs :W

1,2(I,H) ⊂ C0(Ī ,H) −→ H, s ∈ Ī allows us to use

lim
n→∞

∥un(s)− u(s)∥H = 0 and lim
n→∞

∥vn(s)− v(s)∥H = 0 at s = 0, 1.

Thus, formula (a) follows from the calculation

⟨u′, v⟩H + ⟨u, v′⟩H = lim
n→∞

[
⟨u′n, vn⟩H + ⟨un, v′n⟩H∫ 1

0 ds d
ds

⟨un,vn⟩H

]

= lim
n→∞

[〈
un(1), vn(1)

〉
H −

〈
un(0), vn(0)

〉
H

]
=
〈
u(1), v(1)

〉
H −

〈
u(0), v(0)

〉
H

b) Given u ∈W 1,2(I,H) we have J0 δϕ(u, ∂u) = δϕ(J0u, J0∂u) and therefore J0u ∈W 1,2(I,H)
with ∂(J0u) = J0∂u ∈ L2(I,H). Using formula (a) we obtain

⟨A0u, v⟩H − ⟨u,A0v⟩H =

∫
I

〈
J0∂su

∂s J0u

, v
〉
H −

∫
I

〈
u, J0∂sv

〉
H

−⟨J0u, ∂sv⟩H

=
〈
∂s[J0u], v

〉
H
+
〈
J0u, ∂sv

〉
H

=
〈
J0u(1), v(1)

〉
H −

〈
J0u(0), v(0)

〉
H

= ω
(
u(1), v(1)

)
− ω

(
u(0), v(0)

)
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As promised in the introduction, there is a nice characterization of the adjoint (J0∂s|Λ)∗ in
terms of Ω-orthogonal complements:

Proposition 5.3 (Calculating the adjoint of A0 = J0∂s)
Given a subspace Λ ⊂ H ⊕ H, denote by ΛΩ ⊂ H ⊕ H the Ω-orthogonal complement of Λ
under the symplectic form Ω = (−ω)⊕ ω.
Then the adjoint of A0 = J0∂s :W

1,2
Λ (I,H) −→ L2(I,H) is simply

J0∂s :W
1,2
ΛΩ (I,H) −→ L2(I,H)

Proof. From Lemma 5.1 we know that any u ∈ D(A∗
0) belongs to W 1,2(I,H) and A∗

0 arises
as the restriction of A0 = J0∂s :W

1,2(I,H) −→ L2(I,H). To verify that the adjoint domain
is exactly D(A∗

0) =W 1,2
ΛΩ (I,H), recall from Lemma 5.2 that any pair u, v ∈W 1,2(I,H) obeys

⟨A0u, v⟩H − ⟨u,A0v⟩H = ω
(
u(1), v(1)

)
− ω

(
u(0), v(0)

)
(5.1)

Having u ∈ D(A∗
0) ensures that the l.h.s. of (5.1) vanishes for all v ∈W 1,2

Λ (I,H).

Since we can find a suitable v ∈W 1,2
Λ (I,H) for any combination

(
v(0), v(1)

)
∈ Λ, we conclude

that
(
u(0), u(1)

)
∈ ΛΩ and therefore D(A∗

0) ⊂W
1,2
ΛΩ (I,H).

Conversely, u ∈W 1,2
ΛΩ (I,H) guarantees vanishing of the r.h.s. so vanishing of the l.h.s. implies

u ∈ D(A∗
0) and we have proven W 1,2

ΛΩ (I,H) ⊂ D(A∗
0).

The following auxiliary result shows that we have implications W 1,2
A =W 1,2

B =⇒ A=B:

Auxiliary Lemma 5.4 (Faithful boundary detection by W 1,2)
Given subspaces A,B ⊂ H⊕H we have an equivalence

A ⊂ B ⇐⇒ W 1,2
A (I,H) ⊂W 1,2

B (I,H)

Proof. Let us focus on the non-trivial direction and assume that in spite ofW 1,2
A (I,H) ⊂W 1,2

B (I,H)
we can find a tuple (v0, v1) ∈ A ∩ Bc. Using bumps supported in the vicinity of 0 and 1,
we can construct v ∈W 1,2(I,H) with

(
v(0), v(1)

)
=
(
v0, v1

)
. This produces a contradiction

between v ∈W 1,2
A (I,H) ⊂W 1,2

B (I,H) and v /∈W 1,2
B (I,H).

Now we are ready to describe the symmetric (resp. self-adjoint) restrictions of J0∂s:

Corollary 5.5 (Criteria for symmetry and self-adjointness)

Given a subspace Λ ⊂ H⊕H, the operator A0 = J0∂s :W
1,2
Λ (I,H) −→ L2(I,H) is ...

i) symmetric if and only if Λ is isotropic
(
i.e. Λ ⊂ ΛΩ

)
ii) self-adjoint if and only if Λ is a Lagrangian subspace

(
i.e. Λ = ΛΩ

)
Proof. Auxiliary Lemma 5.4 shows that Λ ⊂ ΛΩ is equivalent to the statement

W 1,2
Λ (I,H) ⊂W 1,2

ΛΩ (I,H)

which by Proposition 5.3 is reinterpreted as the statement A0 ⊂ A∗
0.

Similarly, Λ = ΛΩ is equivalent toW 1,2
Λ (I,H) =W 1,2

ΛΩ (I,H) which can be rephrased as A0 = A∗
0.
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Next, let us proceed to higher Sobolev spaces. As in section 2.4.1 every element u ∈Wn+1,2(I,H)
can be identified with a tuple

u =
(
u0, u1, ..., un+1

)
∈ L2(I,H)⊕n+2

such that (uk, uk+1) ∈ W 1,2(I,H) for all k = 0, ..., n. Thus, for all k = 0, ..., n and s ∈ Ī
Sobolev embedding yields bounded linear maps

Wn+1,2(I,H) W 1,2(I,H) ⊂ C0(Ī ,H) H ,
prk evs

u uk uk(s)

and to any closed subspace Λ ⊂ H⊕H we can associate the closed subspace

Wn+1,2
Λ (I,H) :=

⋂
k = 0, ..., n

[
(ev0 × ev1) ◦ prk

]−1( Ik(Λ)) ⊂ Wn+1,2(I,H) (5.2)

where I := J0 ⊕ J0 ∈ L(H⊕H). More explicitly, this space can be described as

Wn+1,2
Λ (I,H) =

{
(u0, ..., un+1) ∈Wn+1,2(I,H)

∣∣∣ (uk(0), uk(1)) ∈ Ik(Λ) for all k = 0, ..., n
}

which is reminiscent of the space encountered in section 7 of [FW].

Note thatA0 = J0∂s :W
1,2(I,H) −→ L2(I,H) restricts to a composition of bounded linear maps

Wn+1,2
Λ (I,H) Wn,2

I(Λ)(I,H) Wn,2
Λ (I,H)

(u0, u1, ..., un+1) (u1, ..., un+1) (J0u1, ..., J0un+1)

∂s J0

so we can regard A0 as a sc-operator

A0 :
(
Wn+1,2

Λ (I,H)
)
n≥0
−→

(
Wn,2

Λ (I,H)
)
n≥0

Our definition of Wn+1,2
Λ (I,H) is motivated by the following property:

Lemma 5.6 (Regularization imposes boundary conditions on derivatives)

The sc-operator A0 :
(
Wn+1,2

Λ (I,H)
)
n≥0
−→

(
Wn,2

Λ (I,H)
)
n≥0

is regularizing,

i.e. A0 :W
1,2
Λ (I,H) −→ L2(I,H) satisfies A−1

0

(
Wn,2

Λ (I,H)
)
=Wn+1,2

Λ (I,H).

Proof. By Auxiliary Lemma 2.12 it suffices to show that A0 = J0∂s :W
1,2
Λ (I,H) −→ L2(I,H)

is an escalator for
(
Wn,2

Λ (I,H)
)
n≥0

. Hence, let us consider u ∈ Wn+1,2(I,H) such that

J0∂u ∈Wn+1,2(I,H) as well. Then u can be represented as a tuple

(u0, u1, ..., un+1) ∈ L2(I,H)⊕n+2

with
(
uk(0), uk(1)

)
∈ Ik(Λ) for k = 0, ..., n whereas from ∂u = −J0J0∂u ∈Wn+1,2

I(Λ) (I,H)
we obtain a tuple

(u1, ..., un+1, un+2) ∈ L2(I,H)⊕n+2

with
(
uk(0), uk(1)

)
∈ Ik(Λ) for k = 1, ..., n+ 1. Gluing these tuples shows that(

uk(0), uk(1)
)
∈ Ik(Λ) for k = 0, ..., n+ 1 and therefore u ∈Wn+2,2

Λ (I,H).

Up to this point, our discussion can be summarized by the following result:

Theorem 5.7 (A0 = J0∂s as a baseline operator)
Assume that Λ ⊂ H⊕H is a Lagrangian subspace, i.e. ΛΩ = Λ.
Then A0 = J0∂s :W

1,2(I,H) −→ L2(I,H) restricts to a baseline operator

A0 :
(
Wn+1,2

Λ (I,H)
)
n≥0
−→

(
Wn,2

Λ (I,H)
)
n≥0

in the sense that A0 : W 1,2
Λ (I,H) −→ L2(I,H) is self-adjoint as an unbounded operator

on L2(I,H) and A0 :
(
Wn+1,2

Λ (I,H)
)
n≥0
−→

(
Wn,2

Λ (I,H)
)
n≥0

is a regularizing sc-operator.

Proof. Combine Corollary 5.5 and Lemma 5.6.
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So far we have not verified that
(
Wn,2

Λ (I,H)
)
n≥0

is a sc-Banach space.

In fact,W∞ :=
⋂
m≥0W

m,2
Λ (I,H) being dense in everyWn :=Wn,2

Λ (I,H) is far from obvious:

It might be tempting to regard C∞
0 (I,H) ⊂

⋂
m≥0W

m,2
Λ (I,H) as a candidate for being

dense in every Wn,2
Λ (I,H). However, [Ad] Thm. 3.37 shows that for example C∞

0 (I) is not
dense in W 1,2(I), the reason being that Ic = (−∞, 0] ∪ [1,∞) has non-vanishing measure
and therefore cannot be ”(1, 2)-polar”. In a more modest attempt we observe that I = (0, 1)
clearly obeys the segment condition from [Ad] Def. 3.21 so [Ad] Thm. 3.22 ensures that
the restriction map C∞

0 (R) −→W 1,2(I) has dense image. Now however we have lost control
over the boundary values uϵ(0), uϵ(1) of any approximating function uϵ ∈ C∞

0 (R).

We can circumvent these issues in a surprisingly simple way, namely by the mere presence
of a baseline operator:

Proposition 5.8 (Banach scales generated by a baseline operator)
Let W0 ⊃W1 ⊃ . . . be a filtration of Banach spaces with bounded inclusions
such that the norm ∥·∥W0

arises from a Hilbert space structure on H :=W0.

Assume that W∞ :=
⋂
n≥0Wn is dense in H and there exists a baseline operator

A0 : (Wn+1)n≥0 −→ (Wn)n≥0

Then (Wn)n≥0 is an almost sc-Banach space.
It is an honest sc-Banach space if A0 :W1 −→ H has compact resolvent.

Proof. Let us first prove our claim in the case of complex Banach spaces:
Self-adjointness of the operatorA0 :W1 −→ H guarantees that A0 − i :W1 −→ H is invertible.
By consulting Auxiliary Lemma 2.13 we know that A0 − i : (Wn+1)n≥0 −→ (Wn)n≥0 is a
regularizing sc-operator as well, so we get (A0− i)−1(Wn) ⊂Wn+1 and the Inverse Mapping
Theorem implies (A0 − i)−1 ∈ L(Wn,Wn+1).
Pick any element x ∈Wn. Since by assumption W∞ =

⋂
m≥0Wm is dense in H, we can find

an approximating sequence yk ∈W∞ such that

lim
k→∞

∥∥(A0 − i)nx− yk
∥∥
H

= 0

Now A0 − i being a regularizing operator ensures that (A0 − i)−1(W∞) ⊂W∞ and with∥∥x− (A0 − i)−nyk
∥∥
Wn
≤
∥∥(A0 − i)−n

∥∥
L(H,Wn)

·
∥∥(A0 − i)nx− yk

∥∥
H

we conclude that xk := (A0 − i)−nyk ∈W∞ is an approximating sequence for x in Wn.
This proves that (Wn)n≥0 is an almost sc-Banach space.

For the statement about honest sc-Banach spaces note that at any λ ∈ ρ(A0) from the
resolvent set,

W1

H

H

Rλ(A0)
ι

(A0 − λ)−1

A0 − λ

is a commutative diagram of bounded linear maps between Banach spaces. Since the class of
compact operators forms an ideal among bounded linear maps, we conclude that the resolvent
Rλ(A0) ∈ L(H) being compact is synonymous with compactness of the inclusion operator
ι ∈ L(W1, H). Moreover, for every n ≥ 0 we have a commutative diagram of bounded linear
maps H W1

Wn Wn+1

ι

ι
(A0 − i)−n (A0 − i)n

showing that compactness of ι : W1 −→ H implies compactness of ι ∈ L(Wn+1,Wn)
at all higher orders. In summary, (Wn)n≥0 is an honest sc-Banach space if and only if
A0 :W1 −→ H has compact resolvent.
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Finally, let us explain how our results can be transferred to the case of real Banach spaces:
Assume that W0 ⊃ W1 ⊃ . . . is a filtration of real Banach spaces with bounded inclu-
sions such that ∥·∥W0

originates from a real Hilbert space H = W0. With details given in
Appendix A we can regard the complexification

WC
0 ⊃WC

1 ⊃ . . . ⊃WC
n ⊃ . . .

as a filtration of complex Banach spaces with bounded inclusions such that ∥·∥WC
0
originates

from the Hilbert space HC = H ⊗ C. The complexified operator A0 ⊗ idC = A0 ⊕ A0 now
being a baseline operator on (WC

n )n≥0 , we can apply the above results to deduce that the
set ⋂

m≥0

WC
m =

[ ⋂
m≥0

Wm

]C
=
[
W∞

]C
is dense in every WC

n and therefore W∞ is dense in every Wn.
In the case of honest sc-Banach spaces WC

n+1 ↪→WC
n being a compact inclusion is equivalent

to compactness of the inclusion Wn+1 ↪→Wn.

Having identified J0∂s as a baseline operator on
(
Wn,2

Λ (I,H)
)
n≥0

, we obtain an honest sc-
Hilbert space for every Lagrangian subspace Λ ⊂ H⊕H:

Corollary 5.9 (Honest sc-Hilbert spaces generated by restrictions of J0∂s)
Let Λ = ΛΩ be a Lagrangian subspace of H⊕H.

Then
(
Wn,2

Λ (I,H)
)
n≥0

is an honest sc-Hilbert space.

Proof. Approximate f ∈ L2(I,H) by f ·χ[ϵ,1−ϵ] ∈ L2(I,H) and use mollification to conclude
that the set

C∞
0 (I,H) ⊂

⋂
n≥0

Wn,2
Λ (I,H)

is dense in H := L2(I,H). From Theorem 5.7 we know that

A0 = J0∂s :
[
Wn+1,2

Λ (I,H)
]
n≥0
−→

[
Wn,2

Λ (I,H)
]
n≥0

is a baseline operator, so Proposition 5.8 guarantees that
[
Wn,2

Λ (I,H)
]
n≥0

is an almost sc-
Banach space. By combining Sobolev embedding with the Arzelà-Ascoli theorem, we observe
that the inclusion

W 1,2
Λ (I,H)

W 1,2(I,H)

C0,1/2(I,H) = C0,1/2(Ī ,H)

C0(Ī ,H)

L2(I,H)

is compact, so A0 : W 1,2
Λ (I,H) −→ L2(I,H) has compact resolvent and Proposition 5.8

confirms that
[
Wn,2

Λ (I,H)
]
n≥0

is an honest sc-Banach space. The lowest level H = L2(I,H)
being a Hilbert space, we are in fact dealing with an honest sc-Hilbert space.
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5.1.2 ... in the special cases of local Lagrangian or periodic boundary
conditions

Our treatment of non-local Lagrangian boundary conditions Λ ⊂ H ⊕ H automatically in-
corporates two important special cases:

� Local Lagrangian boundary conditions:
Choose Λ = Λ0 ⊕ Λ1 where Λ0 and Λ1 are Lagrangian subspaces of (H, ω). Then the
Banach scale from subsection 5.1.1 can be described as

Wn+1,2
Λ0⊕Λ1

(I,H) =
{
u ∈Wn+1,2(I,H)

∣∣∣ ∂ku(0)∈Jk(Λ0) and ∂
ku(1)∈Jk(Λ1) for all k = 0, ..., n

}
which can be seen as a generalization of the Lagrangian boundary conditions considered
in section 7 of [FW].

� Periodic boundary conditions:
Let Λ be the diagonal ∆ ⊂ H⊕H. Note that ∆ = I(∆) is invariant under application
of I = J ⊕ J , so the Banach scale is simply

Wn+1,2
∆ (I,H) =

{
u ∈Wn+1,2(I,H)

∣∣∣ ∂ku(0) = ∂ku(1) for all k = 0, ..., n
}

By Part II Auxiliary Lemma 7.8 we will be able to define Wn,2(S1,H) ⊂ Wn,2
(
(0, 1),H

)
as

the projection of

ker
[
Wn,2

(
(0, 1),H

)
⊕Wn,2

(
(−ϵ, ϵ),H

)
Wn,2

(
(−ϵ, 0),H

)
⊕Wn,2

(
(0, ϵ),H

)
[
τ+1 −1
1 −1

] ]
We use the remainder of this subsection to justify why Wn+1,2

∆ (I,H) is the same closed
subspace of Wn+1,2(I,H) as Wn+1,2(S1,H):

Lemma 5.10 (Pointwise gluing of Sobolev spaces W 1,2)
Let us split Iϵ = (−ϵ, ϵ) into adjacent intervals I− = (−ϵ, 0) and I+ = (0, ϵ)

and denote by W 1,2(I−,H) ⊕
glue

W 1,2(I+,H) the kernel of

W 1,2(I−,H)⊕W 1,2(I+,H) C0(Ī−,H)⊕ C0(Ī+,H) H ,
ev0|I−−ev0|I+

(u, v) u(0)− v(0) .

Then the restriction map

W 1,2(Iϵ,H) W 1,2(I−,H)⊕W 1,2(I+,H) ,
res

w (w|I− , w|I+)

induces an isomorphism of Banach spaces W 1,2(Iϵ,H)
∼−→W 1,2(I−,H) ⊕

glue
W 1,2(I+,H).

Proof. To verify that the map

W 1,2(Iϵ,H) −→W 1,2(I−,H) ⊕
glue

W 1,2(I+,H)

is surjective, let us consider u ∈W 1,2(I−,H) and v ∈W 1,2(I+,H) with u(0) = v(0).

By the Meyers-Serrin theorem we can find approximating sequences un ∈ C∞ ∩W 1,2(I−,H)
and vn ∈ C∞∩W 1,2(I+,H) such that lim

n→∞

∥∥u− un∥∥W 1,2(I−,H)
= 0 and lim

n→∞

∥∥v − vn∥∥W 1,2(I+,H)
= 0.

Taking into account that

W 1,2(I±,H) C0(Ī±,H) H
ev0

are bounded linear maps, we conclude that un(0)→ u(0) and vn(0)→ v(0) and therefore

lim
n→∞

∥∥un(0)− vn(0)∥∥H = 0
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For any test function ϕ ∈ C∞
0 (Iϵ) we find

δϕ(u ⊔ v, u̇ ⊔ v̇) =

∫
I−

[u∂ϕ+ u̇ϕ] +

∫
I+

[v∂ϕ+ v̇ϕ]

= lim
n→∞

∫
I−

[un∂ϕ+ u̇nϕ]

∂(unϕ)

+ lim
n→∞

∫
I+

[vn∂ϕ+ v̇nϕ]

∂(vnϕ)

= lim
n→∞

ϕ(0) · [un(0)− vn(0)] = 0

showing that u ⊔ v ∈W 1,2(Iϵ,H) is the desired preimage.

Remark 5.11 (Pointwise gluing of higher Sobolev spaces Wn+1,2)
The result of Lemma 5.10 extends to higher Sobolev spaces:
For k = 0, ..., n we have bounded linear maps

Wn+1,2(I±,H) W 1,2(I±,H) ,
prk

(w0, w1, ...., wn+1) (wk, wk+1)

exhibiting

Wn+1,2(I−,H)⊕
glue
Wn+1,2(I+,H) :=

⋂
k=0,...,n

(prk ⊕ prk)
−1
[
W 1,2(I−,H) ⊕

glue
W 1,2(I+,H)

]
=
{
(u, v)∈W 1,2(I−,H)⊕W 1,2(I+,H)

∣∣ ∂ku(0) = ∂kv(0) ∀ k = 0, ..., n
}

as a closed subspace of W 1,2(I−,H)⊕W 1,2(I+,H).

To verify that the restriction map

Wn+1,2(Iϵ,H) −→ Wn+1,2(I−,H) ⊕
glue

Wn+1,2(I+,H)

is surjective, let us consider u ∈ Wn+1,2(I−,H) and v ∈ Wn+1,2(I+,H) with uk(0) = vk(0)
for all k = 0, ..., n. Since (uk, uk+1) and (vk, vk+1) belong to W 1,2(I−) and W

1,2(I+) respec-
tively, we can apply Lemma 5.10 to conclude that (uk ⊔ vk, uk+1 ⊔ vk+1) ∈ W 1,2(Iϵ,H) and
therefore (u0 ⊔ v0, u1 ⊔ v1, ... , un+1 ⊔ vn+1) ∈Wn+1,2(Iϵ,H).
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5.2 Criteria for moderate and localized perturbations

5.2.1 Differentiation of maps valued in Cn
bounded(I,B)

As perturbations to our baseline operator J0∂s :
(
Wn+1,2

Λ (I,H)
)
n≥0
−→

(
Wn,2

Λ (I,H)
)
n≥0

we

study maps Γ : R × I −→ L(H) which are admissible in a sense to be determined below.
When cutting such a map into time-slices Γt : I −→ L(H), we want each Γt to be contained
in Cnbounded

(
I,L(H)

)
so that it can operate by multiplication on Wn,2(I,H). Moreover, just

as in Lemma 2.28 or Corollary 2.29 the map

Γ : R −→ Cnbounded
(
I,L(H)

)
has to be of class Cr with bounded derivatives in order to operate on W r,2

(
R,Wn,2(I,H)

)
.

We verify this kind of differentiability from scratch, by using completeness of the spaces
Cnbounded

(
I,L(H)

)
. This will require bounds on the second time derivatives ∂2t ∂

k
xΓ(t, x) to

ensure uniform convergence of the difference quotients

∂kxΓ(t+ δt, ·)− ∂kxΓ(t, ·)
δt

, k = 0, ..., n

As indicated in Figure 5.1, we will be able to keep the number of x-derivatives constant,
while arbitrarily increasing the number of t-derivatives.
The following arguments work for a general open interval I ⊂ R and Banach space B.
Lemma 5.12 (First derivative of C0

bounded(I,B)-valued maps)
Given a map Γ : R× I −→ B such that

� Γ(t, ·) ∈ C0
bounded(I,B) at every t ∈ R

� Γ(·, x) ∈ C2(R,B) at every x ∈ I
let us assume sup

(t, x) ∈ R× I

∥∥∂2t Γ∥∥B <∞.

Then Γ : R −→ C0
bounded(I,B) is differentiable with derivative t 7−→ ∂tΓ(t, ·) ∈ C0

bounded(I,B).

Proof. We apply the Fundamental Theorem of Calculus twice:
Using Γ(·, x) ∈ C1(R,B) one has

Γ(t+ δt, x)− Γ(t, x)

δt
=

∫ 1

0
ds ∂tΓ

∣∣
(t+sδt,x)

and with ∂tΓ(·, x) ∈ C1(R,B) we get∥∥∂tΓ(t+ sδt, x)− ∂tΓ(t, x)
∥∥

B ≤ |s| |δt|
∫ 1

0
dr
∥∥∂2t Γ∣∣(t+r·sδt,x)∥∥B ≤ |s| |δt| sup

(t,x)∈R×I

∥∥∂2t Γ∥∥B

Thus, calculating pointwise at x ∈ I, we obtain∥∥∥∥Γ(t+ δt, x)− Γ(t, x)

δt
− ∂tΓ(t, x)

∥∥∥∥
B
≤
∫ 1

0
ds
∥∥∂tΓ(t+ sδt, x)− ∂tΓ(t, x)

∥∥
B ≤ |δt| sup

(t,x)∈R×I

∥∥∂2t Γ∥∥B

so the difference quotient Γ(t+δt,·)−Γ(t,·)
δt ∈ C0

bounded(I,B) converges not only pointwise but

in fact uniformly. By completeness of C0
bounded(I,B) we conclude that ∂tΓ(t, ·) belongs to

C0
bounded(I,B) as well and serves as the derivative of Γ : R −→ C0

bounded(I,B).

Remark 5.13 (The Banach space Cnbounded(I,B) )
Choose n ≥ 1. Then

Cnbounded(I,B) :=
{
(u0, u1, ..., un) ∈ C0

bounded(I,B)
⊕n+1

∣∣∣uk is differentiable with derivative u′k = uk+1

}
is a closed subspace of C0

bounded(I,B)
⊕n+1 and therefore a Banach space itself.

By abuse of notation, we can identify Cnbounded(I,B) with its image under the projection

(u0, u1, ..., un) 7−→ u0 ∈ C0
bounded(I,B)
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Lemma 5.14 (First derivative of Cnbounded(I,B)-valued maps)
Given a map Γ : R× I −→ B with

� Γ(t, ·) ∈ Cnbounded(I,B) at every t ∈ R
� Γ(·, x), .... , ∂nxΓ(·, x) ∈ C2(R,B) at every x ∈ I

assume that sup
(t, x) ∈ R× I

∥∥∂2t ∂kx Γ∥∥B <∞ for all k = 0, ..., n .

Then we have ∂tΓ ∈ Cnbounded(I,B) with derivatives ∂kx [∂tΓ] = ∂t[∂
k
xΓ].

Moreover, Γ : R −→ Cnbounded(I,B) is differentiable with derivative ∂tΓ : R −→ Cnbounded(I,B).

Proof. As in Lemma 5.12 we have pointwise estimates∥∥∥∥∂kx Γ(t+ δt, x)− ∂kx Γ(t, x)
δt

− ∂t∂kx Γ(t, x)
∥∥∥∥

B
≤ |δt| sup

(t,x)∈R×I

∥∥∂2t ∂kx Γ∥∥B

showing that

∂t∂
k
x Γ(t, ·) = lim

δt→0

∂kxΓ(t+ δt, ·)− ∂kxΓ(t, ·)
δt

∈ C0
bounded(I,B)

Since Cnbounded(I,B) ⊂ C
0
bounded(I,B)

⊕n+1 is a closed subspace, we conclude

that ∂tΓ(t, ·) ∈ Cnbounded(I,B) with x-derivatives ∂
k
x [∂tΓ] = ∂t[∂

k
xΓ]

is the t-derivative of Γ : R −→ Cnbounded(I,B).

Proposition 5.15 (Smooth Cnbounded(I,B)-valued maps)

i) Given a map Γ : R× I −→ B with

� Γ(t, ·) ∈ Cnbounded(I,B) at every t ∈ R
� Γ(·, x), .... , ∂nxΓ(·, x) ∈ C∞(R,B) at every x ∈ I

assume that sup
(t, x) ∈ R× I

∥∥∂lt ∂kx Γ∥∥B <∞ for all k = 0, ..., n and l ≥ 2.

Then we have Γ ∈ C∞(R, Cnbounded(I,B)) with derivatives t 7−→ ∂ltΓ(t, ·) ∈ Cnbounded(I,B).

ii) If in addition sup
(t, x) ∈ R× I

∥∥∂lt ∂kx Γ∥∥B <∞ for all k = 0, ..., n and l = 0, 1

then Γ : R −→ Cnbounded(I,B) is smooth with bounded derivatives.

Proof. i) All we have to do is iterate Lemma 5.14:
With the functions ∂kxΓ ∈ C0

bounded(I,B) satisfying ∂
k
xΓ(·, x) ∈ C∞(R,B) at every x ∈ I,

existence of the expressions ∂lt∂
k
xΓ : R× I −→ B is guaranteed from the outset.

Now assume that at every t ∈ R the map ∂ltΓ : R × I −→ B obeys ∂ltΓ(t, ·) ∈ Cnbounded(I,B)
with x-derivatives given by

∂kx [∂
l
tΓ] = ∂lt[∂

k
xΓ] ∈ C0

bounded(I,B)

Then we have sup
(t, x) ∈ R× I

∥∥∂2t ∂kx [∂ltΓ]∥∥B <∞, so Lemma 5.14 shows that ∂l+1
t Γ(t, ·) ∈ Cnbounded(I,B)

with x-derivatives
∂kx [∂

l+1
t Γ] = ∂t∂

k
x [∂

l
tΓ] = ∂l+1

t [∂kxΓ] ∈ C0
bounded(I,B)

is the t-derivative of ∂ltΓ : R −→ Cnbounded(I,B) and our claim follows by induction.

ii) By part (i) we have a sequence of derivatives ∂lt Γ : R −→ Cnbounded(I,B), l ≥ 0 with norm∥∥∂ltΓ(t, ·)∥∥C n
bounded(I,B)

=

n∑
k=0

∥∥∂lt∂kxΓ(t, ·)∥∥C 0
bounded(I,B)

≤
n∑
k=0

sup
(t, x) ∈ R× I

∥∥∂lt∂kxΓ(t, x)∥∥B
For Γ : R −→ Cnbounded(I,B) to be smooth with bounded derivatives, all of these norms have
to be uniformly bounded in t ∈ R, as can be achieved by assuming

sup
(t, x) ∈ R× I

∥∥∂lt ∂kx Γ(t, x)∥∥B <∞ for all k = 0, .., n and l ≥ 0

70



For practical situations, there is no cost in discarding our constraint on the number of x-
derivatives since Γ (for example being the Hessian of a Hamiltonian function) comes from
smooth data anyway. Thus, we will from now on continue with the much more generous
assumption of Γ being a C∞-function on Σ = R× I.
Corollary 5.16 (Simplifying the conditions of Proposition 5.15)
Given a map Γ ∈ C∞(R× I,B) assume that

sup
(t, x) ∈ R× I

∥∥∂lt ∂kx Γ∥∥B <∞ for all l, k ≥ 0

Then Γ satisfies the conditions of Proposition 5.15,
so Γ : R −→ Cnbounded(I,B) is smooth with bounded derivatives for all n ≥ 0.

Proof. Let us begin by an alternative definition that clarifies the ”computational complexity”
of belonging to C∞(R×I,B): Having Γ ∈ C∞(R×I,B) means that to every binary sequence

A = a1a2....an with ai ∈ {t, x}
we can assign a map ΓA ∈ C1(R× I,B) such that

∂aΓA = ΓaA for all binary sequences A and a ∈ {t, x}.

Note that by Schwarz’s theorem the terms Γa1....an are necessarily permutation invariant, so
every ΓA can be written in the form Γt....tx....x and our assumption sup

(t, x) ∈ R× I

∥∥∂lt∂kxΓ∥∥B <∞
translates to

sup
(t, x) ∈ R× I

∥∥ΓA∥∥B <∞ for all binary sequences A

The conditions of Proposition 5.15 are immediate because Γ(t, ·) ∈ Cnbounded(I,B) follows
from sup

(t, x) ∈ R× I

∥∥∂kx Γ∥∥B <∞ for all k = 0, ..., n

and Γ(·, x), .... , ∂nxΓ(·, x) ∈ C∞(R,B) is due to the possibility of successively applying ∂t.

0 1 . . . n

∂kx

∂ lt

=⇒

=⇒ =⇒

∂x

∂t pointwise derivatives

= bounded on R× I

= bounded continuous in I-direction

Figure 5.1: Schematic illustration of the inductive argument proving Proposition 5.15.
Each point in the diagram represents an R-family of maps I −→ B. An arrow indicates that
two such families R × I −→ B are related by taking a pointwise derivative. Note that by
the assumptions of Proposition 5.15, we can arbitrarily increase the number of t-derivatives,
while keeping the number of x-derivatives constant. As indicated by the ”commutative
squares”, we obtain an alternative to the classical Schwarz theorem.
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5.2.2 Compatibility with the boundary conditions
From now on, we will only consider the interval I = (0, 1).

Returning to the setting of section 5.1.1, let us choose B = L(H), where
(
H, ⟨·, ·⟩H

)
is a

Hilbert space equipped with an ”almost complex structure” J0 ∈ L(H) and ”symplectic
form” ω = ⟨J0·, ·⟩H.
The proof of Lemma 2.28 provides us with inequalities∥∥fu∥∥

Wn,2(I,H)
≤ const.×

∥∥f∥∥
Cnbounded

(
I,L(H)

)∥∥u∥∥
Wn,2(I,H)

giving rise to bounded linear inclusions

Cnbounded
(
I,L(H)

)
L
(
Wn,2(I,H)

)
Thus, any Γ ∈ C∞(R × I,L(H)

)
satisfying the requirements of Corollary 5.16 will induce

a moderate family of sc-operators on the filtration
(
Wn,2(I,H)

)
n≥0

. Note however that,
according to section 5.1.1, we have to impose boundary conditions by choosing a Lagrangian
subspace Λ ⊂ (H⊕H,Ω = (−ω)⊕ω) and that scalar multiplication by f ∈ Cnbounded

(
I,L(H)

)
does not necessarily preserve the subspace Wn,2

Λ (I,H) ⊂Wn,2(I,H).

We will overcome this issue by going to the subspace Cnbounded
(
I,L(H)

)
Λ
to be introduced in

Remark 5.19. To properly define this space, some preparations are in order:

Remark 5.17 (The space of Λ-compatible operators LΛ ⊂ L(H⊕H))
Let us consider E := H⊕H as a Hilbert space with block-diagonal inner product

⟨u0 ⊕ u1, v0 ⊕ v1⟩H⊕H = ⟨u0, v0⟩H + ⟨u1, v1⟩H
By defining Ĩ := (−J0) ⊕ J0 ∈ L(H) ⊕ L(H) ⊂ L(H ⊕ H) in contrast to I = J0 ⊕ J0, the
symplectic form Ω = (−ω) ⊕ ω can be written as Ω = ⟨Ĩ·, ·⟩H⊕H. Since for any u ∈ H ⊕ H
we have Ω(u, ·) ∈ L(H ⊕ H,R), the Ω-orthogonal complement of any subset Λ ⊂ H ⊕ H
is automatically a closed subspace ΛΩ ⊂ H ⊕ H. In particular, every Lagrangian subspace
Λ = ΛΩ is closed.
Now given a closed subspace Λ ⊂ E, we have an orthogonal decomposition E = Λ⊕Λ⊥ with
projectors pΛ, pΛ⊥ ∈ L(E), allowing us to exhibit

LΛ :=
{
α ∈ L(E)

∣∣α(Λ) ⊂ Λ and α
(
I(Λ)

)
⊂ I(Λ)

}
=
⋂
u∈Λ

ker(evu ◦ pΛ⊥◦ ) ∩ ker(evu ◦ pΛ⊥◦ I ◦ ◦ I )

and LΛ · I =
{
α ∈ L(E)

∣∣α(I(Λ)) ⊂ Λ and α(Λ) ⊂ I(Λ)
}

as closed subspaces of L(E) = L(H⊕H).

Remark 5.18 (Extracting the boundary behaviour of f ∈ Cn+1
bounded(I,B))

Consider any two points x0, x1 from our interval I = (0, 1).
Then any f ∈ C1

bounded(I,B) obeys

f(x1)− f(x0) = (x1 − x0)
∫ 1

0
ds f ′

∣∣
x0+s·(x1−x0)

so with
∥∥f(x1)− f(x0)∥∥B ≤ |x1 − x0| · ∥∥f ′∥∥C0

bounded(I,B)

we conclude that f(x) ∈ B becomes a Cauchy sequence whenever x approaches the boundary.
By completeness of B, we receive well-defined boundary values f(0) and f(1), putting us into
a position to consider bounded linear maps

Cn+1
bounded(I,B) C1

bounded(I,B) C0(Ī ,B) B⊕ B

(f0, f1, ..., fn+1) (fk, fk+1) fk
[
fk(0), fk(1)

]prk ev0 × ev1

Note that in our situation B ⊕ B = L(H) ⊕ L(H) ⊂ L(H ⊕ H) is simply the subspace of
block-diagonal maps.
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Remark 5.19 (Making Cn+1
bounded(I,B) respect the boundary conditions)

Let Λ ⊂ H⊕H be a closed subspace.
By combining Remarks 5.17 and 5.18 we observe that

Cn+1
bounded

(
I,L(H)

)
Λ
:=

n⋂
k=0

[
[ev0 × ev1] ◦ prk

]−1(LΛ · Ik)
=
{
f ∈ Cn+1

bounded

(
I,L(H)

) ∣∣∣ [fk(0), fk(1)] ∈ LΛ · Ik for all k = 0, ..., n
}

is a closed subspace of Cn+1
bounded

(
I,L(H)

)
. To understand the motivation for this definition,

let us multiply u ∈Wn+1,2
Λ (I,H) by f ∈ Cn+1

bounded

(
I,L(H)

)
:

Having u ∈Wn+1,2
Λ (I,H) means that

[
uk(0), uk(1)

]
∈ Ik(Λ) for all k = 0, ..., n.

Recall that maps from LΛ preserve the subspaces Λ and I(Λ), so for m = 0, ..., n we have

[fu]m(0)⊕ [fu]m(1) =

m∑
k=0

(
m

k

)[
fm−k(0)⊕ fm−k(1)

]
LΛ·Im−k

·
[
uk(0)⊕ uk(1)

]
Ik(Λ)

∈ Im(Λ)

and therefore fu ∈Wn+1,2
Λ (I,H).

Writing L
(
Wn,2(I,H)

)
Λ
for the space of all α ∈ L

(
Wn,2(I,H)

)
that preserve the subspace

Wn,2
Λ (I,H) ⊂Wn,2(I,H), we obtain a commutative diagram

Cnbounded
(
I,L(H)

)

Cnbounded
(
I,L(H)

)
Λ

L
(
Wn,2(I,H)

)

L
(
Wn,2(I,H)

)
Λ

L
(
Wn,2

Λ (I,H),Wn,2(I,H)
)

L
(
Wn,2

Λ (I,H)
)

restr.

restr.

improving on the map Cnbounded
(
I,L(H)

)
−→ L

(
Wn,2(I,H)

)
mentioned in the beginning of

this section.

With the extra ingredient of compatible boundary conditions, we are now ready to refine
Corollary 5.16 such as to provide the desired information about moderate and localized
perturbations:

Proposition 5.20 (Criterium for moderate and localized perturbations)
Let Λ = ΛΩ be a Lagrangian subspace of H⊕H.

i) Assume we are given a map Γ ∈ C∞(R× I,L(H)
)
that in addition to

sup
(t, x) ∈ R× I

∥∥∂lt ∂kx Γ∥∥B <∞ for all l, k ≥ 0

satisfies
[
∂kx Γ(t, 0), ∂

k
x Γ(t, 1)

]
∈ LΛ · Ik for all k ≥ 0 and t ∈ R.

Then
Γ : R −→ Cnbounded

(
I,L(H)

)
Λ
−→ L

(
Wn,2

Λ (I,H)
)

is smooth with bounded derivatives for all n ≥ 0,
exhibiting Γ(t) as a moderate perturbation on the Banach scale

(
Wn,2

Λ (I, I)
)
n≥0

.

ii) If in addition

lim
t→±∞

sup
x∈I

∥∥∂lt Γ(t, x)∥∥L(H)
= 0 for l = 1, 2

then Γ(t) is not only moderate, but also a localized perturbation.
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Proof. i) From Corollary 5.16 we already know that Γ : R −→ Cnbounded
(
I,L(H)

)
is smooth

with bounded derivatives. The additional requirement[
∂kx Γ(t, 0), ∂

k
x Γ(t, 1)

]
∈ LΛ · Ik

ensures that Γ(t) ∈ Cnbounded
(
I,L(H)

)
Λ
for all n ≥ 0. Since Cnbounded

(
I,L(H)

)
Λ
is a closed

subspace of Cnbounded
(
I,L(H)

)
, we observe that having Γ(t) ∈ Cnbounded

(
I,L(H)

)
Λ

at every

t ∈ R automatically implies Γ(l)(t) ∈ Cnbounded
(
I,L(H)

)
Λ
for all higher derivatives l ≥ 1 and

therefore Γ ∈ C∞(R, Cnbounded(I,L(H)
)
Λ

)
instead of just Γ ∈ C∞(R, Cnbounded(I,L(H)

))
.

By applying the bounded linear map

Cnbounded
(
I,L(H)

)
Λ
−→ L

(
Wn,2(I,H)

)
Λ
−→ L

(
Wn,2

Λ (I,H)
)

from Remark 5.19, we conclude that Γ : R −→ L
(
Wn,2

Λ (I,H)
)
is smooth with bounded

derivatives at every n ≥ 0.

ii) For H = L2(I,H) we have∥∥∂lt Γ(t, ·)∥∥L(H)
≤
∥∥∂lt Γ(t, ·)∥∥C0

bounded

(
I,L(H)

) = sup
x∈I

∥∥∂lt Γ(t, x)∥∥L(H)

so localized perturbations can be realized by demanding

lim
t→±∞

sup
x∈I

∥∥∂lt Γ(t, x)∥∥L(H)
= 0 for l = 1, 2.

While motivated by abstract consistency arguments, our boundary conditions deliver rea-
sonable output in the two special cases of interest:

Example 5.21 (Periodic boundary conditions)
Let Λ be the diagonal ∆ ⊂ H⊕H.
Then Λ is invariant under application of I = J0 ⊕ J0, i.e. we have I(Λ) = Λ.
As a result, we obtain LΛ · I = LΛ and

LΛ ∩
[
L(H)⊕ L(H)

]
=
{
α ∈ L(H)⊕ L(H)

∣∣α(∆) ⊂ ∆
}

is simply the diagonal in L(H)⊕L(H). Thus, having
[
∂kx Γ(t, 0), ∂

k
x Γ(t, 1)

]
∈ LΛ · Ik amounts

to demanding ∂kx Γ(t, 0) = ∂kx Γ(t, 1).

Example 5.22 (Local Lagrangian boundary conditions)
Assume that Λ is of the form Λ = Λ0 ⊕ Λ1 with Lagrangian subspaces Λ0,Λ1 ⊂ (H, ω).
Since the symplectic form arises as ω = ⟨J0·, ·⟩H, we have identifications

Λ⊥
i = J0(Λ

ω
i ) = J0(Λi)

showing that I(Λ) = Λ⊥
0 ⊕ Λ⊥

1 . Thus, when restricted to L(H) ⊕ L(H) ⊂ L(H ⊕ H), the
spaces LΛ and LΛ · I consist of matrices M0 ⊕M1 where Mi is diagonal (resp. off-diagonal)
w.r.t. the decomposition H = Λi ⊕ Λ⊥

i .
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5.2.3 Simplified criteria in the case of linear sigma models Φ : R×S1 −→ H

Up to now, we allowed our ”target” H to be a possibly infinite-dimensional Hilbert space.
In realistic situations, outlined for instance in [Sa], one may consider maps Φ : R× I −→M
into a symplectic manifold (M,ω, J) together with an I-family of HamiltoniansHx :M −→ R
such that Φ is of finite energy

E(Φ) =
1

2

∫
R×I
|∂tΦ|2 + |∂xΦ−∇Hx|2

!
<∞

and subject to the constraint that

∂tΦ+ J(Φ)∂xΦ− [∇Hx](Φ) ∈ Φ∗TM

vanishes at every (t, x) ∈ R × I. As explained in [Sa] Prop. 1.21, these conditions lead to
a-priori estimates bounding the derivatives of Φ.

Regarding the ’linearized Floer equation’

∂t δΦ+ J0∂x δΦ+ Γ · δΦ = 0

for example encoutered in [Sa] and [RS], it is the Φ-part in Γ = ”F ◦ Φ” that is responsible
for Γ being a ’localized moderate perturbation’ in the sense of Definition 2.21.
Proposition 5.23 illustrates this point in the simplified setting where Γ arises as a composition

R× I H L(H)
Φ F

with linear target space H = R2n. This situation is of interest for Landau-Ginzburg models
where our Hamiltonian H is replaced by a holomorphic ’superpotential’ W : M −→ C and
holomorphy of W requires M to be non-compact, so one typically takes M = Cn.

Proposition 5.23 (Moderate localized perturbations in the closed string setting)
Let us focus on the situation H = R2n, I = (0, 1).

i) Assume we are given maps Φ ∈ C∞(R×I,H) and F ∈ C∞(H,L(H)
)
such that Φ satisfies

� sup
(t, x) ∈ R× I

∥∥∂lt ∂kx Φ∥∥H <∞ for all l, k ≥ 0

� ∂kxΦ(t, 0) = ∂kxΦ(t, 1) for all k ≥ 0 and t ∈ R

Then Γ = F ◦ Φ : R× I −→ L(H) defines a moderate perturbation on
(
Wn,2(S1,H)

)
n≥0

.

ii) If in addition

lim
t→±∞

sup
x∈I

∥∥∂ltΦ(t, x)∥∥H = 0 for l = 1, 2

then Γ is not only moderate, but also a localized perturbation.
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Proof. i) The set

RΦ :=

{∑
finite
sum

ai · [Bi ◦ Φ]
∣∣∣∣ Bi : H −→ L(H) smooth
ai : R× I → R smooth w/ bounded derivatives

}

is a subring of C∞(R×I,L(H)
)
. Since for simplicity we are working with a finite-dimensional

target space H = R2n, the condition sup
∥∥Φ∥∥H <∞ implies that Φ(R× I,H) is compact.

As a result, all terms of the form B ◦ Φ with B ∈ C∞(H,L(H)
)
and therefore all elements

of RΦ are bounded functions on our ”world-sheet” Σ = R× I.
Note that RΦ ⊂ C∞(R× I,L(H)

)
is closed under application of ∂t and ∂x :

For example, the t-derivative of an element
∑

i ai · [Bi ◦ Φ] ∈ RΦ consists of terms

∂tai · [Bi ◦ Φ] + ai∂tΦ
µ [∂µBi] ◦ Φ

where our assumption

sup
(t, x) ∈ R× I

∥∥∂lt ∂kx Φ∥∥H <∞ for all l ≥ 1, k ≥ 0

ensures that ∂tΦ
µ : R× I −→ R is smooth with bounded derivatives.

The above discussion shows that all derivatives of Γ = F ◦ Φ belong to RΦ and therefore

sup
(t, x) ∈ R× I

∥∥∂lt ∂kx Γ∥∥L(H)
<∞ for all l, k ≥ 0

Next remark that our assumption Φ(t, 0) = Φ(t, 1) guarantees B ◦ Φ(t, 0) = B ◦ Φ(t, 1) for
all B ∈ C∞(H,L(H)

)
. Since ∂kxΓ ∈ RΦ is of the form

∑
i ai · [Bi ◦Φ] where Bi is a derivative

of F and ai contains only x-derivatives ∂
r
xΦ

µ, we observe that our assumption

∂kxΦ(t, 0) = ∂kxΦ(t, 1) for all k ≥ 0

translates to the statement ∂kxΓ(t, 0) = ∂kxΓ(t, 1) encountered in Example 5.21.
Thus, we can apply Proposition 5.20 to conclude that Γ = F ◦ Φ : R × I −→ L(H) is a
moderate perturbation.

ii) With the lowest order t-derivatives given by

∂t[F ◦ Φ] = ∂tΦ
µ [∂µF ] ◦ Φ

∂2t [F ◦ Φ] = ∂2tΦ
µ [∂µF ] ◦ Φ + ∂tΦ

µ∂tΦ
ν [∂ν∂µF ] ◦ Φ

our assumptions

Φ(R× I,H) compact and lim
t→±∞

sup
x∈I

∥∥∂ltΦ(t, x)∥∥H = 0 for l = 1, 2

suffice to ensure

lim
t→±∞

sup
x∈I

∥∥∂lt Γ(t, x)∥∥L(H)
= 0 for l = 1, 2.

as required for Proposition 5.20(ii).
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Part II

An M-polyfold chart assembling
the topology-changing time slices of

a pair-of-pants worldsheet
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Chapter 6

Contravariant Sobolev Spaces

6.1 The Sobolev space associated to a vector field

Before being able to formulate the ’crossover retraction’ in Chapter 7 and prove its sc-
smoothness in Chapter 8, we have to introduce vector-field-dependent Sobolev spaces as a
framework for calculations.

Throughout this section, we will consider open subsets Ω ⊂ Rn equipped with the datum of
a metric g and a distinguished vector field V .
Moreover, we will work with test functions ϕ ∈ C1

0 (Ω) instead of C∞
0 (Ω).

Generalizing our approach from Remark 2.25, we will use the following construction:

Remark 6.1 (Sobolev space associated to a vector field)
Given a fixed Banach space B like for instance B = Rm we consider functions u : Ω −→ B
and define L2

g(Ω) by demanding
∫
Ω

√
g ∥u∥2 <∞.

With Young’s inequality we verify that

δV√gϕ (u0, u1) :=

∫
√
g

1
√
g
∂µ
(√
gϕV µ

)
∈C1

0 (Ω)

u0 +

∫
√
gϕ u1

defines a bounded linear map L2
g(Ω)⊕ L2

g(Ω) −→ B.
This makes

W 1,2
V,g(Ω) :=

⋂
ϕ∈C1

0 (Ω)

ker δVϕ

a closed subspace of L2
g(Ω)⊕ L2

g(Ω) and thus a Banach space itself.

Higher Sobolev spaces will be defined as

Wn+1,2
V,g (Ω) :=

{
(u0, ..., un+1) ∈ L2

g(Ω)
⊕n+2

∣∣ (uk, uk+1) ∈W 1,2
V,g(Ω) for all k = 0, ..., n

}
so all relevant properties can be derived from W 1,2

V,g(Ω).
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Our specific choice of the ’differentiation constraints’ δVϕ (u0, u1) guarantees the following
simple transformation behaviour under diffeomorphisms of the domain Ω:

Proposition 6.2 (Contravariant transformation behaviour of the Sobolev spaces W 1,2
V,g)

Let Φ : Ω′ −→ Ω be a diffeomorphism between open subsets of Rn
Then Φ induces an isometry

W 1,2
V,g(Ω) −→W 1,2

Φ∗V,Φ∗g(Ω
′)

(u0, u1) 7−→ (u0 ◦ Φ , u1 ◦ Φ)

Proof. By the Transformation Theorem for L1-functions one has∫
Ω
dny
√
g ∥u∥2 =

∫
Ω′

dnx
∣∣∣det (∂y

∂x

)∣∣∣√g ◦ Φ
√
Φ∗g

∥u ◦ Φ∥2

so the componentwise map L2
g(Ω)

⊕2 −→ L2
Φ∗g(Ω

′)⊕2 , (u0, u1) 7−→ (u0 ◦ Φ, u1 ◦ Φ)
is an isometry. Using the Levi-Civita connection of g we observe that for every vector field V
the quantity

1
√
g
∂µ
(√
gV µ

)
= ∇µV µ = trace

[
X 7−→ ∇XV

]
(6.1)

transforms as a scalar, in the sense that under a diffeomorphism Φ we have[
1
√
g

∂

∂yµ

[√
gV µ

]]
◦ Φ =

1√
Φ∗g

∂

∂xµ

[√
Φ∗g [Φ∗V ]µ

]
Rescaling V by ϕ ∈ C1

0 (Ω) we get Φ∗[ϕV ] = (ϕ ◦ Φ) · Φ∗V ,

so with the Transformation Theorem we find

δV√gϕ(u0, u1) =

∫
Ω
dny
√
g

1
√
g
∂µ
[√
gϕV µ

]
u0 +

∫
Ω
dny
√
gϕ u1

=

∫
Ω′

dnx
√

Φ∗g
1√
Φ∗g

∂µ
[√

Φ∗g (ϕ ◦ Φ) · [Φ∗V ]µ
]
u0 ◦ Φ +

∫
Ω′

dnx
√

Φ∗g (ϕ ◦ Φ) · u1 ◦ Φ

= δΦ∗V√
Φ∗g ϕ ◦ Φ(u0 ◦ Φ, u1 ◦ Φ)

Given ρ ∈ C∞(Ω′,R>0) and a diffeomorphism Φ : Ω′ −→ Ω one has bijections

C1
0 (Ω)

ϕ

C1
0 (Ω

′)

ϕ ◦ Φ

∼
C1
0 (Ω

′)

ξ

C1
0 (Ω

′)

ρ · ξ

∼

Thus, every φ ∈ C1
0 (Ω

′) can be written as φ =
√
Φ∗g ϕ◦Φ for some ϕ ∈ C1

0 (Ω) and we obtain

δΦ
∗V

φ (u0 ◦ Φ, u1 ◦ Φ) = δV√gϕ(u0, u1)

As a result, the isometry L2
g(Ω)

⊕2 ◦Φ−→ L2
g(Ω

′)⊕2 maps W 1,2
V,g(Ω) to W 1,2

Φ∗V,Φ∗g(Ω
′).

Remark. To obtain formula 6.1 compare
∂ν
√

det(g)√
det(g)

=
1

2
tr(g−1∂νg) with the ρµ-contraction of

Γρµν =
1

2
gρκ
(
∂νgκµ + ∂µgκν − ∂κgµν

)
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6.2 Criteria for compactness
From now on we will focus on the case n = 1 and replace Ω by open intervals I ⊂ R.
As a useful tool, we will consider the following 1-dimensional version of a flow:

Remark 6.3 (Straightening diffeomorphism)
Let Ix ⊂ R be an open interval and fix a basepoint x0 ∈ Ix .
Given a vector field V = V (x)∂x with V (x) > 0, the map

φ : Ix −→ Iy ⊂ R x 7−→ y(x) =

∫ x

x0

dx′

V (x′)

defines a diffeomorphism between Ix and another open interval Iy ⊂ R .

Its inverse Φ = φ−1 : Iy −→ Ix will be called the straightening diffeomorphism for V
because it trivialises our vector field in the sense that Φ∗V = ∂y . Note, however, that the
pullback of a given metric g on Ix will be an a priori unspecified metric gstr := Φ∗g on Iy.

Luckily, some information about gstr can be recovered directly from the data (Ix, V, g).
For instance, the divergence of our vector field V can be used to control the logarithmic

variation
∂
√
gstr√
gstr

. This allows us to derive the following criteria for (non-)compactness of the

inclusion W 1,2
V,g(I) ↪→ L2

g(I) depending on whether the flow of V exists for all times:

Lemma 6.4 (Criteria for/against Compactness)
Let I ⊂ R be an open interval with metric g and distinguished vector field V = V (x)∂x , V (x) > 0

i) Assume that div(V ) =
1
√
g
∂
[√
gV
]
is bounded, whereas

∫
I

dx

V (x)
=∞ .

Then the inclusion W 1,2
V,g(I) ↪→ L2

g(I) is non-compact.

ii) Assume there exist constants c, C > 0 such that c <
√
gV < C .

Then the condition

∫
I

dx

V (x)
<∞ ensures that there are compact inclusions

W 1,2
V,g(I) ↪→ L2

g(I) and W 1,2
V,g(I) ↪→ C0

bounded(I)

Proof. Let Φ : Istr −→ I be the straightening diffeomorphism from Remark 6.3 and write gstr = Φ∗g

Part (i). The condition

∫
I

dx

V (x)
=∞ means that Istr ⊂ R is an unbounded interval.

So let us treat the case [0,∞) ⊂ Istr : Given a bump ϕ ∈ C∞
0 (−a, a) with a < 1 let us write

wn := max
[n− a , n+ a]

√
gstr and consider the sequence ϕn := 1

w
1/2
n

τ−nϕ .

Note that the action of Φ∗V = ∂ on ϕn is just ∂ϕn =
[
∂ϕ
]
n
, so the estimate∫

Istr

√
gstr ∥ϕn∥2 ≤

∫
R
∥τ−nϕ∥2 =

∫
R
∥ϕ∥2 = const.

shows that ϕn ∈W 1,2
∂,gstr

(Istr) is a bounded sequence.

To argue that ϕn ∈ L2
gstr(Istr) does not admit a convergent subsequence,

we first establish a lower bound on
√
gstr

wn
: By assumption, the expression

∂
√
gstr√
gstr

=
1√
Φ∗g

∂
[√

Φ∗g · 1
]
=
[

1
√
g
∂
[√
gV
]]
◦ Φ

is bounded by some constant C > 0 . Now choose y0 ∈ [n− a, n+ a] such that
√
gstr (y0) = max

[n− a, n+ a]

√
gstr .

With the Fundamental Theorem of Calculus we find

0 ≥ log
√
gstr

wn
=

∫ y

y0

∂
√
gstr√
gstr

= −
∣∣∣∣∫ y

y0

∂
√
gstr√
gstr

∣∣∣∣ ≥ − ∫
[n−a,n+a]

∣∣∣∣∂√gstr√
gstr

∣∣∣∣ ≥ −2a · C
and therefore

√
gstr

wn
≥ e−2a·C = const. > 0
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Since any two different ϕn, ϕm have disjoint supports, we observe that

∥ϕn − ϕm∥2L2
gstr(Istr)

=

∫
[n−a,n+a]

√
gstr ∥ϕn∥2 +

∫
[m−a,m+a]

√
gstr ∥ϕm∥2 ≥ 2 · e−2a·C

∫
R
∥ϕ∥2

so ϕn ∈ L2
gstr(Istr) cannot contain a Cauchy sequence.

Part (ii). By assumption
√
gstr =

[√
gV
]
◦ Φstr is bounded above and below. As a result,

we have isomorphisms of Banach spaces L2
g(Istr)

∼= L2(Istr) and W
1,2
∂,gstr

(Istr) ∼=W 1,2(Istr) .

Sobolev embedding yields a commutative diagram

W 1,2
V,g(I)

W 1,2
∂,gstr

(Istr)

∼ =

W 1,2(Istr)

C0,1/2(Istr)= C0,1/2(Īstr)

L2
g(I)

L2
gstr(Istr)

∼ =
L2(Istr)

C0(Īstr)

C0
bounded(I)

C0
bounded(Istr)

∼ ◦Φ ∼

◦Φ
−1

∼◦Φ
−1

canonical projection

α

Note that the condition

∫
I

dx

V (x)
<∞ makes Istr ⊂ R a bounded interval,

so by the Arzelà-Ascoli Theorem the embedding α : C0,1/2(Īstr) ↪→ C0(Īstr) is compact.
Our claims follow because the compact operators form an ideal among bounded linear maps.

Example.The inclusionW 1,2
x∂x,1

(δ, 1) ↪→L2(δ, 1) is compact for δ > 0 and non-compact for δ=0.

As a result,W 1,2
x∂x,1

(0, 1) cannot continuously embed into the standard Sobolev spaceW 1,2(0, 1).

The reverse inclusion W 1,2(0, 1) ↪→ W 1,2
x∂x,1

(0, 1), however, does exist, as can be seen by the
methods of the next section.
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6.3 Algebraic structures

6.3.1 Rules for changing the vector field

In this interlude section, we establish a rule by which Sobolev spaces associated to different
vector fields can be related. For this purpose, we continue to work over a general open interval
I ⊂ R. Our discussion will exploit the interplay between iteratively defined ’expansion
coefficients’ C̃Vn,k[f ] ∈ C∞(I) and a certain subring R(I, V ) ⊂ C∞(I) from which they
cannot escape.

Remark 6.5 (Ring of smooth functions with bounded powers of V)

The set R(I, V ) :=
{
f ∈ C∞(I)

∣∣∣ sup
x∈I

∥∥V k[f ]
∥∥ <∞ for all k ≥ 0

}
is a subring of C∞(I).

It is closed under the action of V in the sense that

f ∈ R(I, V ) =⇒ V [f ] ∈ R(I, V )

Definition 6.6 (Expansion Coefficients)
Given vector fields V,W and a function f ∈ C∞(I) we define the coefficients C̃Wn,k[f ], C

V
n,k[f ] ∈ C∞(I)

iteratively by
C̃0,k = δ0,k

C̃n+1,k =W [C̃n,k] + f · C̃n,k−1

C0,k = δ0,k

Cn+1,k = k · V [f ]Cn,k + f · V [Cn,k] + Cn,k−1

Remark 6.7 (Immediate Properties of the Expansion Coefficients)
� Induction in n ≥ 1 shows that Cn,n = 1 and Cn,k = 0 unless 1 ≤ k ≤ n.
Thus,

[
Cn,k

]k = 1, ..., N

n = 1, ..., N
∈ SL

(
N,C∞(I)

)
is a lower triangular matrix with unit diagonal.

� Having f ∈ R(I, V ) ensures Cn,k ∈ R(I, V ) for all n, k.

� Having f ∈ R(I,W ) ensures C̃n,k ∈ R(I,W ) for all n, k.

Example 6.8 (Integer coefficients)
In the case I = R, V = ∂x and f = x one has V [f ] = 1, so induction in n
shows that V [Cn,k] = 0. Again by induction we conclude that Cn,k ∈ N for all n, k.

Remark 6.9 (Relating the powers of different vector fields)

Induction in n shows that C̃ fV
n,k [f ] = C V

n,k [f ] · fk

Thus, if W and V are related by W = f · V , we have expansions

Wn[g] =

n∑
k=0

C̃W
n,k V

k[g] =
n∑
k=0

C V
n,k f

k V k[g]

relating the powers of W and V on any g ∈ C∞(I).

Lemma 6.10 (Rescaling the vector field gives ring extensions)
Given vector fields V,W such that W = f · V for some f ∈ C∞(I) assume that

a) f ∈ R(I, V ) or b) f ∈ R(I,W )

Then we have an inclusion R(I, V ) ⊂ R(I,W ).

Proof. Consider g ∈ C∞(I) such that all powers V k[g] are bounded functions on I.
Provided that f ∈ R(I,W ) or f ∈ R(I, V ), the expansions

Wn[g] =

n∑
k=0

C̃n,k[f ]

R(I,W )
if f∈R(I,W )

V k[g] Wn[g] =

n∑
k=0

Cn,k[f ] f
k

R(I,V )
if f∈R(I,V )

V k[g]

show that the powers Wn[g] are bounded as well.

Example 6.11 (Strict inclusion)
For I = (0, 1) one has x ∈ R(I, ∂x) ⊂ R(I, x∂x).
This inclusion is strict because

√
x ∈ R(I, x∂x) but

√
x /∈ R(I, ∂x).
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k ∈ Z

n ∈ N

1 0 0 0 0

0 1 0 0 0

0 V [f ] 1 0 0

0 • • 1 0

0 • • • 1

00 0

00 0

00 0

00 0

00 0

Figure 6.1: Iterative construction of the ’expansion
coefficients’ CVn,k[f ] ∈ C∞(I) associated to f ∈ C∞(I).
Observe that for every N ≥ 1,(

Cn,k
)
1≤n,k≤N

will be an invertible N×N -matrix over the ring C∞(I),
so the expansion

[fV ]n =
n∑
k=1

Cn,k · fk V k

can be inverted to give

fn V n =
n∑
k=1

C−1
n,k · [fV ]k

In the case I = Ra, V = ∂
∂a , f = a, this inverted expan-

sion reads

an
[
∂

∂a

]n
=

n∑
k=1

C−1
n,k ·

[
a
∂

∂a

]k
with integer coefficients C−1

n,k ∈ Z.
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Coming back to our ’contravariant Sobolev spaces’, we will adopt the perspective that
Wn,2
V,g (I) is a module over the ring R(I, V ).

In the following we assume that a particular metric g has been singled out, so we can identify
”Wn,2

V (I)” =Wn,2
V,g (I) with a subspace of L2

g(I) just like in Lemma 2.26.
Using only minimal assumptions, we obtain the following basic result:

Auxiliary Lemma 6.12 (Rescaling of the vector field vs. rescaling of the argument)
Pick f ∈ C1(I).

1) Assume sup
x∈I
∥f∥ <∞. Then u ∈W 1,2

V (I) implies u ∈W 1,2
f ·V (I).

2) Assume sup
x∈I
∥f∥ <∞ and sup

x∈I
∥V [f ] ∥ <∞.

Then u ∈W 1,2
V (I) implies f · u ∈W 1,2

V (I) with V [f · u] = V [f ]u+ fV [u]

Proof. Write u = (u0, u1) ∈W 1,2
V (I) ⊂ L2

g(I)
⊕2.

The assumptions ensure fu1 ∈ L2
g(I) and fu1 + V [f ]u0 ∈ L2

g(I), respectively.

Multiplying ϕ ∈ C1
0 (I) by f ∈ C1(I) we have f · ϕ ∈ C1

0 (I). Thus, our claims follow from

δfVϕ
(
u0, fu1

)
=

∫
u0 ∂(f V ϕ) +

∫
f u1 ϕ = δVfϕ

(
u0, u1

)
= 0

δVϕ
(
fu0, V [f ]u0 + fu1

)
=

∫
u0
[
f∂(V ϕ) + V [f ]ϕ

]
∂(f V ϕ)

+

∫
f u1 ϕ = δVfϕ

(
u0, u1

)
= 0

By combining parts 1) and 2), we arrive at the following extension criterion
for our vector-field-dependent Sobolev spaces:

Lemma 6.13 (Rescaling the vector field extends the Sobolev space)
Given vector fields related as W = f · V with f ∈ R(I,W )
there is a (unique) bounded linear map Wn,2

V (I) ↪→Wn,2
W (I) covering idL2

g(I)
.

Proof. Having f ∈ R(I,W ) ensures that all C̃Wm,k[f ] belong to R(I,W ), so in particular they

are bounded functions. We show that, when restricted to Wn,2
V (I), the bounded linear map

L2
g(I)

⊕n+1 −→ L2
g(I)

⊕n+1, [um]m=0,...,n 7−→

[
m∑
k=0

C̃m,k uk

]
m=0,...,n

takes values in Wn,2
W (I): Pick u ∈ Wn,2

V (I). For k ≤ n − 1 we have V ku ∈ W 1,2
V (I) and

since part 1) of Auxiliary Lemma 6.12 does not rely on information about ”V [f ]” we get
V ku ∈W 1,2

W (I). Now apply part 2) with W instead of V to verify that for m = 0, ..., n− 1∑
k

C̃m,kV
ku ∈W 1,2

W (I)

with W

[∑
k

C̃m,kV
ku

]
=
∑
k

W [C̃m,k] · V ku+ C̃m,k f · V k+1u

=
∑
k

[
W [C̃m,k] + C̃m,k−1f

]
V ku =

∑
k

C̃m+1,kV
ku

Corollary 6.14 Given f ∈ R(I, V )× there is an isomorphism of Banach spacesWn,2
V (I) ∼=Wn,2

f ·V (I)

Proof. HavingW = f ·V with f ∈ R(I, V ) ⊂ R(I,W ) provides a morphismWn,2
V (I)

α−→Wn,2
W (I)

and having V = f−1W with f−1 ∈ R(I, V ) provides a morphism Wn,2
W (I)

β−→Wn,2
V (I).

These morphisms as well as their compositions cover the identity idL2
g(I)

. Since morphisms
covering the identity are unique, we conclude that α and β are mutually inverse.
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6.3.2 The category of displacement and pointwise superposition

In this slightly technical section, we introduce rules by which the superposition of functions
from different Sobolev spaces can be evaluated in the Sobolev space of yet another vector field.
This allows us to regard matrices over the ringsRP =C∞(R) andRPQ =

⊕
ϕ∈Diff(R)C

∞(R)·ϕ
as morphisms between the correct Sobolev spaces. As an application, we will be able to
rigorously identify the space Nn(−a, a) = Wn,2

V a
int;ρ

a
int

(−a, a) involved in our formulation of the

”anti-gluing map” in Proposition 7.3.

The following notation will also be used in subsequent chapters:

Notation (Wn,2
V ; ρ vs. W

n,2
V,g )

Instead of demanding
∫
I

√
g ∥u∥2 <∞ it will be more convenient to write

∫
I
∥ρ · u∥2 <∞.

To highlight the difference we denote the respective spaces by L2
g(I) and L

2(I)ρ .

At higher orders n ≥ 1 we will adopt the notationsWn,2
V,g (I) ⊂ L

2
g(I)

⊕n+1 andWn,2
V ; ρ(I) ⊂ L

2(I)⊕n+1
ρ .

Note that ρ plays the role of g1/4, i.e. under diffeomorphisms Φ : Ix −→ Iy it transforms as

Φ∗ρ =
∣∣∣∂y
∂x

∣∣∣1/2ρ ◦ Φ
In Chapters 7 and 8 we will be dealing with different powers ρm of the same function ρ.
When working with Wn,2

V ; ρm the transformation behaviour is still

Φ∗(ρm) =
∣∣∣∂y
∂x

∣∣∣1/2ρm ◦ Φ ̸= (Φ∗ρ)m =
∣∣∣∂y
∂x

∣∣∣m/2ρm ◦ Φ
so Wn,2

V ; ρm(Iy)
∼=Wn,2

Φ∗V ; Φ∗(ρm)(Ix) ≇Wn,2
Φ∗V ; (Φ∗ρ)m(Ix) unless |∂y/∂x| = 1.

The matrix
[
R1/aα R1/aγ

−R1/aγ R1/aα

]
from Proposition 7.3 can be regarded as a morphism in the

following category:

Definition 6.15 (The category of pointwise superposition P )
Denote by P the ”category of pointwise superposition” consisting of the following data:

0) The objects (I, V, ρ) are ordered tuples
(
[Ii, Vi, ρi]

)
i=1,...,m

with open intervals Ii ⊂ R and Vi , ρi ∈ C∞(Ii,R>0)

1) Morphisms (J,W, θ) −→ (I, V, ρ) are matrices (αij)
j=1,...,n
i=1,...,m with entries in C∞(R)

satisfying the following three constraints:

� Ii ∩ {αij ̸= 0} ⊂ Jj
� αij ∈ R(Ii, Vi)
� there exist open sets Sij with Ii ∩ {αij ̸= 0} ⊂ Sij ⊂ Ii ∩ Jj
so that Vi/Wj ∈ R(Sij , Vi) and ρi/θj

∣∣
Sij

is bounded
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Lemma 6.16 (Composition in P)
Multiplication of matrices equips P with a well-defined composition.

Proof. Consider a pair of composable morphisms (K,Z, κ)
β−→ (J,W, θ)

α−→ (I, V, ρ).
Bullet point 3 of the definition yields open neighbourhoods Sij and Tjk satisfying

Ii ∩ {αij ̸= 0} ⊂ Sij ⊂ Ii ∩ Jj and Jj ∩ {βjk ̸= 0} ⊂ Tjk ⊂ Jj ∩Kk

One has

Ii ∩ {αijβjk ̸= 0} = Ii ∩ {αij ̸= 0}
⊂ Jj

∩{βjk ̸= 0} ⊂ Sij ∩ Tjk ⊂ Ii ∩ Jj ∩Kk

so choosing Rik =
⋃
jSij ∩ Tjk we get

Ii ∩ {
∑

j αijβjk ̸= 0} ⊂
⋃
j Ii ∩ {αijβjk ̸= 0} ⊂ Rik ⊂ Ii ∩Kk

Lemma 6.10 with ”f” = Vi
Wj
∈ R(Sij , Vi) ensures that R(Sij ,Wj) ⊂ R(Sij , Vi).

This has the following consequences:

• βjk ∈ R(Jj ,Wj) restricts to βjk ∈ R(Sij , Vi), so the product αijβjk belongs to R(Sij , Vi).
Since αij vanishes on an open neighbourhood of Ii ∩ ∂Sij ,
extension by zero shows αijβjk ∈ R(Ii, Vi) and therefore

(
αβ
)
ik

=
∑

j αijβjk ∈ R(Ii, Vi).

• Wj/Zk ∈ R(Tjk,Wj) restricts to Wj/Zk ∈ R(Sij ∩ Tjk, Vi),
so Vi/Zk = Vi/Wj ·Wj/Zk ∈ R(Sij ∩ Tjk, Vi).

Since Rik =
⋃
j Sij ∩ Tjk is a finite cover, we conclude that Vi/Zk ∈ R(Rik, Vi).

Similarly ρi/κk = ρi/θj ·θj/κk is bounded on each component Sij∩Tjk and therefore bounded
on the entire Rik.

Lemma 6.17 (Constructing a family of functors F : P −→ Banach spaces)
Denote by B the category of Banach spaces and bounded linear maps.
For every n ≥ 0 there exists a well-defined functor Fn : P −→ B such that

�

(
[Ii, Vi, ρi]

)
i=1,...,m

gets mapped to
⊕

i=1,...,m

Wn,2
Vi ; ρi

(Ii)

� every morphism (J,W, θ)
α−→ (I, V, ρ) translates into a bounded linear map

Fn(α) :
⊕

jW
n,2
Wj ; θj

(Jj)
⊕

iW
n,2
Vi ; ρi

(Ii)

sending uj ∈Wn,2
Wj ; θj

(Jj) to
∑

j αijuj ∈W
n,2
Vi ; ρi

(Ii).

Proof. Consider a morphism (J,W, θ)
α−→ (I, V, ρ).

As in point 3 of the definition we have open sets Sij with Ii ∩ {αij ̸= 0} ⊂ Sij ⊂ Ii ∩ Jj .
By Lemma 6.13 with ”f” = Vi/Wj ∈ R(Sij , Vi) there is a bounded linear inclusion

Wn,2
Wj ;θj

(Sij) ↪→Wn,2
Vi ;θj

(Sij) (6.2)

Taking into account that αij ∈ R(Ii, Vi), the assignment uj 7−→ αijuj can be understood as
a composition of bounded linear maps

Wn,2
Wj ;θj

(Jj) Wn,2
Wj ;θj

(Sij) Wn,2
Vi;θj

(Sij) Wn,2
Vi;θj

(Sij) Wn,2
Vi;ρi

(Sij)
restr. (6.2) αij ·

where in the last step we have used that ρi/θj is a bounded function on Sij .

With S̃ij := Ii ∩ {αij ̸= 0}c we have an open cover Ii = Sij ∪ S̃ij ,
so by gluing αijuj ∈Wn,2

Vi;ρi
(Sij) and 0 ∈Wn,2

Vi;ρi
(S̃ij) we obtain αijuj ∈Wn,2

Vi;ρi
(Ii) with

∥αijuj∥Wn,2
Vi;ρi

(Ii)
= ∥αijuj∥Wn,2

Vi;ρi
(Sij)

+ ∥0∥Wn,2
Vi;ρi

(S̃ij)
− ∥0∥Wn,2

Vi;ρi
(Sij ∩ S̃ij) = ∥αijuj∥Wn,2

Vi;ρi
(Sij)
≤ const.× ∥uj∥Wn,2

Wj ;θj
(Jj)

That Fn : P −→ B respects the composition of morphisms is a special case of Lemma 6.21
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To interpret matrices like
[
R1/a(τ+1α

2) · id R1/a(τ+1αγ) · τ+2a

R1/a(τ−1αγ) · τ−2a R1/a(τ−1γ
2) · id

]
, we have to reiterate our discussion by

allowing diffeomorphisms of the domains.

As an extension of RP = C∞(R), we will use the following ring:

Definition 6.18 (The ring RPQ)

In the following, we will consider RPQ =
⊕

ϕ∈Diff(R)

C∞(R) · ϕ as a ring with multiplication

(
α|ϕ
)
·
(
β|φ
)
:=
(
α · (β ◦ ϕ) |φ ◦ ϕ

)
Thus, using the notation (αϕ)ϕ∈Diff(R) one has (αβ)Φ =

∑
ϕ∈Diff(R)

αϕ ·
(
βΦ◦ϕ−1 ◦ϕ

)
∈ C∞(R).

Definition 6.19 (The category of displacement and pointwise superposition PQ)
Denote by PQ the ”category of displacement and pointwise superposition” consisting of the
following data:

0) The objects (I, V, ρ) are ordered tuples
(
[Ii, Vi, ρi]

)
i=1,...,m

with open intervals Ii ⊂ R and Vi , ρi ∈ C∞(Ii,R \ {0} )
1) Morphisms (J,W, θ) −→ (I, V, ρ) are matrices (αij)

j=1,...,n
i=1,...,m with entries αij =

∑
ϕ∈Diff(R)

αϕij ∈ RPQ
satisfying the following three constraints:

� Ii ∩
{
αϕij ̸= 0

}
⊂ ϕ−1

(
Jj
)

� αϕij ∈ R(Ii, Vi)

� there exist open sets Sϕij with Ii ∩
{
αϕij ̸= 0

}
⊂ Sϕij ⊂ Ii ∩ ϕ−1

(
Jj
)

so that Vi/ϕ
∗Wj ∈ R(Sϕij , Vi) and ρi/ϕ

∗θj
∣∣
Sϕ
ij
is bounded

Reminder. Under diffeomorphisms ϕ : x 7−→ y we impose the transformation behaviour

ϕ∗V :=
1

∂y/∂x
V ◦ ϕ ϕ∗ρ :=

∣∣∣∣∂y∂x
∣∣∣∣1/2 ρ ◦ ϕ so ρ plays the role of g1/4.

Convention. We choose Sϕij = ∅ whenever α
ϕ
ij = 0 .This is the case for all but finitely many ϕ ∈ Diff(R).
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Lemma 6.20 (Composition in PQ)
Multiplication of matrices equips PQ with a well-defined composition.

Proof. Consider a pair of composable morphisms (K,Z, κ)
β−→ (J,W, θ)

α−→ (I, V, ρ).
At fixed i, j, k and fixed ϕ, φ ∈ Diff(R) bullet point 3 of the definition yields open sets

Sϕij and T
φ
jk with

Ii ∩ {αϕij ̸= 0} ⊂ Sϕij ⊂ Ii ∩ ϕ
−1
(
Jj
)

and Jj ∩ {βφjk ̸= 0} ⊂ Tφjk ⊂ Jj ∩ φ
−1
(
Kk

)
By applying ϕ−1(·) the second identity can be rewritten as

ϕ−1
(
Jj
)
∩ {βφjk ◦ ϕ ̸= 0} ⊂ ϕ−1

(
Tφjk
)
⊂ ϕ−1

(
Jj
)
∩ (φ ◦ ϕ)−1

(
Kk

)
Thus, one has

Ii ∩ {αϕij · (β
φ
jk ◦ ϕ) ̸= 0} = Ii ∩ {αϕij ̸= 0}

⊂ϕ−1
(
Jj

) ∩{βφjk ◦ ϕ ̸= 0} ⊂ Sϕij ∩ ϕ
−1
(
Tφjk
)
⊂ Ii ∩ ϕ−1

(
Jj
)
∩ (φ ◦ ϕ)−1

(
Kk

)

and choosing RΦ
ik =

⋃
j,ϕ

Sϕij ∩ ϕ
−1
(
T Φ◦ϕ−1

jk

)
we get

Ii ∩
{∑

j,ϕ

αϕij ·
(
β Φ◦ϕ−1

jk ◦ ϕ
)
̸= 0
}
⊂
⋃
j,ϕ

Ii ∩ {αϕij · (β
φ
jk ◦ ϕ) ̸= 0} ⊂ RΦ

ik ⊂ Ii ∩ Φ−1
(
Kk

)
Lemma 6.10 with ”f” = Vi

ϕ∗Wj
∈ R(Sϕij , Vi) ensures R(L, ϕ∗Wj) ⊂ R(L, Vi) for all open

subsets L ⊂ Sϕij . This has the following consequences:

• βφij ◦ ϕ ∈ R
(
ϕ−1(Jj), ϕ

∗Wj

)
restricts to βφij ◦ ϕ ∈ R

(
Sϕij , Vi

)
,

so the product αϕij · (β
φ
ij ◦ ϕ) belongs to R

(
Sϕij , Vi

)
.

Since αϕij vanishes on an open neighbourhood of Ii ∩ ∂Sϕij , extension by zero

shows αϕij · (β
φ
jk ◦ ϕ) ∈ R(Ii, Vi) and therefore

(
αβ
)Φ
ik

=
∑
j,ϕ

αϕij · (β
Φϕ−1

jk ◦ ϕ) ∈ R(Ii, Vi).

• Vi/Φ
∗Zk = Vi/ϕ

∗Wj · ϕ∗Wj/Φ
∗Zk belongs to R

(
Sϕij ∩ ϕ

−1(Tφjk), Vi
)

because we have Vi/ϕ
∗Wj ∈ R(Sϕij , Vi) and by combining Lemma 8.6 with Remark 8.10

Wj/φ
∗Zk ∈ R(Tφjk,Wj) gets mapped to ϕ∗Wj/Φ

∗Zk =
(
Wj/φ

∗Zk
)
◦ ϕ ∈ R

(
ϕ−1(Tφjk), ϕ

∗Wj

)
.

Since RΦ
ik =

⋃
j,ϕ

Sϕij ∩ ϕ
−1
(
T Φ◦ϕ−1

jk

)
is a finite cover, we conclude that Vi/Φ

∗Zk ∈ R(RΦ
ik, Vi).

Similarly ρi/Φ
∗κk = ρi/ϕ

∗θj ·
(
θj/φ

∗κk
)
◦ ϕ is bounded on each component Sϕij ∩ ϕ−1

(
Tφjk
)

and therefore bounded on the entire RΦ
ik.
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Lemma 6.21 (Constructing a family of functors F : PQ −→ Banach spaces)
As before, denote by B the category of Banach spaces and bounded linear maps.
For every n ≥ 0 there exists a well-defined functor Fn : PQ −→ B such that

�

(
[Ii, Vi, ρi]

)
i=1,...,m

gets mapped to
⊕

i=1,...,m

Wn,2
Vi ; ρi

(Ii)

� every morphism (J,W, θ)
α−→ (I, V, ρ) translates into a bounded linear map

Fn(α) :
⊕

jW
n,2
Wj ; θj

(Jj)
⊕

iW
n,2
Vi ; ρi

(Ii)

sending uj ∈Wn,2
Wj ; θj

(Jj) to
∑

j,ϕ α
ϕ
ij ϕ

∗uj ∈Wn,2
Vi ; ρi

(Ii).

Proof. Well-definedness of the map Mor(PQ) −→ [bounded linear maps] can be seen by adapting
the proof of Lemma 6.17.

Now let (K,Z, κ)
β−→ (J,W, θ)

α−→ (I, V, ρ) be consecutive morphisms in PQ.
With the same notation as in the proof of Lemma 6.20 we consider the following commutative
diagram in B:

Wn,2
Zk;κk

(
Kk

)
Wn,2
φ∗Zk;φ∗κk

(
φ−1(Kk)

)
Wn,2

Φ∗Zk;Φ∗κk

(
Φ−1(Kk)

)

Wn,2
Wj ;θj

(
Tφjk
)

Wn,2
ϕ∗Wj ;ϕ∗θj

(
ϕ−1(Tφjk)

)

Wn,2
Vi;ρi

(
Sϕij ∩ ϕ−1(Tφjk)

)

φ∗ ϕ∗

ϕ∗
ιWj/φ∗Zk

◦ res ιϕ∗Wj/Φ∗Zk
◦ res

ιVi/ϕ∗Wj
◦ res

Φ∗

ιVi/Φ∗Zk
◦ res

showing that

ιVi/Φ∗Zk
◦ res ◦ Φ∗ =

(
ιVi/ϕ∗Wj

◦ res ◦ ϕ∗
)
◦
(
ιWj/φ∗Zk

◦ res ◦ φ∗)
Using the ring morphisms

R
(
ϕ−1(Tφjk), ϕ

∗Wj

)
R
(
Tφjk,Wj

)
R
(
Jj ,Wj

)
∋ βφjk

R
(
ϕ−1(Tφjk), ϕ

∗Wj

)
R
(
Sϕij ∩ ϕ−1(Tφjk), ϕ

∗Wj

)R
(
Sϕij ∩ ϕ−1(Tφjk), ϕ

∗Wj

)
R
(
Sϕij ∩ ϕ−1(Tφjk), Vi

) resϕ∗

res

incl.

to restrict scalars, we can regard the maps ιVi/ϕ∗Wj
, res, ϕ∗ as morphisms of

R(Jj ,Wj)-modules, meaning that they commute with multβφ
jk
.

Thus, multiplying by βφjk ◦ ϕ we verify

multβφ
jk◦ϕ
◦ ιVi/Φ∗Zk

◦ res ◦ Φ∗ =
(
ιVi/ϕ∗Wj

◦ res ◦ ϕ∗
)
◦multβφ

jk
◦
(
ιWj/φ∗Zk

◦ res ◦ φ∗)
When applied to uk ∈Wn,2

Zk;κk

(
Kk

)
this becomes

(βφjk ◦ ϕ) · Φ
∗uk = ϕ∗

[
βφjk · φ

∗uk
]
= ϕ∗

[
(βφjk|φ)uk

]
so calculating in the R

(
Sϕij ∩ ϕ

−1(Tφjk), Vi
)
-module Wn,2

Vi;ρi

(
Sϕij ∩ ϕ

−1(Tφjk)
)
we have[

(αϕij |ϕ) · (β
φ
jk|φ)

]
uk =

[
αϕij · (β

φ
jk ◦ ϕ)

]
· Φ∗uk = αϕij · ϕ

∗[ (βφjk|φ)uk ] = (αϕij |ϕ)
[
(βφjk|φ)uk

]
By linearity we obtain

[αβ]ikuk =
∑
j,ϕ,φ

[
(αϕij |ϕ) · (β

φ
jk|φ)

]
uk =

∑
j

∑
ϕ(α

ϕ
ij |ϕ)

αij

[∑
φ(β

φ
jk|φ)

βjk

uk

]
Hence the multiplication onRPQ is defined in such a way to ensure Fn(α ◦ β) = Fn(α) ◦ Fn(β).
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Chapter 7

Construction of the Crossover
Retraction

7.1 Geometric Setup

Though this will not be used in subsequent sections, we start our discussion by describing a
distinguished Morse function on a pair-of-pants worldsheet Σ = CP 1 \ {±1,∞}, allowing us
to parametrize all level sets in a uniform way. This will become relevant as soon as one tries
to pullback geometric data from Σ to the M-polyfold im(rΣ) that we seek to construct.

As a first attempt to write down an explicit Morse function on Σ = C \ {±1}, the author
considered the absolute value of

f(z) =
1

1− z
+

1

1 + z

but then realized that
1

1− z
+

1

1 + z
=

2

1− z2

is the (w = z2)-pullback of a simpler function 2
1−w defined on the cylinder C \ {+1}.

This inspires the following general procedure:

Proposition 7.1 (Recipe for obtaining Morse functions on a Riemann surface)
Let Σ be a compact Riemann surface and assume we are given a non-constant
holomorphic function f : Σ −→ CP 1 such that f has no branch points p ∈ CP 1 of order ≥ 3
except possibly 0 and ∞. From these ingredients we obtain the following structure:

1) ν = log |f | : Σ −→ R is a Morse function on Σ := Σ− f−1(0)− f−1(∞)
whose critical points are exactly the ramification points of f |Σ .
All of these have Morse index 1.

2) Every non-critical p ∈ Σ admits a neighbourhood Up such that
κ = log f : Up −→ C is the unique holomorphic chart with p 7→ κ(p) and Reκ = ν .

3) Writing κ = ν + iω one has globally defined vector fields ∂ν , ∂ω on Σ \ {crit. pts.}
With z a local coordinate and g(∂z, ∂z) = g(∂z, ∂z) = 0, g(∂z, ∂z) = c(z, z) any hermitean
metric on Σ we have

g(∂ν , ∂ω) = 0

g(∂ν , ∂ν) = g(∂ω, ∂ω) =
2c(z,z)|f |2

|∂f |2

so the vector fields ∂ν , ∂ω are always orthogonal and their norms blow up at critical points.
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Proof. 1) Since we are working on Σ := Σ− f−1({0,∞}), the identities

2 ∂z log |f | = ∂z log |f |2 = ∂zf/f

2 ∂z log |f | = ∂z log |f |2 = ∂zf/f

show that dν = 0 ⇐⇒ ∂zf = 0

Thus, critical points of ν correspond to ramification points of f |Σ. Since by assumption all
of these ramification points have order 2, we can find coordinates z = x + iy such that in
the vicinity of a critical point p ∈ Σ we get an exact identity

f(z) = f(p)(1 + z2)

For small |z| we approximate

ν(z)− ν(p) = log
∣∣1 + z2

∣∣ ≈ ∣∣1 + z2
∣∣− 1 ≈ Re z2 = x2 − y2

which exhibits p as a saddle point of ν.
2) At a non-critical p ∈ Σ we have ∂zf(p) ̸= 0 and therefore ∂zκ(p) = ∂zf/f (p) ̸= 0,
so by the Inverse Function Theorem there exist neighbourhoods Up ⊂ Σ, Vp ⊂ C
such that κ : Up −→ Vp is a diffeomorphism whose inverse is automatically holomorphic.
It so happens that Reκ = Re log f = log |f | = ν and by Auxiliary Lemma 7.2 we observe
that (after suitably shrinking Up) κ : Up −→ C is the unique holomorphic map sending p to
κ(p) with this property.
3) Under a holomorphic coordinate change κ 7→ z we have ∂z = ∂zκ · ∂κ = ∂zf/f · ∂κ
and thus

∂ν = 2Re ∂κ =
f

∂zf
∂z + c.c

∂ω = −2 Im ∂κ = i

[
f

∂zf
∂z − c.c

]
This can be understood as expressing the global vector fields ∂ν , ∂ω in any coordinate z on Σ.
Note the appearance of a first order pole singularity 1

∂zf
∼ 1

z−p at critical points p ∈ Σ.

Auxiliary Lemma 7.2 (Rigidity of holomorphic maps with prescribed real part)
Let h : ν + iω −→ ν̃ + iω̃ be a holomorphic map defined on an open ball Bϵ(0) ⊂ C
and assume that ν̃(ν, ω) = ν as well as h(0) = 0.
Then h is the identity.

Proof. This is an application of the Cauchy-Riemann equations:

Since ∂ω̃
∂ν = − ∂ν̃

∂ω = 0 implies that ω̃(ν, ω) = ω̃(ω) does not depend on ν,

we can use ∂ω̃
∂ω = ∂ν̃

∂ν = 1 to conclude that ω̃ = ω + const.

As we are working on a connected domain, our assumption h(0) = 0 guarantees that the
constant offset has to vanish and therefore ω̃ = ω in addition to ν̃ = ν.
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pair of pants C \ {±1} cylinder C = C \ {0}

Figure 7.1: Illustration of Proposition 7.1 in the case of a pair-of-pants worldsheet.
The holomorphic map

f : Σ = CP 1 CP 1
w = z2 − 1

restricts to a ramified cover

f : Σ = CP 1 \ {±1,∞} C := CP 1 \ {0,∞}

with ramification locus R = {0} and branch locus B = {−1}.
Every injective path γ : (0, 1) −→ C \ B has two non-intersecting lifts,
so we can use the angular coordinate on C to parametrize the level sets of |f |.
In fact, using log f = ν + iω as a holomorphic change of coordinates on Σ \R, the level sets
are locally presented as ν = const. with a common parametrization by the angle ω.
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7.2 Modelling Morse critical points by Dynamical Gluing

In this section, we provide an explicit formula for the ’crossover retraction’, while postponing
the proof of its sc-smoothness to our main effort in Chapter 8. Let us start with the most
basic building block, the ’dynamical gluing’ of two adjacent intervals (−1, 0) and (0, 1) on an
overlap of size 2a.

As mentioned in the introduction, we will replace the cutoff functions β and 1− β shown in
Figure 7.2 by their normalized versions

α :=
β√

β2 + (1− β)2
and γ :=

1− β√
β2 + (1− β)2

with supp(α) = supp(β) = (−∞, 1
2
) and supp(γ) = supp(1− β) = (−1

2
,∞).

Observe that α2 and γ2 = 1− α2 have the same shape as β and 1− β respectively,
whereas αγ ∈ C∞

0

(
−1
2
, 1
2

)
is a bump.

To calculate the retraction, we work at fixed gluing parameter a > 0. While (−1, 0) and (0, 1)
are equipped with weight factors ρ = 1

|x|k
and vector fields V± = ±x∂x , their overlap (−a, a)

will carry the vector field

V a
int = R1/aβ · τ+aV+ +R1/a[1− β] · τ−aV−

and weight factor
ρaint = R1/aβ · τ+aρ + R1/a[1− β] · τ−aρ

which, as shown in Figure 7.2, interpolate between the data coming from (−1, 0) and (0, 1).

0 +
a

2
+a−a

2
−a

R1/a β 1−R1/a β

+a−a

∼ 1

a+ x
∼ 1

a− x
ρaint in the case

ρ = 1

|x|

+a−a
∼ a+ x ∼ a− x

V a
int

Figure 7.2: Data associated with the overlap (−a, a).
The cutoff functions R1/aβ and 1−R1/aβ can be used to
interpolate between Sobolev functions from (−1 + a, a)
and (−a, 1−a). Similarly, V a

int and ρaint are interpolated
versions of the vector field and weight function, here
shown in the case V± = ±x∂x and ρ = 1

|x|
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The functor Fn : PQ −→ B from section 6.3.2 allows us to perform our calculations by
multiplying matrices over the ring

RPQ =
⊕

ϕ∈Diff(R)

C∞(R) · ϕ

while making sure that these act between the correct Sobolev spaces:

Proposition 7.3 (Gluing adjacent intervals (−1, 0) and (0, 1) )

� At fixed a > 0 there are mutually inverse isomorphisms of Banach spaces

Wn,2
∂;1 (−1 + a, 1− a)⊕Wn,2

V a
int;ρ

a
int

(−a, a) Wn,2
τ−aV−;τ−aρ

(−1 + a, a)⊕Wn,2
τ+aV+;τ+aρ

(−a, 1− a) Wn,2
V−;ρ(−1, 0)⊕W

n,2
V+;ρ(0, 1)

Fn

R1/aB
T[

R1/a α +R1/aγ

−R1/a γ R1/a α

]

Fn
[
R1/a α −R1/aγ

+R1/a γ R1/a α

]
R1/aB

Fn

T[
τ−a

τ+a

]

Fn
[
τ+a

τ−a

]
T−1

� Let us ”insert” the projector Wn,2
∂;1 (−1 + a, 1− a)⊕Wn,2

V a
int;ρ

a
int

(−a, a) .P∂ :=Fn
[
1

0

]
=

[
1

0

]

When restricted to the image of the retraction

Wn,2
V−;ρ(−1, 0)⊕W

n,2
V+;ρ(0, 1) ,ra = Fn

[
T−1 ·R1/aB ·

[
1

0

]
·R1/aB

T · T
]
=

[
R1/a(τ+1α

2) id R1/a(τ+1αγ) τ+2a

R1/a(τ−1αγ) τ−2a R1/a(τ−1γ2) id

]
the gluing map

Ga : im(ra) ⊂Wn,2
V−;ρ(−1, 0)⊕W

n,2
V+;ρ(0, 1) Wn,2

∂;1 (−1 + a, 1− a) Wn,2
∂;1 (−1, 1)

[
R1/aα τ−a R1/aγ τ+a

]
R 1−a

is an isomorphism of Banach spaces.

Proof. The isomorphism

Wn,2
τ−aV−;τ−aρ

(−1 + a, a)⊕Wn,2
τ+aV+;τ+aρ

(−a, 1− a) Wn,2
V−;ρ(−1, 0)⊕W

n,2
V+;ρ(0, 1)

[
τ−a

τ+a

]
[
τ+a

τ−a

]
is a direct result of Proposition 6.2.
On the other hand, note that BT =

[
α γ
−γ α

]
belongs to O

(
2, C∞(R)

)
⊂ O

(
2,RPQ

)
,

so after applying the ring morphism R1/a = (1|R1/a) ◦ ◦ (1|R1/a)
−1 : RPQ −→ RPQ ,

R1/aB
T =

[
R1/aα R1/aγ

−R1/aγ R1/aα

]
and R1/aB =

[
R1/aα −R1/aγ

R1/aγ R1/aα

]
are still mutually inverse matrices over the ring C∞(R) ⊂ RPQ.
The choice of V a

int and ρ
a
int is such thatR1/aB andR1/aB

T can be understood as P-morphisms

between
([

(−1+a, a), τ−aV−, τ−aρ
]
,
[
(−a, 1−a), τ+aV+, τ+aρ

])
and

([
(−1+a, 1−a), 1, 1

]
,
[
(−a,+a), V a

int, ρ
a
int

])
.

Thus, by applying the functor Fn of Lemma 6.17 we obtain an isomorphism

Wn,2
∂;1 (−1 + a, 1− a)⊕Wn,2

V a
int;ρ

a
int

(−a, a) Wn,2
τ−aV−;τ−aρ

(−1 + a, a)⊕Wn,2
τ+aV+;τ+aρ

(−a, 1− a)∼
Fn
[
R1/aB

T
]

Fn
[
R1/aB

]
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It remains to verify the explicit expression for our retraction Wn,2
V−;ρ(−1, 0)⊕W

n,2
V+;ρ(0, 1).r

According to Lemma 6.21 this can be done by multiplying matrices over the ring RPQ =
⊕

ϕ∈Diff(R)

C∞(R)ϕ :

R1/aB
[
1

0

]
R 1

a

[
1

0

]
R1/aB

T = R1/a

[
α −γ
γ α

]
B

[
1

0

]
|ψ⟩⟨ψ|

[
α γ
−γ α

]
BT

= R1/a

[
α2 αγ
αγ γ2

]
|Bψ⟩⟨Bψ|

=
[
R1/a α

2 R1/a αγ

R1/a αγ R1/a γ
2

]

and therefore r =
[
τ+a

τ−a

]
T−1

[
R1/a α

2 R1/a αγ

R1/a αγ R1/a γ
2

] [
τ−a

τ+a

]
T

=
[
R1/a(τ+1α

2) id R1/a(τ+1αγ) τ+2a

R1/a(τ−1αγ) τ−2a R1/a(τ−1γ2) id

]

where in the last step we have used that on f ∈ C∞(R) one has τaRλ(f) = Rλτa·λ(f).
To see that the gluing map Ga is an isomorphism, observe that r is constructed as r = C−1 ◦ P∂ ◦ C
with an invertible map

Wn,2
∂;1 (−1 + a, 1− a)⊕Wn,2

V a
int;ρ

a
int

(−a, a)Wn,2
V−;ρ(−1, 0)⊕W

n,2
V+;ρ(0, 1)

∼C = Fn
[
R1/aB

T ◦ T
]
:

that identifies im(r) ⊂Wn,2
V−;ρ(−1, 0)⊕W

n,2
V+;ρ(0, 1) and im(P∂) ∼=Wn,2

∂;1 (−1 + a, 1− a).

Next, let us state our main result, which, by interweaving two copies of the retraction
from Proposition 7.3, allows us to model the transition at a Morse critical point as a two-
sided breaking process. To ensure that our Banach scales have compact inclusions, we will
use increasing powers of our basic weight factor ρ = |x|−1. As we shall see in the proof
of Proposition 8.27, the weight difference between different levels of regularity will also
be required to cancel pole divergences that would otherwise prevent sc-smoothness of the
retraction at a = 0.

Theorem 7.4 (Sc-smooth retraction associated to a Morse critical point)
The ’crossover retraction’ defined in Figure 7.3 is a fibre-linear sc∞-map

rCross : (−ϵ, ϵ)⊕
[
Wn+1,2
V−;ρn (−1, 0)

]⊕2
⊕
[
Wn+1,2
V+;ρn (0, 1)

]⊕2 [
Wn+1,2
V−;ρn (−1, 0)

]⊕2
⊕
[
Wn+1,2
V+;ρn (0, 1)

]⊕2

∈

a A,B C,D A,B C,D

Proof. Combine Propositions 7.5 and 7.6 below.

Proposition 7.5 (Sc-Smoothness of the off-diagonal terms)
The prescription

(a, u)
0 if a ≤ 0

R1/a(τ+1αγ) τ2au if a > 0

defines a fibre-linear sc∞-map
(
−ϵ, ϵ

)
⊕Wn+1,2

V+;ρn (0, 1) Wn+1,2
V−;ρn (−1, 0).

Proof. According to Proposition 8.27 our map satisfies all conditions of Theorem 8.26.

Proposition 7.6 (Sc-Smoothness of the diagonal terms)
The prescription

(a, v)
v if a = 0

R1/|a|(τ+1α
2) v if a ̸= 0

defines a fibre-linear sc∞-map
(
−ϵ, ϵ

)
⊕Wn+1,2

V−;ρn (−1, 0) Wn+1,2
V−;ρn (−1, 0).

Proof. Omitted, but similar to (and simpler than) the off-diagonal case.
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a < 0

(b > 0)

D

C

B

A

A B C D

R 1
b

(
τ−1αγ

)
τ−2b

R 1
b

(
τ−1αγ

)
τ−2b

R 1
b

(
τ+1αγ

)
τ+2b

R 1
b

(
τ+1αγ

)
τ+2b

R 1
b

(
τ−1γ

2
)
id

R 1
b

(
τ−1γ

2
)
id

R 1
b

(
τ+1α

2
)
id

R 1
b

(
τ+1α

2
)
id

a > 0

D

C

B

A

A B C D

R 1
a

(
τ−1αγ

)
τ−2a

R 1
a

(
τ−1αγ

)
τ−2a

R 1
a

(
τ+1αγ

)
τ+2a

R 1
a

(
τ+1αγ

)
τ+2a

R 1
a

(
τ−1γ

2
)
id

R 1
a

(
τ−1γ

2
)
id

R 1
a

(
τ+1α

2
)
id

R 1
a

(
τ+1α

2
)
id

a (=−b)a = 0

D

C

B

A

A B C D

id

id

id

id

−1B

0

+1 D

0

−1 A

0

+1C

0

−1

B0

+1

D 0

−1
A 0

+1

C0

Figure 7.3: The ’crossover retraction’ rcross of Theorem 7.4
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7.3 Transition to the global setting (Static Gluing)

To globalize our construction from the previous section, we have to connect the intervals
A,D as well as B,C at a safe distance where the dynamical gluing process remains invisible.
This can be achieved in a static, a-independent way by restricting each copy of

Wn+1,2
V−;ρn (−1, 0)⊕W

n+1,2
V+;ρn (0, 1)

to the kernel of a bounded linear map called ’static gluing’.

Remark 7.7 (Static Gluing)

The combined ’static gluing’[
Wn,2
V−;θ

(
−1, 0

)
⊕Wn,2

V+;θ

(
0, 1
)
⊕Wn,2

(
−1

2
,+

1

2

)]⊕2 [
Wn,2

(
−1

2
, 0
)
⊕Wn,2

(
0, +1

2

)]⊕2S⊕2

A D E DE AE
B C F CF BF

given by the composition

S⊕2 =

A D E
DE

AE

τ+1 −res(−1

2
, 0
)

τ−1 −res(
0, +1

2

)

B C F

CF

BF

τ+1 −res(−1

2
, 0
)

τ−1 −res(
0, +1

2

)

A
A

D

D

E

E

res(
−1, −1

2

)
res(

+
1

2
,+1

)
1

B

B

C

C

F

F

res(
−1, −1

2

)
res(

+
1

2
,+1

)
1

is a bounded linear map, so its kernel ker(S⊕2) = ker(S)⊕2 is again a Banach space.
Auxiliary Lemma 7.8 shows that, via the canonical projection, ker(S) can be identified with
a closed subspace of Wn,2

V−;θ

(
−1, 0

)
⊕Wn,2

V+;θ

(
0, 1
)
.

B

0

D

0

A

0

C

0

−1
+1

+1

−1

+
1

2

− 1

2

F

− 1

2

+
1

2

E

B

0

D

0

A

0

C

0

−1
+1

+1

−1

+
1

2

− 1

2

F

− 1

2

+
1

2

E

Figure 7.4: Globalized version of Figure 7.3, exhibiting the topologically distinct level sets
at a < 0 and a > 0. The general recipe of Auxiliary Lemma 7.8 has been used to ”plaster”
the intervals A and D as well as B and C.
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As already mentioned, our static gluing procedure makes use of the following general obser-
vation which allows us to discard the ’plaster’ once gluing has been achieved.

Auxiliary Lemma 7.8 (Plastering of domain gaps)
Given Banach spaces X,Y, Z let γ : X ⊕ Y −→ Z be a bounded linear map such that ∥y∥ ≤ ∥γ(0, y)∥
for all y ∈ Y . Then the canonical projection p : X ⊕ Y −→ X restricts to a linear isomorphism

p : ker γ p(ker γ)∼

With p(ker γ) ⊂ X being a closed subspace, this becomes an isomorphism of Banach spaces.

Proof. Since γ is a bounded linear map, we can find a constant C > 0 such that

∥y∥ ≤ ∥γ(0, y)∥ ≤ C ·
[
∥x∥ + ∥γ(x, y)∥

]
For (x, y) ∈ ker γ this becomes

∥y∥ ≤ C · ∥x∥ (7.1)

which immediately implies that p|ker γ : (x, y) 7−→ x is injective.
To establish that p(ker γ) ⊂ X is a closed subspace, consider a convergent sequence xn −→ x ∈ X
with xn ∈ p(ker γ). Let yn ∈ Y be such that (xn, yn) ∈ ker γ. Then (7.1) implies that yn is
a Cauchy sequence. By completeness of Y , the limit (xn, yn) −→ (x, y) exists and since γ is
continuous, we have (x, y) ∈ ker γ which shows that x ∈ p(ker γ).

By using static gluing to constrain the fibres of our splicing core, we obtain the following
globalized version of Theorem 7.4:

Theorem 7.9 (Globalization by restriction)
Denote by Wn ⊂ Wn+1,2

V−;ρn

(
−1, 0

)
⊕Wn+1,2

V+;ρn

(
0, 1
)
the closed subspace representing kerS.

Then rCross restricts to a sc-smooth splicing r : (−ϵ, ϵ)⊕W⊕2
n −→W⊕2

n .

Sketch of proof. Since our ”static gluing” is implemented at a safe distance where deforma-
tions due to the dynamical gluing are invisible, the relations

res(−1, −1

2

)(R1/aα
2
)
= 1

res(
+
1

2
,+1

)(R1/aγ
2
)
= 1

res(−1, −1

2

)(R1/aαγ
)
= 0

res(
+
1

2
,+1

)(R1/aαγ
)
= 0

ensure that at every a ∈ R we have

S⊕2 ◦
[
rCross(a)

idE,F

]
= S⊕2

As a result, rCross maps W⊕2
n to W⊕2

n .

It remains to show that
[
Wn

]
n∈N indeed defines a sc-Banach space. This can be analysed by

writing Wn as a space Wn+1,2
V ;ρn (−2, 0) and applying the straightening diffeomorphism from

Remark 6.3 to compare this space with ordinary Sobolev spaces.

98



As a preparation for Proposition 7.11 below, we collect some immediate properties of the
static and dynamical gluing maps:

Remark 7.10 (Compatibility between Dynamical and Static Gluing)
For simplicity we work at fixed a > 0. To treat the case a < 0 one has to put (·)⊕2 everywhere
and modify the ”combinatorics” of the maps.

a) When restricted to im
[
ra ⊕ id

]
= ker

[
(1− ra)⊕ 0

]
, the dynamical gluing

Ḡa :
[
Wn,2
V−;θ(−1, 0)⊕W

n,2
V+;θ(0, 1)

]
⊕Wn,2

(
−1
2
,
1

2

)
Wn,2(−1 + a, 1− a)⊕Wn,2

(
−1

2
,
1

2

)
[
R 1

a
(α) · τ−a R 1

a
(γ) · τ+a

id

]

becomes an isomorphism of Banach spaces.

b) The static gluings

S : Wn,2
V−;θ(−1, 0)⊕W

n,2
V+;θ(0, 1)⊕W

n,2
(
−1
2
,
1

2

)
Wn,2

(
−1
2
, 0
)
⊕Wn,2

(
0, 1

2

)[
τ+1 −1

τ−1 −1

]

Sa : Wn,2(−1 + a, 1− a)⊕Wn,2
(
−1

2
,
1

2

)
Wn,2

(
−1
2
, 0
)
⊕Wn,2

(
0, 1

2

)[
τ+1−a −1
τ−1+a −1

]

are bounded linear operators between Banach spaces, so their kernels are Banach spaces
as well. Auxiliary Lemma 7.8 shows that the canonical projection

Wn,2(−1 + a, 1− a)⊕Wn,2
(
−1

2
,
1

2

)
Wn,2(−1 + a, 1− a) Wn,2(−1, 1)

p ∼
R1−a

restricts to an isomorphism of Banach spaces

kerSa p
(
kerSa

)
Wn,2(S1) ⊂Wn,2(−1, 1)∼ ∼

R1−a

c) Compatibility between the dynamical gluing Ḡa and the static gluings S,Sa is expressed
by the commutative diagram

Wn,2
V−;θ (−1, 0)⊕W

n,2
V+;θ (0, 1)⊕W

n,2
(
−1
2
, 1
2

)

Wn,2
(
−1, −1

2

)
⊕Wn,2

(
1

2
, 1
)
⊕Wn,2

(
−1
2
, 1
2

)
Wn,2

(
−1 + a, −1

2
+ a
)
⊕Wn,2

(
1

2
− a, 1− a

)
⊕Wn,2

(
−1
2
, 1
2

)

Wn,2 (−1 + a, 1− a)⊕Wn,2
(
−1
2
, 1
2

)

Wn,2
(
−1
2
, 0
)
⊕Wn,2

(
0, 1

2

)

re
s res

S Sa
[

τ+1 −1
τ−1 −1

]
τ−a τ+a

1


[

τ1−a −1
τ−1+a −1

]

Ḡa =

[
R1/aα · τ−a R1/aγ · τ+a

1

]

(A) (A’)

(B)

The factorisations (A) and (A’) can be seen as defining S and Sa respectively, whereas
the commutative square (B) is due to

R1/aα =

{
1 on

(
−1 + a, −1

2
+ a
)

0 on
(

1

2
− a, 1− a

) R1/aγ =

{
0 on

(
−1 + a, −1

2
+ a
)

1 on
(

1

2
− a, 1− a

)
Note that Sa ◦ Ḡa = S implies Ḡ−1

a

(
kerSa

)
= kerS.
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After these preparations, we are ready to recover the fibre

ra>0

(
W⊕2
n

) ∼= [
Wn+1,2(S1)

]⊕2

of the splicing core constructed in Theorem 7.9:

Proposition 7.11 (Interpretation of the fibre at a > 0)
Static gluing constructs closed subspaces Wn−1 ⊂W

n,2
V−;θ(−1, 0)⊕W

n,2
V+;θ(0, 1)

and Wn,2(S1) ⊂Wn,2(−1, 1) such that the dynamical gluing map

Ga :Wn,2
V−;θ(−1, 0)⊕W

n,2
V+;θ(0, 1) Wn,2(−1, 1)

restricts to an isomorphism between Wn−1 and Wn,2(S1).

Proof. Observations a-c from Remark 7.10 can be assembled into a commutative diagram

Wn,2
(
−1
2
, 0
)
⊕Wn,2

(
0, 1

2

)

[
Wn,2
V− θ(−1, 0)⊕W

n,2
V+ θ(0, 1)

]
⊕Wn,2

(
−1
2
, 1
2

)
Wn,2(−1 + a, 1− a)⊕Wn,2

(
−1
2
, 1
2

)
Wn,2(−1 + a, 1− a) Wn,2(−1, 1)

im(ra ⊕ id) kerSa p
(
kerSa

)
Wn,2(S1)

im(ra ⊕ id) ∩ kerS
= Ḡa−1(

kerSa
)∣∣∣

im(ra⊕id)

Ḡa p ∼
R1−a

S Sa

∼

∼

∼ ∼

Using Auxiliary Lemma 7.8 to identify im(ra ⊕ id) ∩ kerS with the closed subspace

Wn−1 := im(ra) ∩Wn−1 ⊂W
n,2
V− θ(−1, 0)⊕W

n,2
V+ θ(0, 1)

we observe that the gluing map Ga :Wn,2
V− θ(−1, 0)⊕W

n,2
V+ θ(0, 1) −→Wn,2(−1, 1) induces an

isomorphism of Banach spaces between Wn−1 and Wn,2(S1).
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Chapter 8

Sc-smoothness of the retraction

8.1 Differentiation by the gluing parameter
In this final chapter we prove the sc-smoothness of our retraction rCross from Figure 7.3,
focussing on its off-diagonal parts. As a first step, we calculate the a-derivatives of

R1/af · τ2au ∈W
1,2
V−

(−1, 0)

with u ∈ Wn+1,2
V+

(0, 1) and a bump f ∈ C∞
0

(
−3
2
, −1

2

)
. We give individual treatments for the

’shift’ and ’rescaling’ parts τ2au and R1/af in sections 8.1.1 and 8.1.2 respectively, before
combining these in section 8.1.3.

−2a −3

2
a −a

2
2a

domain where u ∈Wn,2
V+

(0, 1) is defined

domain where τ2au ∈Wn,2
τ2aV+

(−2a, 1−2a) is defined

suppR1/af

domain where R1/af · τ2au ∈W
n,2
V−

(−1, 0)
gets evaluated

I−
a0

−∆a

+∆a

I− + 2a

I+

0

I− I− + 2a

τ2au

u

[ ]
I+

Figure 8.1: Illustration of the map a 7−→ R1/af ·τ2au ∈W
n,2
V−

(−1, 0) with f ∈ C∞
0

(
−3
2
, −1

2

)
and

u ∈ Wn,2
V+

(0, 1). To analyse differentiability, we work on a sufficiently small neighbourhood
(a0 −∆a, a0 +∆a) where it is possible to treat our maps on a fixed domain I− that due to
its a0-dependence will be called the ’comoving interval’.
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8.1.1 Differentiation of the shift map

Let us work locally in the gluing parameter around a value a0 > 0. According to Figure 8.1,
we can find an a0-dependent width ∆a as well as a0-dependent open intervals I± such that(

−3
2
a, −a

2

)
⊂ I− ⊂ (−2a, 0) and I− + 2a ⊂ I+ ⊂⊂ (0, 1)

for all a ∈ (a0 −∆a, a0 + ∆a). These conditions ensure that for any given f ∈ C∞
0

(
−3
2
, −1

2

)
and u ∈ W 2,2(I+), the Sobolev function R1/af · τ2au will be compactly supported inside I−
as long as |a− a0| < ∆a. As illustrated in Figure 8.1, this allows us to differentiate

a ∈ (a0 −∆a, a0 +∆a) 7−→ τ2au ∈W 1,2(I−)

as a family of functions over a fixed domain I−.
Our strategy will be to rewrite the difference quotient

τ2(a+δa)u− τ2au
δa

as a W 1,2(I−)-valued Bochner integral with continuous integrand.

In the following, it will be convenient to abbreviate (a0 ±∆a) := (a0 −∆a, a0 +∆a).

Lemma 8.1 (Continuity of the shift map on L2)
Given a fixed u ∈ L2(I+), the map a ∈ (a0 ±∆a) 7−→ τ2au ∈ L2(I−) is continuous.

Proof. Given ϵ > 0 let us fix ũ ∈ C∞(R) ∩ L2(R) such that ∥u− ũ∥L2(I+)
≤ ϵ/4.

Having x ∈ I− guarantees x + 2a ∈ I+ for all a ∈ (a0 ±∆a). Thus, going from a to a+δa
we get

ũ
(
x+ 2(a+ δa)

)
− ũ
(
x+ 2a

)
=

∫ 1

0
dt

d

dt
ũ
(
x+ 2(a+ tδa)

)
= 2δa

∫ 1

0
dt ∂ũ

∣∣
x+2(a+tδa)

Taking the supremum over all x ∈ I− we observe that

sup
x∈I−

∥∥τ2(a+δa)ũ− τ2aũ∥∥B
≤ |δa| ·

K:=

2 sup
x∈I+

∥∂ũ∥B

and therefore∥∥τ2(a+δa)u− τ2au∥∥L2(I−)
≤
∥∥u− ũ∥∥

L2
(
I− + 2(a+ δa)

) + ∥∥u− ũ∥∥
L2(I− + 2a)

≤ ϵ/2

+
∥∥τ2(a+δa)ũ− τ2aũ∥∥L2(I−)

≤
√

|I−|·K |δa|

Corollary 8.2 (Continuity of the shift map on Wn,2)
Given a fixed u ∈Wn,2(I+), the map a ∈ (a0 ±∆a) 7−→ τ2au ∈Wn,2(I−) is continuous.

Proof. In keeping with Proposition 6.2 the map

τ2a : (u0, u1, ..., un) ∈ Ŵn,2(I+) −→ (τ2au0, τ2au1, ..., τ2aun) ∈ Ŵn,2(I−)

acts componentwise, so our claim follows by componentwise application of Lemma 8.1.

Lemma 8.3 (Difference quotient of the shift map as a W 1,2-valued Bochner integral)

Given a1, a2 ∈ (a0 ±∆a) and a fixed u ∈W 2,2(I+),

the formula τ2a2u− τ2a1u = 2(a2 − a1)
∫ 1

0
dt τ2a1+2(a2−a1)t ∂u holds in W 1,2(I−) .
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Proof. Given u ∈W 2,2(I+) we have ∂u ∈W 1,2(I+). By Corollary 8.2 the map a 7−→ τ2a∂u ∈W 1,2(I−)

is continuous, so

∫ 1

0
dt τ2a1+2(a2−a1)t ∂u is a well-defined Bochner integral in W 1,2(I−).

With Sobolev embedding W 2,2(I+) ↪→ C1(I+) we may assume that u is continuously differ-
entiable. Thus, pointwise at a fixed x ∈ I− (corresponding to x+2a ∈ I+) the Fundamental
Theorem of Calculus yields

u(x+ 2a2)− u(x+ 2a1) =

∫ 1

0
dt

d

dt
u
(
x+ 2a1 + 2(a2 − a1)t

)
= 2(a2 − a1)

∫ 1

0
dt τ2a1+2(a2−a1)t ∂u (x)

As a bounded linear map evx : W 1,2(I−) ↪→ C0(I−) −→ B commutes with the Bochner
integral, so we get

evx

[
τ2a2u − τ2a1u − 2(a2 − a1)

∫ 1

0
dt τ2a1+2(a2−a1)t ∂u

]
= 0 for all x ∈ I−

Corollary 8.4 (Differentiation w.r.t. the shift parameter)
Given a fixed u ∈W 2,2(I+), the map a ∈ (a0 ±∆a) 7−→ τ2au ∈W 1,2(I−) is differentiable
with derivative a 7−→ 2 τ2a ∂u ∈W 1,2(I−).

Proof. This is a straightforward application of Lemma 8.3 and Corollary 8.2:
Using the triangle inequality for Bochner integrals in W 1,2(I−) as well as continuity of the
map a 7−→ τ2au ∈W 1,2(I−) we get∥∥∥∥τ2(a+δa)u− τ2auδa

− 2 τ2a∂u

∥∥∥∥
W 1,2(I−)

≤ 2

∫ 1

0
dt
∥∥τ2(a+tδa)∂u− τ2a∂u∥∥W 1,2(I−)

−→ 0 as δa −→ 0
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8.1.2 Differentiation of the rescaling map

Essentially repeating our strategy from the previous section, we will differentiate the rescaled
bump coefficient Rλ(a)f by interpreting its difference quotient

Rλ+δλf −Rλf
δλ

as a Bochner integral in a suitably constructed Banach space Cnbounded(R<0, V−).
By construction of this space, every element α ∈ Cnbounded(R<0, V−) acts through scalar

multiplication on the module Wn,2
V−

(−1, 0), with an inequality∥∥αv∥∥
Wn,2
V−

(−1, 0) ≤ const. ×
∥∥α∥∥

Cnbounded(R<0, V−)

∥∥v∥∥
Wn,2
V−

(−1, 0)

making it possible to differentiate Rλ(a)f · τ2av by the product rule.

Let us begin by introducing the spaces Cnbounded(I, V ) and discussing their relation to the
ring R(I, V ) from section 6.3.1.

Definition 8.5 (Generalized C1-spaces)
Let B be a Banach space, I ⊂ R an open interval and V (x)∂x a vector field on I with V > 0.
As a generalization of the classical C1

bounded(I) we consider the space

C1
bounded(I, V ;B) :=

{
(u0, u1) ∈ C0

bounded(I,B)
⊕2
∣∣∣u0 : I −→ B is differentiable and u1 = V ∂u0

}
Whenever our choice of B is clear, we will simply write C1

bounded(I, V ). In the following it
will be sufficient to work with B = R.
Lemma 8.6 (Contravariance of the spaces C1

bounded(I, V ) )
Given Φ : Ix −→ Iy a diffeomorphism between open intervals in R, the isometry

C0
bounded(Iy)

⊕2 −→ C0
bounded(Ix)

⊕2, (u0, u1) 7−→ (u0 ◦ Φ, u1 ◦ Φ)

identifies C1
bounded(Iy, V ) with C1

bounded(Ix,Φ
∗V ).

Proof. Consider (u0, u1) ∈ C1
bounded(Iy, V ). Then ∂u0 =

u1
V
∈ C0(Iy) guarantees u0 ∈ C1(Iy),

so we can apply the chain rule to observe that ∂[u0 ◦ Φ] =
∂y

∂x
[∂u0] ◦ Φ and therefore

u1 ◦ Φ = (V ◦ Φ) · [∂u0] ◦ Φ =
V ◦ Φ
∂y/∂x

∂[u0 ◦ Φ] = Φ∗V ∂[u0 ◦ Φ]

Lemma 8.7 (Completeness of C1)
C1
bounded(I, V ) is a closed subspace of C0

bounded(I)
⊕2 and therefore a Banach space itself.

Proof. Let Φ : Ix −→ I be the straightening diffeomorphism from Remark 6.3.
Then we have Φ∗V = ∂x , so by Lemma 8.6 the componentwise isometry

C0
bounded(I)

⊕2 C0
bounded(Ix)

⊕2◦ Φ

identifies our space C1
bounded(I, V ) with the classical C1

bounded(Ix) which is known to be com-
plete.

Remark 8.8 (Completeness of Cn+1)
Lemma 8.7 guarantees that for every n ≥ 0

Cn+1
bounded(I, V ) :=

{
(u0, u1, ..., un+1) ∈ C0

bounded(I)
⊕n+2

∣∣∣ (uj , uj+1) ∈ C1
bounded(I, V ) for all j = 0, ..., n

}
is a closed subspace of C0

bounded(I)
⊕n+2 and therefore a Banach space itself.
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The next observation is a follow-up on Remark 6.9 and will later allow us to extract the pole
divergence from

(
∂
∂a

)n
R1/af τ2au :

Auxiliary Lemma 8.9 (Rescaling of derivatives)
Let I ⊂ R be an open subset and ρ ∈ C∞(I) a smooth function with ρ ̸= 0 everywhere.
Assume that for B a normed vector space we are given maps vn : I −→ B, n = 0, ..., N
such that

� vN is continuous

� for n = 0, ..., N − 1 the map vn is differentiable with derivative v′n =
vn+1

ρ

Then we have v0 ∈ CN (I,B) and

vn = (ρ∂)nv0 =
n∑
k=0

Cn,k[ρ] ρ
k∂kv0 (8.1)

ρn ∂nv0 =
n∑
k=0

C−1
n,k[ρ] vk (8.2)

for all n = 0, ..., N .

Proof. Our claim that v0 ∈ CN (I,B) follows from a chain of implications

vN ∈ C0

vN−1 ∈ C1

vN−2 ∈ C2

v0 ∈ CN

=⇒

=⇒

=⇒

v′N−1 =
vN
ρ
∈ C0

v′N−2 =
vN−1

ρ
∈ C1

v′0 =
v1
ρ
∈ CN−1

.......................

Equation (8.1) is obtained by successive application of ρ ∂
using that Cn,k ρ

k ∈ C∞(I) and ∂kv0 ∈ CN−k(I).

Equation (8.2) exploits the fact that [Cn,k] ∈ SL
(
N,C∞(I)

)
is invertible.

Remark 8.10 (Relating Cnbounded(I, V ) to R(I, V ) )

� The set Rn(I, V ) :=
{
f ∈ Cn(I)

∣∣∣ sup
x∈I

∥∥V k[f ]
∥∥ <∞ for all k = 0, ..., n

}
is a subring of C0(I).

� The ring from Remark 6.5 can be recovered as R(I, V ) =
⋂
n≥0

Rn(I, V ) .

� We have a linear isomorphism

Rn(I, V ) Cnbounded(I, V ) ⊂ C0
bounded (I)

⊕n+1∼

u
[
uj = V ju

]
j=0,...,n

Note that the surjectivity of this map is a result of Auxiliary Lemma 8.9.

Notation. When our choice of I and V is clear, we will sometimes writeRn instead of Rn(I, V ).
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Now we are ready to repeat our recipe from section 8.1.1. It turns out that the vector field
V− = −x∂x shows up naturally as we differentiate Rλf .

Lemma 8.11 (Domain rescaling acts continuously on C0 )
Given a fixed f ∈ R1(R<0, V−), the map λ ∈ (0,∞) 7−→ Rλf ∈ C0

bounded(R<0) is continuous.

Proof. For λ, λ+ δλ > 0 and pointwise at x ∈ R>0 the function f ∈ C1(R<0) obeys

Rλ+δλf(x)−Rλf(x) =
∫ 1

0
dt

d

dt
f
(
(λ+ tδλ)x

)
δλ·x ∂f |(λ+tδλ)x

= − δλ ·
∫ 1

0
dt

1

b
RbV−[f ]

∣∣∣∣∣
b=λ+tδλ

(x) (8.3)

Restricting to the case 2 |δλ| < λ we have 1

|λ+ tδλ|
<

2

|λ|
and thus

∥∥Rλ+δλf(x)−Rλf(x)∥∥ ≤ 2

∣∣∣∣δλλ
∣∣∣∣ · sup

y∈R<0

∥∥V−[f ]∥∥
where the right hand side does not depend on x anymore.

Corollary 8.12 (Domain rescaling acts continuously on Cn )
Given a fixed f ∈ Rn+1(R<0, V−), the map λ ∈ (0,∞) 7−→ Rλf ∈ Cnbounded(R<0, V−) is continuous.

Proof. Given a fixed λ ∈ (0,∞), the diffeomorphism Rλ : R<0 −→ R<0, x 7−→ λ · x satisfies

R∗
λV− = − 1

λ
· λx = V−

so f 7−→ Rλf = f ◦Rλ ∈ C0
bounded(R<0) is covered by a componentwise map

Cnbounded(R<0, V−) Cnbounded(R<0, R
∗
λV−) = Cnbounded(R<0, V−)(

f, f1, ...., fn
) (

Rλf,Rλf1, ...., Rλfn
)

Note that we have fj = V jf ∈ Rn−j+1 ⊂ R1, so continuity follows from Lemma 8.11.

Lemma 8.13 (Difference quotient of the rescaling map as a Bochner integral)
Given λ, λ+ δλ > 0 and f ∈ Rn+2(R<0, V−), the formula

Rλ+δλf −Rλf = − δλ ·
∫ 1

0
dt

1

b
RbV−[f ]

∣∣∣∣∣
b=λ+tδλ

holds in Cnbounded(R<0, V−).

Proof. Having f ∈ Rn+2 ensures V−[f ] ∈ Rn+1 so the map b 7−→ 1
bRbV−[f ] ∈ C

n
bounded(R<0, V−)

is continuous and we get a well-defined Bochner integral∫ 1

0
dt

1

b
RbV−[f ]

∣∣∣∣∣
b=λ+tδλ

∈ Cnbounded(R<0, V−)

The Bochner integral commutes with evx : C0
bounded(R<0,B) −→ B so equation (8.3) implies

evx

[
Rλ+δλf −Rλf + δλ ·

∫ 1

0
dt

1

b
RbV−[f ]

∣∣∣∣∣
b=λ+tδλ

]
= 0 for all x ∈ R<0

Corollary 8.14 (Differentiation w.r.t. the scale parameter)
Given a fixed f ∈ Rn+2(R<0, V−), the map λ ∈ (0,∞) 7−→ Rλf ∈ Cnbounded(R<0, V−)

is differentiable with derivative λ 7−→ − 1
λRλV−[f ] ∈ C

n
bounded(R<0, V−).

Proof. Since b 7−→ 1
bRbV−[f ] ∈ C

n
bounded(R<0, V−) is continuous, one has∥∥∥∥Rλ+δλf −Rλfδλ

+
1

λ
RλV−[f ]

∥∥∥∥
Cnbounded(R<0, V−)

≤
∫ 1

0
dt

∥∥∥∥∥1bRbV−[f ]
∣∣∣∣λ+tδλ
λ

∥∥∥∥∥
Cnbounded(R<0, V−)

0 as δλ −→ 0
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By considering λ(a)=a−k, we observe that λ ∂
∂λRλ[f ]= −Rλ

[
V−f

]
and a ∂

∂aRλ(a)[f ] = k ·Rλ(a)
[
V−f

]
agree up to a prefactor, so our discussion will not rely on any particular choice of k ≥ 1
in ”R1/akf · τ2aku”:
Corollary 8.15 (Inverting the scale parameter)
Write λ(a) = 1/ak. Then for f ∈ Rn+2(R<0, V−), the derivative of the
map a ∈ (0,∞) 7−→ Rλ(a)f ∈ Cnbounded(R<0, V−) satisfies

a
∂

∂a
Rλ(a)f = k ·Rλ(a)V−[f ]

Proof. Since [λ 7−→ Rλf ] belongs to C1
[
(0,∞), Cnbounded(R<0, V−)

]
the chain rule shows

∂

∂a
Rλ(a)f = −λ

′(a)

λ(a)
Rλ(a)V−[f ] =

k

a
Rλ(a)V−[f ]

Let us conclude this section by an illustration of Auxiliary Lemma 8.9 and Remark 8.10:

Lemma 8.16 (The rescaling map has bounded logarithmic derivatives)

Given f ∈ Rm+n+1(R<0, V−), the map
[
a 7−→ Rλ(a)f

]
belongs to Rm

[
(0,∞), a ∂

∂a ; C
n
bounded(R<0, V−)

]
.

Proof. We have V j
−[f ] ∈ Rn+2 for j = 0, ...,m− 1 and V m

− [f ] ∈ Rn+1.
Thus, the sequence of maps vj : (0,∞) −→ Cnbounded(R<0, V−), j = 0, ...,m given by

vj(a) := Rλ(a)V
j
−[f ]

satisfies a
∂

∂a
vj = vj+1 for j = 0, ...,m− 1 and vm is continuous.

With Auxiliary Lemma 8.9 we conclude that a 7−→ vj(a) is of class C
m. Moreover,∥∥∥∥[a ∂

∂a

]j
v0

∥∥∥∥ =
∥∥∥Rλ(a)V j

−[f ]
∥∥∥
Cnbounded(R<0, V−)

=

n∑
k=0

sup
x ∈ R<0

∣∣∣Rλ(a)V j+k
− [f ]

∣∣∣ = n∑
k=0

sup
x ∈ R<0

∣∣∣V j+k
− [f ]

∣∣∣
does not depend on a.
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8.1.3 Differentiating the off-diagonal part of the retraction

Let us now combine our findings from sections 8.1.1 and 8.1.2.
Notation.

� In the following we will continue to write λ(a) = 1/a.

� Moreover, we will consider all intervals I ⊂ Rx equipped with the metric g = dx2 and
identify Wn,2

V (I) :=Wn,2
V,g (I) with a subspace of L2(I).

The following technical result builds on the observation that, thanks to
the prefactor R1/af ∈ C∞

0

(
−3
2
a, −a

2

)
, there is an unproblematic transition

from u ∈W 2,2
V+

(0, 1) to R1/af · τ2au ∈W
1,2
V−

(−1, 0).

Lemma 8.17 (Transfer from W 1,2
V+

to W 1,2
V−

is differentiable w.r.t. the gluing parameter )

Given f ∈ C∞
0 (−3

2 ,−
1
2) and u ∈W 2,2

V+
(0, 1) the map a 7−→ Rλ(a)f · τ2au ∈W

1,2
V−

(−1, 0)
is differentiable and its derivative satisfies

a
∂

∂a
Rλ(a)f · τ2au = Rλ(a)V−[f ] · τ2au+Rλ(a)

(
f · h

)
τ2aV+u ∈W 1,2

V−
(−1, 0)

with h = 2
x+2 ∈ C

∞(−2, 0).

Proof. We work locally in a with a ∈ (a0 ±∆a).

Given u ∈W 2,2
V+

(0, 1) Lemma 6.13 applied to ”f” = 1
x ∈ R(I+, V+) shows that u ∈W

2,2
∂ (I+)

where ∂u = 1
xV+u holds as an identity in the R(I+, V+)-module W 1,2

V+
(I+).

There are ring homomorphisms

accompanied by module homomorphisms

R(I+, V+) R(I+, ∂ =
1

x
V+) R(I−, ∂) R(I−, V− = −x∂)

Wn,2
V+

(I+) Wn,2
∂ (I+) Wn,2

∂ (I−) Wn,2
V−

(I−)

incl. τ2a incl.

incl. τ2a incl.

Thus, τ2a∂u =
1

x+ 2a
τ2aV+u can be understood as an equation in theR(I−, V−)-moduleW 1,2

V−
(I−).

Since we have u ∈ W 2,2
∂ (I+), Corollary 8.4 shows that the map a 7−→ τ2au ∈ W 1,2

∂ (I−) is

differentiable with derivative a 7−→ 2 τ2a∂u ∈W 1,2
∂ (I−).

Using the bounded linear inclusionW 1,2
∂ (I−) ↪→W 1,2

V−
(I−) the same statement holds inW 1,2

V−
(I−),

i.e. a 7−→ τ2au ∈W 1,2
V−

(I−) is differentiable and its derivative satisfies

a
∂

∂a
τ2au = 2a τ2a∂u =

2a

x+ 2a
τ2aV+u ∈W 1,2

V−
(I−)

Now consider the general situation where a 7−→ s(a) ∈ Cnbounded(R<0, V−) and a 7−→ v(a) ∈Wn,2
V−

(I−)

are differentiable with derivatives s′(a) ∈ Cnbounded(R<0, V−) and v′(a) ∈Wn,2
V−

(I−) respectively.
Then by the identity

∥s · v∥
Wn,2
V−

(I−)
≤ const.× ∥s∥Cnbounded(R<0, V−)

∥v∥
Wn,2
V−

(I−)

the map a 7−→ s(a)v(a) is differentiable with derivative s′(a)v(a) + s(a)v′(a).

Consequently, in our case a 7−→ Rλ(a)f · τ2au ∈W
1,2
V−

(I−) is differentiable with derivative

a
∂

∂a
Rλ(a)f τ2au = Rλ(a)V−[f ]τ2au+Rλ(a)

(
f · h

)
τ2aV+u ∈ W 1,2

V−
(I−) (8.4)

where h := 2
x+2 ∈ C

∞(−2, 0) and by assumption f ∈ C∞
0 (−3/2,−1/2).

Notice that for all a ∈ (a0±∆a) bothRλ(a)f τ2au and ∂
∂aRλ(a)f τ2au belong to C∞

0 (I−) ·W 1,2
V−

(I−).

For v ∈ C∞
0 (I−) ·W 1,2

V−
(I−) one has v ∈W 1,2

V−
(−1, 0) with ∥v∥W 1,2

V−
(−1, 0) = ∥v∥W 1,2

V−
(I−)

.

Therefore the statement (8.4) continues to hold when W 1,2
V−

(
I−
)
is replaced by W 1,2

V−
(−1, 0)

and our claim can be patched together by varying the interval (a0 ±∆a).
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Lemma 8.17 shows that the logarithmic derivative a ∂
∂a

[
R1/af · τ2au

]
is again a sum of terms

”R1/a

[
bump

]
τ2a
[
Sobolev function

]
”

Coming to our main result of this section, we will iteratively calculate the bump coefficients
appearing in

(
a ∂
∂a

)n [
R1/afτ2au

]
, before applying Auxiliary Lemma 8.9 to conclude that(

∂
∂a

)n [
R1/afτ2au

]
involves a pole of order exactly n.

Definition 8.18 (Bump coefficients Nk,l and χm,l)

As in Lemma 8.17 let us write h = 2

x+ 2
∈ C∞(−2, 0).

Given f ∈ C∞
0 (−3

2 ,−
1
2) we define the coefficients Nk,l[f ] ∈ C∞

0 (−3
2 ,−

1
2) iteratively by

N0,l = f · δ0,l
Nk+1,l = V−[Nk,l] +Nk,l−1 · h

In the following, by Cm,k we will always mean the coefficients CVm,k[ρ] with V = ∂ and ρ(a) = a.

For instance,
[
Cm′,k

]
∈ SL(m,Z) and Nk,l[f ] ∈ C∞

0 (−3
2 ,−

1
2) combine into coefficients

χm,l[f ] =
∑
k

C−1
m,kNk,l[f ] ∈ C∞

0

(
−3

2
,−1

2

)
Proposition 8.19 (Pole order arising from derivatives in a)

Given f ∈ C∞
0 (−3

2 ,−
1
2) and u ∈W

N+1,2
V+

(0, 1), the map a 7−→ Rλ(a)f · τ2au ∈W
1,2
V−

(−1, 0)

belongs to CN
(
(0,∞),W 1,2

V−
(−1, 0)

)
, with derivatives given by

(
∂

∂a

)n
Rλ(a)f · τ2au =

1

an

n∑
l=0

Rλ(a) χn,l[f ] · τ2aV l
+u ∈W 1,2

V−
(−1, 0)

Proof. We apply Auxiliary Lemma 8.9 in the case I = (0,∞), ρ(a) = a, B =W 1,2
V−

(−1, 0):

Given u ∈WN+1,2
V+

(0, 1) and f ∈ C∞
0 (−3

2 ,−
1
2) let us define

vn(a) =

n∑
l=0

Rλ(a)Nn,l[f ] τ2aV
l
+u ∈W

1,2
V−

(−1, 0) for n = 0, ..., N

These maps are continuous in a, as can be seen by combining Corollaries 8.12 and 8.2.
Moreover, restricting to n = 0, ...., N − 1 we have

l ≤ n ≤ N − 1 =⇒ V l
+u ∈W

2,2
V+

(0, 1)

so by Lemma 8.17 the map a 7−→ vn(a) is differentiable with derivative

a
∂

∂a
vn =

∑
l

Rλ(a)V−[Nn,l] τ2aV
l
+u+Rλ(a)(Nn,l · h) τ2aV l+1

+ u

=
∑
l

Rλ(a)
[
V−[Nn,l] +Nn,l−1 · h

Nn+1,l

]
τ2aV

l
+u = vn+1

Taking into account that Cm,k
[
ρ(a) = a

]
∈ Z, our claim follows from equation (8.2) of Aux-

iliary Lemma 8.9.
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Having settled the ’longitudinal’ derivatives in a-direction, we still have to discuss the
’transversal’ derivatives in direction of the level sets. For the term R1/af · τ2au ∈W

n,2
V−

(−1, 0)
these arise as powers of V− = −x∂x. Just as for the ’longitudinal’ derivatives

(
a ∂
∂a

)n
, we

start by a technical argument for the case n = 1, before introducing yet another variant of
bump coefficients Mk,l ∈ C∞

0

(
−3
2
, −1

2

)
to formulate our result in the case of general n.

Lemma 8.20 (Translating V− into V+)

Let us consider f ∈ C∞
0

(
− 3

2 ,−
1
2

)
and w ∈W 1,2

V+
(0, 1).

Then Rλ(a)f · τ2aw belongs to C∞
0 (I−) ·W 1,2

V−
(I−) ⊂ W 1,2

V−
(−1, 0) with

V−
[
Rλ(a)f · τ2aw

]
= Rλ(a)V−[f ] · τ2aw + Rλ(a)

[
f · (h− 1)

]
· τ2aV+w

Proof. At fixed a ∈ (a0±∆a) we consider the diffeomorphism Φ : I−−→ I−+2a ⊂ I+, x 7−→ x+ 2a.

With
√
Φ∗g =

√
g = 1 we have an implication(
w, V+w

)
∈W 1,2

V+
(I+) =⇒

(
w ◦ Φ, [V+w] ◦ Φ

)
∈W 1,2

Φ∗V+
(I−)

and in C∞(I−) we calculate

V− = −x =

[
2a

x+ 2a
− 1

]
(x+ 2a) = Rλ(a)(h− 1) Φ∗V+

Note that the prefactor Rλ(a)(h− 1) is bounded on I− ⊂ (−2a, 0), so by part 1) of Auxiliary

Lemma 6.12 one has τ2aw = w ◦ Φ ∈W 1,2
V−

(I−) with

V−[τ2aw] = V−[w ◦ Φ] = Rλ(a)(h− 1) · Φ∗V+[w ◦ Φ]
= Rλ(a)(h− 1) · [V+w] ◦ Φ = Rλ(a)(h− 1) · τ2aV+w

Regarding the multiplication by Rλ(a)f ∈ C∞
0 (I−), part 2) of Auxiliary Lemma 6.12 ensures

that Rλ(a)f · τ2aw ∈W
1,2
V−

(I−) with

V−
[
Rλ(a)f · τ2aw

]
= V−

[
Rλ(a)f

]
· τ2aw + Rλ(a)f · V−[τ2aw]

= Rλ(a)V−[f ] · τ2aw + Rλ(a)
[
f · (h− 1)

]
· τ2aV+w ∈ L2(I−)
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Definition 8.21 (Bump coefficients Mk,l)

As before let us write h = 2

x+ 2
∈ C∞(−2, 0).

Given f ∈ C∞
0 (−3

2 ,−
1
2) we define the coefficients Mk,l[f ] ∈ C∞

0 (−3
2 ,−

1
2) iteratively by

M0,l = f · δ0,l
Mk+1,l = V−[Mk,l] +Mk,l−1 · (h− 1)

Proposition 8.22 (No poles arising from V−)

Given f ∈ C∞
0 (−3

2 ,−
1
2) and w ∈W

n,2
V+

(0, 1) one has Rλ(a)f · τ2aw ∈W
n,2
V−

(−1, 0) with

V k
−
[
Rλ(a)f · τ2aw

]
=

k∑
l=0

Rλ(a)Mk,l[f ] · τ2aV l
+w for k = 0, ..., n

Proof. Every element w ∈Wn,2
V+

(0, 1) can be represented by a tuple (w, V+w, ...., V
n
+w) ∈ L2(0, 1)⊕n+1.

Let us define

vk =
k∑
l=0

Rλ(a)Mk,l[f ] · τ2aV l
+w ∈ L2(−1, 0)

For k = 0, ...., n− 1 we claim that (vk, vk+1) ∈W 1,2
V−

(−1, 0):
Indeed, for l ≤ k ≤ n− 1 we have V l

+w ∈W
1,2
V+

(0, 1) and Mk,l[f ] ∈ C∞
0 (−3

2 ,−
1
2),

so Lemma 8.20 implies vk ∈W 1,2
V−

(−1, 0) with

V−[vk] =
∑
l

Rλ(a)V−[Mk,l] · τ2aV l
+w +Rλ(a)

[
Mk,l · (h− 1)

]
τ2aV

l+1
+ w

=
∑
l

Rλ(a)
[
V−[Mk,l] +Mk,l−1 · (h− 1)

]
Mk+1,l

τ2aV
l
+w = vk+1

Recall from the introduction that our initial motivation to consider the vector field V− = −x∂x
was that V− commutes with the rescaling map. According to Proposition 8.22, this now man-
ifests in the absence of poles in V k

−
[
R1/af ·τ2au

]
. Poles of this type, if there were some, would

destroy sc0-continuity of the retraction at a = 0. The pole from Proposition 8.19, on the
other hand, can be compensated by a ’weight difference’ as we shall see in Proposition 8.27.
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8.2 A simple criterion for sc-smoothness

It seems intuitively clear that to prove sc-smoothness of a fibre-linear map, we only need to
care about derivatives in the base direction, while keeping all arguments coming from the
fibre fixed. We will rigorously justify this idea in Proposition 8.25, thereby providing a clean
and efficient way to verify sc-smoothness in our case at hand.

In this section, let E = (En)n≥0, F = (Fn)n≥0, G = (Gn)n≥0 be sc-Banach spaces
and take B ⊂ R to be an open subset.

As a preparation, let us talk about sc1-differentiability:

Lemma 8.23 (Sc1 fibre-linear maps)
Assume we are given sc0-maps α : B⊕G −→ F (linear in G-direction) and β : B⊕G1 −→ F
such that for every fixed e ∈ G1

b 7−→ αb(e) ∈ F0 is differentiable with derivative b 7−→ βb(e) ∈ F0 .

Then α is sc1.

Proof. At fixed (b, e) ∈ B ⊕G1 the assignment

(δb, δe) 7−→ Dα(b, e, δb, δe) = δb · βb(e) + αb(δe) defines a map in L(B ⊕G0, F0) .

The map Tα : B ⊕G1 ⊕B ⊕G F 1 ⊕ F is sc0.
(α1, Dα)

It remains to interpret Dα as the differential of α|1 : B ⊕G1 −→ F0 .
Indeed, restricting to e, δe ∈ G1 we find

1

|δb|+ ∥δe∥1
∥αb+δb(e+ δe)− αb(e)− δb · βb(e)− αb(δe)∥F0

≤ 1

|δb|
∥αb+δb(e)− αb(e)− δb · βb(e)∥F0

−→0 as δb→0 by assumption

+

∥∥∥∥αb+δb [ δe

∥δe∥1

]
− αb

[
δe

∥δe∥1

]∥∥∥∥
F0

≤ sup
v∈K
∥αb+δb v − αb v∥F0

The embedding G1 ↪→ G0 being compact means that K := BG1
1 (0)

G0

is a compact subset
of G0 , so by Auxiliary Lemma 8.24 we obtain

sup
v∈K
∥αb+δb v − αb v∥F0

−→ 0 as δb −→ 0

Auxiliary Lemma 8.24 (Continuity w.r.t. compact-open topology turns uniform)
Let α : B ⊕G0 −→ F0 be a continuous map between normed vector spaces and assume that
K ⊂ G0 is a compact subset. Then α : B −→ C0

bounded(K,F0) is continuous.

Proof. Given b ∈ B, ϵ > 0 cover {b} ×K by open subsets Bδi(b)× Ui such that

∥α(x)− α(y)∥F0
< ϵ for all x, y ∈ Bδi(b)× Ui

Since K is compact, a finite cover will be enough and we can set δ := min δi > 0
Then however we observe that

|δb| < δ =⇒ ∥αb+δb v − αb v∥F0
< ϵ for all v ∈ K
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The following criterion shows that sc-smoothness of a fibre-linear map boils down to pointwise
differentiability in the base direction together with sc0-continuity of all derivatives:

Proposition 8.25 (Bootstrapped criterion for the sc-smoothness of fibre-linear maps)
Assume we are given a sequence of sc0-maps ∂nπ : B ⊕ En −→ F , n ≥ 0 such that

1) πb(e) =
(
∂0π

)
b
(e) is linear in e ∈ E0

2) For fixed e ∈ En+1 the map b 7−→
(
∂n+1π

)
b
(e) ∈ F0

is the derivative of b 7−→
(
∂nπ

)
b
(e) ∈ F0

Then π = ∂0π : B ⊕ E −→ F is sc∞

Proof. Since b 7−→
(
∂n+1π

)
b
(e) ∈ F0 is the derivative of b 7−→

(
∂nπ

)
b
(e) ∈ F0 ,

we see that by induction
(
∂nπ

)
b
(e) is linear in e ∈ En for all n ≥ 0 .

Thus, Lemma 8.23 applied to ”α” = ∂nπ, ”β” = ∂n+1π shows

P(1) ∂nπ : B ⊕ En −→ F is sc1 for all n ≥ 0

Note that the sc0-map D
(
∂nπ

)
: B ⊕ En+1 ⊕B ⊕ En F

(b, e, δb, δe) δb ·
(
∂n+1π

)
b
e+

(
∂nπ

)
b
δe

is the sum of

and

B ⊕ En+1 ⊕B ⊕ En B ⊕ En+1 ⊕B F ⊕B F

B ⊕ En+1 ⊕B ⊕ En B ⊕ En F

proj.

sc∞
∂n+1π ⊕ id mult.

sc∞

proj.

sc∞
∂nπ

Let us assume by induction that at some k ≥ 1 it holds that

P(k) ∂nπ : B ⊕ En −→ F is sck for all n ≥ 0

Then by the sck−chain rule (iterate [HWZ21] Thm 1.3.1) the combination of
∂nπ and ∂n+1π being sck implies that

D
(
∂nπ

)
: B ⊕ En+1 ⊕B ⊕ En −→ F is sck.

On the other hand, [HWZ21] Prop 1.2.2 guarantees that

(∂nπ)1 : B ⊕ En+1 −→ F 1 is sck.

Taking the last two results together, we conclude that

T (∂nπ) : B ⊕ En+1 ⊕B ⊕ En F 1 ⊕ F is sck

[
(∂nπ)1, D(∂nπ)

]
which is nothing else but the definition of ∂nπ being sck+1 .

Therefore we have shown the implication P(k) =⇒ P(k + 1) and our claim follows by
induction.
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As is apparent in our formulation of Propositions 7.5 and 7.6, the topology transition at
vanishing gluing parameter manifests in a singularity of the retraction. This singularity will
be removed by the following extension to our sc∞-criterion from Proposition 8.25.

Theorem 8.26 (Sc-smoothness of fibre-linear maps with removable singularity)
Assume that for B = (−ϵ, ϵ) \ {0} we are given a family ∂nπ : B ⊕ En −→ F, n ≥ 0
satisfying the requirements of Proposition 8.25

Assume in addition that

3) At every fixed e ∈ En+k the limits lim
b↘0

(
∂nπ

)
b
e , lim

b↗0

(
∂nπ

)
b
e ∈ Fk exist and agree

4) For all n, k ≥ 0 there exist constants Kn,k , ϵn,k > 0 such that∥∥(∂nπ)
b
(·)
∥∥
L(En+k, Fk)

≤ Kn,k ∀ b ∈ Bϵn,k
(0) \ {0}

Then the requirements of Proposition 8.25 are fulfilled for B = (−ϵ, ϵ)
so the extended π : (−ϵ, ϵ)⊕ E −→ F is sc∞.

Proof. On e ∈ En+k we define
(
∂nπ

)
0
(e) := lim

b↘0

(
∂nπ

)
0
(e) = lim

b↗0

(
∂nπ

)
0
(e) ∈ Fk .

This definition is compatible with all lower levels En+(k−1), ... , En+0 containing the given e
and immediately shows that

�

(
∂nπ

)
0
(En+k) ⊂ Fk

�

(
∂nπ

)
0
(e) is linear in e ∈ E0

To see that ∂nπ : (−ϵ, ϵ)⊕En −→ F is sc0 it remains to work locally around the point (0, e)
with e ∈ En+k and variations δe ∈ En+k :

∥∂nπb(e+ δe)− ∂nπ0(e)∥Fk ≤ ∥∂
nπb(e)− ∂nπ0(e)∥Fk

−→0 as b→0

+ ∥∂nπb∥L(En+k, Fk)
≤Kn,k

∥δe∥En+k

As a last step, we have to show that condition 2) of Proposition 8.25 also holds at b = 0 .
Since condition 2) is already assumed for b ̸= 0, we see that at fixed e ∈ En+1 one has[

b 7−→ ∂nπb(e)
]
∈ C1

(
(−ϵ, ϵ) \ {0}, F0

)
with derivative

[
b 7−→ ∂n+1πb(e)

]
∈ C0

(
(−ϵ, ϵ), F0

)
Hence, the Fundamental Theorem of Calculus yields

∂nπb(e)− ∂nπb0(e) =
∫ b

b0

db′ ∂n+1πb′(e)

For b > b0 > 0 we take the limit b0 −→ 0 whereas for 0 > b > b0 we take the limit b −→ 0 .
This is possible because by assumption 3) we have continuously extended ∂n+1πb(e) to b = 0 .
In the situation b > 0 for instance we obtain∥∥∥∥∂nπb(e)− ∂nπ0(e)b

− ∂n+1π0(e)

∥∥∥∥
F0

≤ 1

b

∫ b

0
db′

∥∥∂n+1πb′(e)− ∂n+1π0(e)
∥∥
F0
−→ 0
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8.3 Application to our case

Finally, let us combine the formulae obtained in section 8.1 to show that our retraction has
a removable singularity in the sense of Theorem 8.26. As advertised in the introduction, this
involves compensating the pole divergence from Proposition 8.19 by a ’weight difference’
between different levels of regularity.

Setup
As already indicated in Section 7.2 we will use the following sc-Banach spaces:

En =W n+1,2
V+ ; ρn

(
0, 1
)

Fn =W n+1,2
V− ; ρn

(
−1, 0

)
where ρ =

1

|x|
> 1

With n ≥ 0, we consider the sequence of maps

∂nπ : (0, ϵ)⊕ En −→ F0

∂nπa(u) :=
1

an

n∑
l=0

Rλ(a)χn,l[τ+1αγ] · τ2aV l
+u ∈ F0 = W 1,2

V−
(−1, 0)

Proposition 8.27 (Verifying the conditions of Theorem 8.26)

At fixed u ∈ En+1 the map a 7−→ ∂n+1πau ∈ F0 is the derivative of a 7−→ ∂nπau ∈ F0.
Moreover, for all pairs n, k ≥ 0 we observe the following:

� u ∈ En+k implies ∂nπa(u) ∈ Fk
� There exists Kn,k > 0 independent of a such that for all a ∈ (0,∞):∥∥∂nπa( · )∥∥L(En+k, Fk) ≤ Kn,k
� For every fixed u ∈ En+k we have lim

a→0
∂nπau = 0 in Fk

� The map ∂nπ : (0, ϵ)⊕ En+k −→ Fk is continuous

Proof. Given a fixed u ∈ En+1 ⊂Wn+2,2
V+

(0, 1), Proposition 8.19 shows that the

map a 7→ Rλ(a)τ+1αγ · τ2au belongs to Cn+1
(
(0, ϵ),W 1,2

V−
(−1, 0)

)
with derivatives

(
∂

∂a

)n
Rλ(a)τ+1αγ · τ2au = ∂nπau

∂

∂a
∂nπau =

(
∂

∂a

)n+1

Rλ(a)τ+1αγ · τ2au = ∂n+1πau

Now let us work at fixed a > 0. Assuming u ∈ En+k for some k ≥ 0 ensures that one has

V l
+u ∈W

k+1,2
V+

(0, 1) for all l ≤ n

so Proposition 8.22 implies ∂nπau = 1
an
∑n

l=0Rλ(a)χn,l · τ2aV l
+u ∈W

k+1,2
V−

(−1, 0).
More precisely, the V−-derivatives of order m = 0, ..., k + 1 are given by

V m
−
[
∂nπau

]
=

1

an

n+m∑
s=0

Rλ(a)L
m,n
s · τ2aV s

+u ∈ L2(−1, 0)

with Lm,ns =
∑
j+l=s
0 ≤ j ≤ m
0 ≤ l ≤ n

Mm,j

[
χn,l

]
∈ C∞

0

(
−3

2
,−1

2

)

We claim that these belong not only to L2(−1, 0) but in fact to L2(−1, 0)ρk , thus showing

that ∂nπau ∈ Fk =W k+1,2
V−; ρk

(−1, 0).
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Indeed, with L ∈ C∞
0

(
−3

2
,−1

2

)
and w ∈ L2(0, 1)ρn+k we calculate∫

(−1,0)
dx
∥∥∥ρk ·Rλ(a)L · τ2aw∥∥∥2 =

∫
I−

dx

∥∥∥∥τ2aρk ·Rλ(a) [ L

(h− 1)k

]
· τ2aw

∥∥∥∥2

=

∫
I−+2a

dx

∥∥∥∥ρk ·Rλ(a)[ τ−2
L

(h− 1)k

C∞
0

(
1

2
,
3

2

)
]
· w
∥∥∥∥2

=

∫
(0,1)

dx

∥∥∥∥ρn+k |x|n ·Rλ(a)[τ−2
L

(h− 1)k

]
· w
∥∥∥∥2

where for the first equality we have used that with

h =
2

x+ 2
∈ C∞((−2, 0),R>1

)
=⇒ 1

h− 1
= −x+ 2

x
∈ C∞((−2, 0),R>0

)
one has

ρ = −1

x
= − 1

x+ 2a

x+ 2a

x
= τ2aρ ·Rλ(a)

[
1

h− 1

]
∈ C∞(− 2a, 0

)
.

Our calculation shows that∥∥∥∥ 1

an
Rλ(a)L τ2aw

∥∥∥∥
L2(−1, 0)ρk

≤ 2n · sup
∣∣∣∣ L

(h− 1)k

∣∣∣∣ · ∥∥χ(0,2a) · w
∥∥
L2(0, 1)ρn+k

(8.5)

By invoking dominated convergence, this inequality implies lim
a→0

∥∥∥∥ 1

an
Rλ(a)Lτ2aw

∥∥∥∥
L2(−1, 0)ρk

= 0.

Since as remarked above all V−-derivatives of ∂nπau are built from terms of the form
”Rλ(a)L · τ2aw”, we conclude that at any fixed u ∈ En+k one has lim

a→0
∂nπau = 0 in Fk.

On the other hand, (8.5) also implies∥∥∥∥ 1

an
Rλ(a)Lτ2aw

∥∥∥∥
L2(−1, 0)ρk

≤ Kn,k · ∥w∥L2(0, 1)ρn+k

where the constant Kn,k > 0 depends on n, k and L but not on a. Thus, after collecting all
summands, we can find uniform bounds∥∥∂nπa( · )∥∥L(En+k, Fk) ≤ Kn,k
Given a fixed u ∈ En+k , Lemma 8.28 ensures that the map a ∈ (0, ϵ) 7−→ ∂nπau ∈ Fk is
continuous. Hence, by∥∥∂nπa+δa(u+ δu)− ∂nπau

∥∥
Fk
≤
∥∥∂nπa+δau− ∂nπau∥∥Fk + ∥∂nπa+δa∥L(En+k, Fk)

≤Kn,k

∥∥δu∥∥
En+k

we conclude that ∂nπ : (0, ϵ)⊕ En+k −→ Fk is continuous as well.

In the last step, we have used the following result:

Lemma 8.28 (The weight does not destroy continuity of our map)

Given f ∈ C∞
0

(
−3

2
,−1

2

)
and v ∈ L2(0, 1) the map a ∈ (0, ϵ) 7−→ Rλ(a)f τ2av ∈ L2

ρn(−1, 0) is continuous.

Proof. Working with a ∈ (a0 ±∆a) ensures that Rλ(a)f is supported in the ”comoving interval” I−= I−(a0).

On I− one has ∥w∥L2
ρn(I−)

≤ CnI− ∥w∥L2(I−)
where CI− := sup

x∈I−
ρ(x) <∞.

More explicitly, with ρ =
1

|x|
and I− = [−r · a0,−s · a0] one observes CnI− ∼

1
an0
.

Using ∥α · w∥L2(I−)
≤ ∥α∥C0

bounded(R<0)
∥w∥L2(I−)

the claim is a combination of Lemmas 8.11 and 8.1.
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Appendix A

Transition between real and
complex sc-Hilbert spaces

A.1 Complexification of real Hilbert scales

Note that there are two a priori unrelated approaches to complexification, depending on
whether we are dealing with a Hilbert space or only a Banach space:

� Hilbert space complexification:

Given a real Hilbert space H, we equip its complexification HC := H ⊗R C with the
hermitean product ⟨x⊗ λ, y ⊗ µ⟩CH := λ̄µ⟨x, y⟩H ∈ C.
Setting v = w makes the imaginary part of

⟨v0 + iv1, w0 + iw1⟩CH =
[
⟨v0, w0⟩H + ⟨v1, w1⟩H

]
+ i
[
⟨v0, w1⟩H − ⟨v1, w0⟩H

]
vanish, whereas from the real part we read off that the norm induced by ⟨·, ·⟩CH is
equivalent to

∥∥v0 + iv1
∥∥
H ⊕H =

∥∥v0∥∥H +
∥∥v1∥∥H and therefore complete itself.

Note that
∥∥·∥∥

H ⊕H is a real but not a complex norm, by failure of
∥∥λv∥∥ = |λ| ·

∥∥v∥∥ for
general λ ∈ C. This does not prevent it from being equivalent to the complex norm
induced by ⟨·, ·⟩CH .

� Banach space complexification:

Given a real Banach space W , its complexification WC = W ⊗R C can be understood
as a complex Banach space by defining∥∥v∥∥C

W
:= max

t∈R

∥∥cos(t)v0 − sin(t)v1
∥∥
W

= max
t∈R

∥∥Re[eitv]∥∥
W

(A.1)

By inserting t = 0 and t = π
2 we obtain

1

2

(∥∥v0∥∥W +
∥∥v1∥∥W) ≤ ∥∥v∥∥CW

whereas |cos(t)| , |sin(t)| ≤ 1 guarantees that∥∥v∥∥C
W
≤
∥∥v0∥∥W +

∥∥v1∥∥W
Thus,

∥∥·∥∥C
W

is equivalent to
∥∥·∥∥

W ⊕W and therefore complete itself. However, unlike∥∥·∥∥
W ⊕W , it succeeds in being a complex norm since by writing λ = |λ| eiθ we observe

that ∥∥λv∥∥C
W

= |λ| ·max
t∈R

∥∥Re[ei(t+θ)v]∥∥
W

= |λ| ·
∥∥v∥∥C

W

As mentioned in [MST], the choice (A.1) is known as the ”Taylor complexification” ofW .

Let H ⊃ W1 ⊃ . . . be a filtration of real vector spaces. Complexification amounts to
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considering the filtration of real vector spaces given by H ⊕ H ⊃ W1 ⊕ W1 ⊃ . . . and
regarding HC = H ⊕H as a complex vector space with i ∈ C acting by

I =

[
−idH

idH

]
Since all higher levels are preserved by I in the sense that I(Wk ⊕ Wk) ⊂ Wk ⊕ Wk, we
can regard the WC = Wk ⊕Wk as complex subspaces of HC, leaving us with a filtration of
complex vector spaces

HC ⊃WC
1 ⊃ . . . ⊃WC

k ⊃ . . .

Now assume that our original H ⊃ W1 ⊃ . . . was a filtration of real Banach spaces with
bounded inclusions, the norm

∥∥·∥∥
H
arising from an inner product ⟨·, ·⟩H .

Then H gets complexified as a Hilbert space, whereas the higher levels WC
k , k ≥ 1 are

equipped with their Taylor norms (A.1). In any case,
∥∥·∥∥C

Wk
is equivalent to the real norm∥∥(v0, v1)∥∥Wk ⊕Wk

=
∥∥v0∥∥Wk

+
∥∥v1∥∥Wk

, so the filtration HC ⊃WC
1 ⊃ . . . has bounded inclusions

as well.

The following simple observation will be used in section 5.1 Proposition 5.8:

Lemma A.1 (Complexification preserves Density and Compactness)
Given H ⊃ W1 ⊃ . . . a filtration of Banach spaces with bounded inclusions such that

∥∥·∥∥
H

arises from an inner product, let us consider the filtration HC ⊃WC
1 ⊃ . . . described above.

Then
(
WC
k

)
k≥0

is an almost/honest sc-Banach space if and only if (Wk)k≥0 was an al-

most/honest sc-Banach space.

Proof. Density: Note that

(WC)∞ =
⋂
k≥0

(Wk ⊕Wk) =
⋂
k≥0

Wk ⊕
⋂
k≥0

Wk = (W∞)C

are two descriptions of the same set. Since the norm on WC
k is equivalent to

∥∥·∥∥
Wk ⊕Wk

, we

have an equivalence between W∞ being dense in Wk and (W∞)C = W∞ ⊕W∞ being dense
in WC

k =Wk ⊕Wk.

Compactness: A subsequence argument shows that if Wk+1 ↪→ Wk is compact, then so is
Wk+1 ⊕Wk+1 ↪→ Wk ⊕Wk. The reverse implication can be seen by considering sequences
(vn, 0) with constant second entry.

A.2 Symmetrisation of complex Hilbert scales

As a reverse operation to the complexification process of the previous section, some situations
will make it necessary to forget the complex structure and regard a given complex sc-Hilbert
space H ⊃W1 ⊃ . . . as a real sc-Hilbert space H Re ⊃W Re

1 ⊃ . . .
In this case, all sets and norms stay the same, the only material change being that instead
of a hermitean form ⟨·, ·⟩H the space H Re = H now carries the symmetric inner product

⟨v, w⟩Re
H := Re⟨v, w⟩H =

⟨v, w⟩H + ⟨w, v⟩H
2

Still, ⟨·, ·⟩Re
H and ⟨·, ·⟩H induce the same norm on H, so the transition from

(
H, ⟨·, ·⟩H

)
to(

H, ⟨·, ·⟩Re
H

)
will not affect questions of density or compactness.
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