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Abstract
While proving the sc-Fredholm property of APS-type operators D4 = % — A(t) on both unweighted

and weighted Floer path spaces W, = (;;,—, W"?(R, W},) and (ngk) >0, we argue that the latter
case requires a bound on the weight sequence 0 = §y < 01 < ... whose value o, can be calcu-
lated in terms of the operator family A(¢). Moreover, in an attempt to replace the classical Floer
cylinder ¥ = R x S! by a pair-of-pants worldsheet with topology-changing level sets, we prove the
sc-smoothness of a retraction 7y : (-¢,¢) @ W2 — W,P? that interpolates between topologically
distinet fibres ryo(W,2) = WnHL2(SY) and ryso(W,P2) =2 Wnth2(S1) @ Wnth2(Sh)| leaving it for
future investigation to interpret the Cauchy-Riemann operator 0 ~ 0y 4+ i0,, as calculating the flow
of a sc-smooth vector field A(t) ~ id,, on the M-polyfold im(ry).

Kurzzusammenfassung

In dieser Arbeit beweisen wir die sc-Fredholm-Eigenschaft von APS-Operatoren Dy = % — A(t)
auf ungewichteten und gewichteten Pfadriumen W, = (,,,_, W"*(R, W},) und (Wzik) >0. In let-
zterem Fall muss die Gewichtsfolge 0 = §y < 1 < ... eine obere Schranke besitzen, deren Wert
wir in Abhéngigkeit von der Operatorfamilie A(t) eingrenzen kénnen. Des Weiteren unternehmen
wir den Versuch den klassischen Floer-Zylinder ¥ = R x S' durch eine ’pair-of-pants’-Weltfliche zu
ersetzen und konstruieren dazu eine sc-glatte 'retraction’ 7y : (-¢,€) ® W2 — W22, die zwischen
topologisch distinkten Fasern ry<o(W,P?) =2 WnT12(S1) und rp~(WE?) 22 WrHl2(S1) @ wntl2(Sh)
interpoliert. Wir iiberlassen es zukiinftigen Untersuchungen zu kldren, inwieweit sich der Cauchy-
Riemann-Operator 9z ~ 9; + id,, durch den Fluss eines sc-glatten Vektorfelds A(t) ~ id,, auf der
M-Polyfold im(ry) beschreiben léasst.
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Chapter 1

Introduction

1.1 Motivation

Before describing our precise results in sections 1.2 and 1.3, let us outline the basic dictionary
that defines the philosophy behind our approach.

e In studying maps u : ¥ — H from a 2-dimensional worldsheet ¥ to an in our case
linear target space H, we will fix a Morse function v on ¥ and regard the time slices

u(t) = uly,-1) : B¢ — H
as points in an M-polyfold My..

e For the classical Floer cylinder ¥ = Rx S! this M-polyfold will be given as My = R ® W,
with a constant fibre
W= [L*(SY, H) > Wh(SLH) > ... ]
hosting maps S — H of all regularities.

e Hence, we may reinterpret a given map u : Rx S! — H as a path R — W through the
sc-Banach space W = [Wk’Q(S L ]HI)] x>0 the 'regularity’ of such a path being defined
by its place in the filtration H D W, D ... of nested Sobolev spaces

Wn = ﬂ WT’Q(]R7 Wk)
k+r=n
e Operator families A(t) : (Wg+1)k>0 — (Wk)k>0, on the other hand, can be understood
as time-dependent vector fields on W, whose flow lines are the solutions to

Dale) = [~ 4] ut =0

Since Dy : L*(R, W) N WH2(R, Wy) — L%(R, Wp) extends to a regularizing
sc-operator on the filtration (W), ),>0, only flow lines of the highest regularity
Woo C 0 CF (R, W) will be allowed.

e In the case of a pair-of-pants worldsheet ¥ = CP! \ {#1, 00} with Morse function v,
the topology-changing level sets v~ !(¢) will be represented by the topologically distinct
fibres

riso(Mn) = WHHLA(SY) @ WHE2(SY) and  rco(M,) = WHHA(ST)
of a sc-smooth splicing r : Ré® M — M. Thus, it should be possible to study the
solutions to a PDE on ¥ as those flow lines u : R — M through the ambient fibre M
which stay within a time-dependent ”constraint surface” (M) C M.



1.2 Summary of results (Part I)
In the paper [RS], Robbin and Salamon prove the classical Fredholm property of operators

Da=4 —A: 2RW)NWH(R,H) —— L*(R, H)

where, among other things, A(t) : W — H is a family of self-adjoint operators on a Hilbert
space H. Part I of this thesis studies the implications of replacing the pair W C H by a

sc-Banach space
LW Cc...CcWiCcWy=H

in the sense of [HWZ21], where as before the norm H'HWO is assumed to arise from a Hilbert
space structure on H (in which case we also call the filtration (Wj)r>0 a ”sc-Hilbert space”).

Our findings, as well as their relation to pre-existing work, can be summarized as follows:

Motivated by Floer theory, we assume our operator family to decompose as
A(t) = Ao + B(t)

where, in addition to B(t) € L(H) and Ao : W1 — H being self-adjoint,

Ao (Wit1)k>0 — (Wi)k>0 is a regularizing sc-operator on the Banach scale.

Prop. 2.18 | Now that a ”baseline operator” Ay has been singled out, we can regard

not only Wy but also the higher levels W, as Hilbert spaces with inner product
<U7w>Wk = <v7w>Wk—l + <A0U7 A0w>Wk71 >

thereby maintaining the property that Ag : Wy — Wy is self-adjoint

as an unbounded operator on (Wk, (s >Wk)

Lem. 2.20 | Hence, at every k£ > 0 we can import the ”vertical regularization property”
D (Wr2(R, Wy)) € WH2(R, Wigq) N W TH2(R, Wy,) from [RS] Thm. 3.13.

Lem. 2.19 | Moreover, as a built-in feature of our baseline operator Ay,
we have an additional ”horizontal regularization property”

Ay (LA(R, W) = LA(R, Wiy1).
Note, however, that we cannot get along without a perturbation B(t) € L(H)
as the classical Fredholm property of D4 : L2(R, W;) N WH2(R, H) — L*(R, H)
requires our family A(t) to approach invertible endpoints Ay € L(W1, H) at t = 0.

Def. 2.21 In our setting, we will have to impose the additional property of
+2.23 B(t) € L(H) being a "moderate family of sc-operators” on (Wj)r>0
to ensure that, while operating on the Hilbert space H := L*(R, H),
Cor. 2.29 | B preserves the bifiltration W/ := W"™?(R, W},) in the sense that

B(W;) c W[ for all r,k > 0.

Cor. 2.34 | This leads to D4 : Wn+1)n>0 — (Whn)n>0 being a sc-operator

on the filtration given by diagonals W, := m Wy, with the lowest orders reading
k+r=n

H=L*R,H), Wy =L*R W)WY (R H), Wyo=L*R,Wy) N WHR,Wy) N W?(R, H).

As illustrated in Fig. 2.1, the vertical and horizontal regularization properties
Prop. 2.35 | can be combined to prove that first Da, : Wii1)n>0 — Wa)n>0

+ 2.36 and with B being a moderate perturbation also D : Whi1)n>0 — Wh)n>0
is a regularizing sc-operator in the sense that Dzl(Wn) = Wn+t1-

This seemingly innocent observation in fact opens the floodgates
with most of our subsequent findings building on this result.




Lem. 2.37

Thm. 2.38
+ 2.40

Cor. 2.41

Thm. 3.4

Lem. 3.6,
Cor. 3.7

Lem.3.14+
Prop. 3.15

Before further elaborating on this, let us remark that all

assumptions (Ap being a baseline operator, B being a good perturbation)
are invariant under the replacement A — —A,

so everything that has been proven about D4 will be valid for D_, as well.

Although this has not been emphasized by Robbin and Salamon,
[RS] Thm. 3.10 (’Elliptic Regularity’) can be reinterpreted

as saying that -Dy : W) — H and D_4 : W) — H

are mutually adjoint as unbounded operators on H = L?(R, H).

Given such a pair of mutually adjoint Fredholm operators o1 = FDi4: W) — H,
now with the bonus property that ¢+: (Wyi1)n>0—> (Wa)n>0 are regularizing sc-operators,
we will arrive at our first main result that the operator
—p+=Da: Wai1)n>0 — Wn)n0
(and therefore similarly ¢_=D_, ) is sc-Fredholm.

The more general fact that for a regularizing sc-operator to be sc-Fredholm

it is enough to be classically Fredholm at the lowest level,

has already been pointed out by Wehrheim (see [We| Def. 3.1 and [We| Lem. 3.6).
However, whereas the proof given in [We] traces back to abstract

Hahn-Banach-style arguments about the existence of complementary subspaces,

our more restrictive setup allows completely explicit decompositions of the spaces W,
as summarized by the ”double helix”

kerDa®D_4,W) = H = DaWi)@kerD_y

D—A DA

ker Dy & D_4(Ws) Wi = DyWs)@kerD_y

D—A DA

ker Da®D_4,(W3) = Wy = DaWs)@kerD_y

It is this very picture that will come to our rescue in the proof of Theorem 4.15.

As a by-product, the sc-Fredholm property guarantees that
Dig: Wpiy1 —> W, are classical Fredholm operators at every level n > 0.

This makes the composition

S:=DpD_, : Wy — H,
which is constructed to be of type 7 — T*T"”,
a non-positive, self-adjoint Fredholm operator.

The spectrum of such operators admits a gap € > 0
so that o(S) C (-00,-€] U {0}.

As a result, the resolvent map Re(S): p(S) — L(H,Ws) features a Laurent expansion
RA(S) = —£ + Q[idy — AQ]™Y, A€ B(0)\ {0}
whose coefficients
1 1 dA
P=——— [ d\S-AN"1ad Q=— [ —[S-\"
omi J, QS Z AT and Q=50 [ S0 = A

apart from being represented as L£(H,Ws)-valued contour integrals around the origin,
admit the following interpretation:



Prop. 3.11

Lem. 4.1
+ 4.3

Rem. 4.7

Lem. 4.8

Rem. 4.5 +
Prop. 2.42

o P:H=Ds(W;)dkerD_,— ker D_, is the orthogonal projector onto ker D_ 4

e (Q is a parametrix (quasi-inverse) for S in the sense that

SQ =idy — P and QS =idy, — P

This interpretation relies on the absence of higher poles ” A=+”
which is guaranteed by the ” < ”-direction of the formula

1RA(S) | ) = clist (A, a(9) "
being valid for self-adjoint operators S.

Now that we have studied the properties of D4 as an operator on the
unweighted filtration W,, = L2(R, W,,) "N W3R, W,,_1)N...n W™3(R, H),
note that (W, )n>0 fails to be an honest sc-Banach space,

in the sense required by polyfold theory [HWZ21],

since a simple "bump escape argument” (see Lemma 2.44) shows that
unboundedness of the domain R prevents L?(R, W) N W3R, H) < L*(R, H)
from being a compact inclusion.

As explained for example in the paper [FW] by Frauenfelder and Weber,
this issue can be remedied by introducing a weight sequence 0 = g < 01 < ...

In a dual approach to [FW], we consider the inverted weight factors v_s5,= e~ 0in(®)
(with n € C*(R) satistying n(t) = |t| for |[t| > 1)
as a sequence of injective sc-operators v_s, : Wy )n>0 — Wn)n>0
and use the identification
Wi = vs(Wn) CT W,
to make W9 := ~v_;(W,) a Banach space with norm [|v,(- HW
Since one can rephrase results from the paper [FW] as saying that

Y-as;: Wnt1 —> Wy with Ad; = 6;11 — d; > 0 is a compact operator,

the commutative triangle ,.
Ad;
Wi ————— W,

N A

translates into a compact inclusion Wnﬁ':ll — Wo.

Thus, our "twisting sequence” 7_s,: Whn)n>0 — (Wn)n>0 produces a bifiltration

WgC WQC ch H
X )

W W W 3%

with compact diagonals indicated in red, leaving us with

a k-family of honest sc-Banach spaces (ngk)nz()-

The density property of these sc-Banach spaces is guaranteed by

the set S := C§°(R)W being dense in every W,

and at the same time invariant under 7_; in the sense that v_5(S) = S.
4



Now we are ready to state our main result:

Once our weight sequence 0 = dg < 91 < ... is bounded by a suitable 4,
whose value depends on the invertible endpoints Are L(W7, H) of our family A(t)
as well as the spectral gap of S = DgD_, : Wy — H,

Thm. 4.17 Dy (Wa’ll) >0 — (Wg”)nzo

n
will be a sc-Fredholm operator between honest sc-Banach spaces.

As before, the key ingredient consists in
Prop. 4.13 | D4: (Wzﬁrl)nzg — (W3n),,50 being a regularizing sc-operator,

which itself is the combination of two separate properties:

Lem. 4.14 | First, one easily verifies that D 4 is ”strongly twistable”, which guarantees that
+ 4.11 Dy: (Wg+1)n20 — W))nzo
is a regularizing sc-operator for arbitrary but fixed § > 0.

Note, however, that working with an increasing weight sequence 0 = dg < 01 < ...
forces us to vary the size of § as we proceed to higher levels of regularity.

In order to adapt to these changes of ¢,

D 4 has to be "twist-regularizing”, which means that

at least for 0 < d < d with a suitable upper bound 4,
the unweighted operator D4 : W; — H needs to satisfy

Thm. 4.15 DM (HY) W

According to the decomposition Wi = D_, (W) @ ker Dy,

this property requires fundamentally different proofs

in the cases w € D_,(W2) and v € ker Dy,

making Theorem 4.15 perhaps the most interesting result of this thesis:

o Building on the techniques from Chapter 3,
Step 1 uses spectral perturbation theory
to characterize the restricted parametrix Q|ys

e Step 2, on the other hand, is a spiced-up version
of ideas from [Sa] Lem. 2.11 and [RS] Prop. 3.14
that when combined can be used to prove
exponential decay of solutions to D v = 0,
now however with some extra complexity
coming from the fact that working in W,
requires us to control not only v € L*(R, H)
but in fact v € L?(R, W1) as well as its derivative © € L?(R, H).
Our calculation leads to an inequality involving HB (t)H ) and HB (t)H o)
so for Theorem 4.15 we have to work with ”localized”
(or "asymptotically constant”) perturbations that satisfy
Jim [[BO@)]| =0 fori=1,2.

Chapter 5| | The final chapter of Part I is devoted to criteria for restrictions of

? JoOs : WH2(I,H) — L?(I,H)” to define an actual baseline operator
in the sense used before. More specifically, we take I = (0, 1) to be the
standard interval and assume that H is a (possibly infinite-dimensional)
real Hilbert space with complex structure Jy € L(H).

Then w = (Jo-, )g and Q = (—w) G w serve as symplectic forms

on H and H ¢ H, respectively.




Prop. 5.3

Cor. 5.5

Lem. 5.6

Prop. 5.8

Prop. 5.20

Prop. 5.23

In writing u € W/{’Q(I7 H), we require the endpoints (u(0), u(1))
to be contained in a prescribed subspace A C H @ H
and it turns out that taking the adjoint of
JoBs : Wy (I, H) — L2(I,H)
amounts to replacing A by its Q-orthogonal complement A*.

As a result, the self-adjoint restrictions of Jods : W2(I,H) — L?(I,H)
correspond to Lagrangian subspaces A = A%

With this understood, note that there is

a unique way to define the higher levels WXH’Q(I , H)

once we require Jy0Os : (W/T\L+1’2(I’H))n>0 — (WK’Q(I,H))
to be a regularizing sc-operator. -

n>0

Interestingly, this generalizes the Lagrangian boundary
conditions considered in [FW] section 7.

With I = (0,1) being a bounded interval,

the density property of our Banach scale (Wk’z(l , H))
seems far from obvious, but is in fact guaranteed

by the mere presence of a baseline operator.

n>0

This suggests the conclusion that a baseline operator generates
(rather than just lives on) the Banach scale.

Now that we have described an explicit baseline operator,
it remains to explain which maps I" : Ry x I — L(H)
represent good perturbations B(t) € L(H).

For moderate perturbations this boils down to the requirement
sup H(?i@’;FHE(H) <oo foralll,k>0
(t,x)eRxT
which in ”sigma model situations” I" : R x [ 2m-5 L(H)
reduces to a condition
sup H@é@f@HH < 00
(t,x)eRxT
on the base curve ® : R x [ — H
that we study perturbations D4d® = 0 around.

We expect this condition to be guaranteed by
a-priori estimates similar to [Sa] Prop. 1.21.




1.3 Summary of results (Part II)

Considering maps ¥ — X from a cylinder worldsheet ¥ = R x S! to a linear target space
X = H meant that in Part I we were dealing with constant time slices S?.

A map u; : S' — H was taken to be a point in L?(S' H), with information about the
regularity of u; determining its place in the filtration L?(S', H) > W1H2(S1; H) O ...

As a result, maps u : R x S — H were interpreted as paths u: R — (Wk)k>0 through an
sc-Banach space Wy, = W*2(S1, H), with the regularity of such a path being determined by
its place in the filtration H D Wy D ..... where

Wa= ()W (R,Wh(S", H))
k+r=n

In the more experimental Part II, we explore the possibility of replacing ¥ = R x S' by a
Riemann surface with topology-changing level sets. Our strategy is to fix a Morse function
v on Y and identify its value with the gluing parameter a € B of a sc-smooth splicing
r:B@®M — M. Levelwise maps u, : v~ '(a) — H will now be points u, € r,(M) and
maps u : . —> H can be interpreted as paths u : R — im(r) C M through an M-polyfold.
Note that just as in the topology-preserving case, the ambient sc-Banach space M serves as a
constant target through which such a path can travel, with information about the worldsheet
topology now repackaged into a constraint "u, € r,(M) Va”.

Working with the example of a pair-of-pants worldsheet ¥ = 2\ {£1, 00}, we manage to
construct such a sc-smooth splicing r : (-¢,¢€) ® W?Q — W,EW that interpolates between
fibres 7450(W,P2) = Wn2(SYH) @ W™2(S1 H) and ro<o(WE?) =2 Wn2(51) !

Let us explain the idea behind this construction: Whereas the polyfold construction of Morse
theory (see e.g. [FFGW]) is concerned with gluing copies of R, our basic building block
consists in the gluing of two adjacent intervals (-1,0) and (0,1). The level sets of our Morse
function will be patched together from two copies of (-1,0) and two copies of (0,1), with a
breaking process at a = 0 allowing for a change of gluing partners to model the topology-
changing level sets at a Morse critical point. In addition to this a-dependent, ”dynamical”
gluing, we implement ”sheaf-like” or ”static” gluing to connect neighbouring intervals at safe
distance from the Morse critical point where the effects of our dynamical gluing process are
invisible. However, in the following we will mostly focus on the dynamical gluing.

Depending on the value of our parameter a, our intervals will be glued on an overlap of
size 2a, by using cut-off functions R;,,0 and 1 — R/, as shown below to interpolate
between Sobolev functions that were originally defined on (-1,0) and (0, 1).

It will be useful to replace 8 and 1 — 8 by their normalized look-alikes

o= p and 15

VBt (-p)p L/ ey

for in this case the matrix <_Oiy g) belongs to SO(2, C=(R)).

Moreover, we will use the notation R)f(-) = f(\-) and 7f(-) = f(- + b) to denote the
rescaling and shift maps, respectively.

LCaution: Here W,, will be a different space than the W,, from Part I



With the mapping spaces F,(—1,0), E,(0,1) and N, (-a,a) yet to be determined, we define
our gluing map as the upper row in

F,(-1,0) E,(0,1)

Rl/aa "T-a R1/a7 "T+a T—a
—Ri/ay T-a Rija0- 7'+a] - . { T+a]

Wm2(-1+ a,1-a)
Nu(—a,a)

Rl/aa Rl/a7
_Rl/a'y Rl/aa

and take inspiration in [FFGW] Example 5.9 to consider the retraction

T+a Rl/aa _Rl/a7 1 Rl/aa Rl/a’}/ T—a
T—a Rl/a’Y Rl/aa 0 _Rl/a7 Rl/aa T+a
B W) (¥ BT
F,.(—1,0) E,(0,1)

‘Rl/mO‘2 Rl/aa7
Rl/(zary -Rl/ary2

BY) (BY|

| T+a T—a _ F(-1,0)
B T—a T+a B En(O,l)

Note that the naive choice " F,, = W™2(-1,0)”, " E,, = W™2(0,1)” leads to a breakdown of

scP-continuity because the derivatives

Ryjeri10?-id  Ryjemi107 - Tyoa
Rl/aT—1a7 *T-2a Rl/aT—lV2 -id

1 1
8§ [Rl/aT_HOéQ] = JRl/a [6’;T+1a2] and 8:’5 [Rl/aT+104”y] = %Rl/a [8!;7’.;_104")/]

introduce arbitrarily high pole divergences at a = 0. We circumvent this issue by defining
our Sobolev spaces w.r.t. vector fields Vi = +20, on (—1,0) and (0, +1), respectively.
These simply commute with the rescaling map, in the sense that for f € C°°(R) we have

Vi[Rijof] = Rijo[Vef]

After this heuristic introduction, let us continue with a more precise summary of our results:

Our ’contravariant Sobolev spaces’ WG;(Q) are defined on open subsets ) C R™,
thereby depending on the datum of a metric g and distinguished vector field V.
Rem. 6.1 | Elements of W(};(Q) are tuples (ug, ..., un) € L3(Q2)®" which

obey a suitable realization of the constraint "wug1 = V{ug]”.

The spaces W2 exhibit a strikingly simple transformation behaviour in the sense

Vig
Prop. 6.2 | that each diffecomorphism @ : Q' —  induces an isomorphism of Banach spaces
W2(Q) =5 Wik g (), (U0, oo t) > (ug 0 D,y 0 D)

that while acting by componentwise pullback of the tuple (ug)g=0,.. n
packages all non-trivial information into the ”smooth data” (V, g).
This data is needed to recover the interpretation of the higher entries uy.

While the Sobolev spaces WS;(Q) can be studied over any open subset ) C R™,
we will focus exclusively on the case m = 1 with 2 = I an open interval.

Regarding the notation, it is sometimes useful to write WCi(I )= W{}”p%l (1)

or drop the subscript g from WSQQ (I) once a particular metric has been singled out.

As an application of our transformation rule, we use the vehicle of a canonical
Rem. 6.3 | ’'straightening diffeomorphism’ ® : I, — [ to trivialise a given (non-vanishing)
vector field as ®*V = 0,, making it possible to identify WG’;(I ) with an (almost)
Lem. 6.4 | standard Sobolev space Wgz’?@ ,(Iz) and to analyse (non-)compactness

of the inclusion W‘l,;(f) — LE(I), (ug, u1) — up.




Rem. 6.5

Lem. 6.13

Prop. 8.22

Prop. 8.19

Prop. 8.25

Moreover, in an algebraic interlude we develop calculation rules to exchange
the distinguished vector field, while keeping the interval I and metric g fixed.
Specifically, we introduce the subring R(I, W) C C*°(I)

of ’smooth functions with bounded W-derivatives’

and exhibit f € R(I, W) as a sufficient condition for WG’Q(I )

to embed into the Sobolev space ng,z (I) with rescaled vector field W = f- V.
Returning to our vector field V; = x0,, note that this calculation rule

yields a bounded linear inclusion WgI’Q(O, 1) — ng((), 1)

whereas the reverse inclusion does not exist.

Having introduced vector-field dependent Sobolev spaces W(,L; to circumvent
the sc’-catastrophe mentioned above, our main effort consists in proving
that the off-diagonal part of the retraction defines a sc>-map

(a,u) — {

Ryjo(tr107) 7200 fora >0
0 fora <0

Note that Ry /,(7+107) € C5°(R) is a bump supported in (% a, %),
making it possible to evaluate mo,u in the space W(}f(—l, 0)
even though it originates from ng(O, 1).

Figure 8.1 is an illustration of this transfer process and the
technique of ’comoving intervals’ that is required for differentiation w.r.t. to a.

In differentiating the expression a — Ry, f - T2aw € W{}f(—l, 0)
with w € W{}f((), 1) and a bump f € C§° (72, f%),

one has to distinguish between ’'longitudinal derivatives’ in a-direction
and ’'transversal derivatives’ along the level sets.

First of all, the transversal derivative V* [Rl Ja frgaw] is just a sum of similar terms
Ry oM [f] - m2aViw

with Viw € WQ:Z’Q(O, 1) and My,[f] € C§°(R) a bump supported in (72, f%)

On the other hand, derivatives in a require more care:

As we will see below, it is only necessary to calculate the

a-derivatives of a — Ry, (f)T2au € le,’f(—l, 0),

with the n-th a-derivative forcing us to focus on u € WEFLQ(O7 1).

With x,,.1[f] € C5°(R) yet another kind of bump supported in (%, 7%), one finds
0

" 1 - l 1,2
<aa> Rl/af *T2qU = an ;Rl/a Xn,l[f] : TQaV+u € va (—=1,0)

so the n-th a-derivative translates into a pole of order n.

To prove sc-smoothness of a fibre-linear sc®-map 0°7: B E — F

where the base is an open subset B C R and the fibres are sc-Banach spaces F and F,
it is enough to find a sequence of sc%-maps 9"m: B E" — F, n >0

such that at fized e € E, 11 the map b — 9" lmy(e) € Fy

is the derivative of its predecessor b — 9"m(e) € Fp.

Prop. 8.19 suggests that in our case this sequence will be given by
1 n
0"ralu) = > Rujaxadld] - m2aVi
=0

with transversal derivatives
m—+n

1 ‘
VIO mau) = — > | RuoL™ maViu, L€ CF(-,-)
s=0
entering the proof of sc¥-continuity.
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Crucially, our sc>-criterion can be extended to the case of
Thm. 8.26 | removable singularities 0 € (-¢, €), the main condition being
that the left and right limits

lim 0" lim 0" F
lsg 0" (c), Ly 0" (c) € Fi
have to exist and agree for every fixed e € E,, .
In the case of the map

Ry /o(Tr107)T00u  fora € (0,¢€)

(a,u) —
0 for a € (-¢,0)
this will be achieved by choosing
E,=WyR0,1) B, =W h1,0)

with a fine-tuned weight factor p = ﬁ

Apart from providing compact inclusions (which itself would not require any fine-tuning),
Prop. 8.27 | our weight sequence p" = |z|™" can be used to cancel the pole ain from V[0 " mqu).

Indeed, the map 0"x : (0,€) ® Eptm —> Fyy, involves a "weight difference”
between W$+:;t}nz nd Wy +p1,;2, allowing us to substitute pm = |z|" pnt™

and use the support of Ry /,Ls"" to compensate = L by |2|" < (2a)".

The transition at a Morse critical point can now be
Thm. 7.4 | modelled through a sc-smooth ’crossover splicing’
D2 @2 @2 ®2
Foross (6,6 @ [WL21,0)] Ve [wtkzo,)] T —— [pieno] Te ko]
a A,B C,D A,B C,D
that is explicitly given by

A B C D

A e ia Ry (rosan) 722 @ 41 .
B Ri(rira?) id Rl (re107) Ti2a D>~ o B
o Rl(”,,)ﬂ“(m)ld ......................... . ? § .
D |Ri(r107) 720 Ry (r17?) id _1 |
o
A B C D

+
y:
\

|

o
jen}

O a w =
.=
g
2
=
!
N
7
_l’_
=
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By restricting rcy0ss to suitable closed subspaces

W, € W2 (-1,0) @ Wit 220, 1)

Thm. 7.9 | we arrive at a sc-smooth splicing 7y, : (-¢,€) @ W2 — W2
that interpolates between fibres

Prop. 7.11 | 7450(W2?) = [WH12(S1)] %2 and reco(W,22) =2 WrH12(S1)

corresponding to distinct topologies S' U S! and S*:

1 D B 1
3 *3
+1 00 -1
E . >0 0< o F a>0
1 1
2 A C 2
1 D B 1
3 *3
+1 -1
0 0
E _1 0/\0 1 F a<0
1 1
2 A C 2

It remains to describe a way by which
geometrical data defined on the worldsheet X
can be transferred to our M-polyfold im(ry).

In particular, we need a collective parametrization for all level sets 3,
so that each one of them can be identified with the ensemble of
unit intervals used in the construction of rs.

Prop. 7.1 | Luckily, this can be achieved without integrating any gradient flow:

Our pair-of-pants worldsheet ¥ = C\ {£1}

can be interpreted as a ramified cover of the cylinder C' = C\ {0}.
This allows us to equip X with a distinguished Morse function v
coming from the radial coordinate on C.

Meanwhile, the angular coordinate w provides

the desired collective parametrization of all level sets:

pair of pants C\ {£1} cylinder C = C\ {0}
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Away from the critical point at z =0
we can implement a holomorphic change of coordinates z — v + iw,
allowing us to split the operator

0z ~ 0, + 10,

into a longitudinal part 9, and a transversal part iJ,.

Once we identify our Morse function v with the gluing parameter a, the gluing map from
Proposition 7.3 should make it possible to study a combination of various copies of

A(a) ': T+a Rl/aa _Rl/a7 10, Rl/aa Rl/aﬁ/ T—a
' T—a Rl/a7 Rl/aa ? _Rl/a7 Rl/aa T+a

as an operator family on the ambient space of our retraction ry, similar to the operator
families encountered in Part 1.

We leave the complete formulation as well as the properties of this operator family to future
investigation and conclude our discussion with a series of heuristic remarks:

e The matrix ra“’ ?] being diagonal ensures that A(a) commutes with the retraction,

in the sense that r, 0 A(a) = A(a) o ry at every value of the gluing parameter a.
As a result, A(a) will preserve im(r,) as a closed subspace of the ambient fibre.

e The term ”?” is invisible to vectors from the subspace im(r).
However, one might consider choosing an injective operator

7 W2 (ca,a) — Wi

. -a,a
int’pgnt int’pgnt ( ’ )

to prevent A(a) from having an "unphysical” kernel on the ambient fibre.

e Note that the term J[R/,a] = %Rl/a [0a] introduces a pole at a = 0.
However, at the same time 9, : W"th2 — W™? leads a decrease in regularity. This
decrease in regularity translates to a weight difference between W(}J;,liz and ng 1
by which we can absorb the pole in way similar to Proposition 8.27.
Thus, we expect our operator family to extend continuously beyond a = 0.

e Even more, it should be possible to apply our methods from section 8.2 to prove sc-
smoothness of the map (a,u) — A(a)u, in essentially the same way as we proved
sc-smoothness of the retraction (a,u) — 74(u).

These remarks suggest the interpretation of A as a vector field with sc-smooth time-dependence,
whose flow arises as the kernel of our APS-operator

d
9: ~ — — Ala)

12



Part 1

The sc-Fredholm property
of APS-type operators
on weighted Floer path spaces
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Chapter 2

APS operators on unweighted
Floer path spaces

2.1 Basic definitions about almost and honest sc-Banach spaces

In this section we introduce some very basic notions encountered in (linear) polyfold theory
[HWZ07], while disentangling them from the requirement of ’compact inclusions’. First of all,
remark that the notion of a ’regularizing sc-operator’ makes sense on any kind of filtration
without any assumption on how the levels are related:

Definition 2.1 (Filtration-compatible maps)
Let UyD U1 D...0UD...and Vg D V3 D ... D Vi D ... be filtrations of vector spaces.
1) A map ¢ : Uy — Vp is called reqularizing if for every k > 0 we have ¢~(V) C Uy
2) Assume each Uy carries a norm ||-||, and each Vi carries a norm ||-,, .
A linear map ¢ : Uy —> Vj is called sc-operator if for every k > 0 we have
¢(Ur) C Vi and ¢ € L(Uy, Vi)
Remark. A sc-operator ¢ : Uy — Vj is regularizing if and only if ¢=1(V3,) = Uy,
For our purposes, it will be useful to study ’almost sc-Banach spaces’ as a precursor to the
usual sc-Banach spaces of [HWZ07]:

Definition 2.2 (Banach scales)
Given a filtration of vector spaces Vo D Vi D ... D Vi D ... each carrying a norm
such that (Vi ||-[l,, ) is a Banach space and the inclusions are continuous
we say that
o (Vi)ren is an almost sc-Banach space if Vy, := ﬂ V., is dense in V; for every k € N
neN
o (Vi)ken is a sc-Banach space if in addition to this all inclusions Vj,41 < Vj, are compact
operators

Notation. Given a filtration V = (V})ren we denote by V! the truncated filtration (V1) = Viyq
If V is an (almost) sc-Banach space, then so is V1.

A sc-Banach space will sometimes be called honest sc-Banach space to highlight the differ-
ence. Similarly, we will introduce a distinction between almost and honest sc-subspaces:

Definition 2.3 (almost/honest sc-subspace)

Assume that along with an almost sc-Banach space (Ug)ren we are given a sequence of
subspaces Vo C Uy, Vi1 C Vi N Ugy1 such that, when Vj is equipped with the norm
coming from Uy, the intersection ,,~ Vin is dense in every V.

In this case we say that V' C U is an almost sc-subspace.

We call V- C U an (honest) sc-subspace if in addition all our subspaces Vj, C Uy, are closed.

Remark. Every almost sc-Banach space is an honest sc-subspace of itself.

14



Note that, as we have defined it, an honest sc-subspace V C U does not necessarily have to
be an honest sc-Banach space. However, it will automatically be an honest sc-Banach space,
once U is:

Lemma 2.4 Let V C U be a sc-subspace. If U is an honest sc-Banach space, then so is V.

Proof. To verify compactness of the inclusion Vi1 < Vi consider any bounded sequence
Tp € Vig1. Since Vi1 C Uy — Uy is compact, we can find a subsequence that converges
in Up. Its limit in contained in V; because Vi C U} is a closed subspace. ]

Almost sc-subspaces, on the other hand, exhibit better stability properties:

Lemma 2.5 (The image of a sc-operator is an almost sc-subspace)
Let ¢ : U — V be a sc-operator between almost sc-Banach spaces U and V.

If X is an almost sc-subspace of U, then ¢(X) = [¢(Xk)]k>0 1s an almost sc-subspace of V.

Proof. The property ¢(Xgi+1) C ¢(Xg) N Viy1 is immediate from X1 C Xj and our as-
sumption that ¢ is a sc-operator. It remains to show that ¢(X ) is dense in every ¢(Xk).
In doing so the smaller set ¢(Xoo) C ¢(X)oo will be sufficient. Indeed, X, C X, is a dense
subset w.r.t the norm ||-[|,, so taking into account that ¢ € L(Uy, Vi) is continuous, every
¢(x) € ¢(Vi) can be approximated by a sequence ¢(z,) with z, € X O

The analogous result for honest sc-subspaces requires some extra conditions:

Corollary 2.6 (Case where the image is an honest sc-subspace)
Let ¢ : U — V be a reqularizing sc-operator and assume that ¢(Uy) C Vj is closed subspace.
Then ¢p(U) = [¢(U’€)}k>0 is an honest sc-subspace of V.

Proof. By Lemma 2.5 we already know that ¢(U) = [¢(Uy,)] k>0 18 an almost sc-subspace.

That it is indeed an honest sc-subspace can be seen as follows: For a regularizing sc-operator
we have ¢~1(V}) = Uy, by which we can rewrite ¢(Uy) = ¢(Up) N Vj. Moreover, continuity
of the inclusion Vi, < V| guarantees that ¢(Up) NV} is a closed subspace of V. O

The reader may observe that arguments similar to Lemmas 2.4, 2.5 and Corollary 2.6 are
involved in the proof of [We| Lem. 3.6. However, we prefer to highlight them as individual
properties.

Now we are ready to state the main property that we are after, namely that of a linear
operator being sc-Fredholm. We phrase our definition in such a way that it emphasizes the
concrete input needed for an operator to be sc-Fredholm, while making sense not only on
honest but also on almost sc-Banach spaces:

Definition 2.7 (sc-Fredholm operator)

Let U = (Uk)keny and V = (Vi)ren be almost sc-Banach spaces. Assume that along with
finite-dimensional subspaces K C Uy, and C' C V, we can find decompositions U, = K @ Xy,
and Vi = Y, ® C where the X; C Ui and Yy C Vi are closed subspaces that organise into
sc-subspaces of U and V, respectively. Assume further that ¢ : Uy — Vj is a sc-operator
with ker ¢ = K and ¢(Uy) = Y. In this situation ¢ will be called sc-Fredholm.

Remark 2.8 (Classical Fredholm property at every level)

With the notation of Definition 2.7 it is immediately clear that if ¢ : (Ug)r>0 — (Vi)r>0 is
sc-Fredholm, the operator ¢ : Uy = K & X — Y @ C =V}, will be classically Fredholm at
every level k > 0.

It is straightforward, be it a bit tedious, to verify that in the case of honest sc-Banach spaces
our definition agrees with the standard one from [HWZ07], the moral reason for why this
works being Auxiliary Lemma 2.9 and Lemma 2.10 below.
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Auxiliary Lemma 2.9 (Finite-dimensional subspaces are closed)
Let U be a normed space over a complete field (in our case R or C).
Then every finite-dimensional subspace C' C U 1is closed.

Proof. Given a basis {e;}i—1,. . n of C the norm HZZ )\ieiHC
norms on a finite-dimensional vector space are equivalent, we conclude that (C, HH() is a
Banach space. Hence Cauchy sequences in C' cannot have their limit outside of C. O

=5 |)\Z} is complete. Since all

Lemma 2.10 (Topological decomposition of Banach spaces)
Let U = X @ C be a Banach space, decomposed into closed subspaces X and C.
Then ||-||,; is equivalent to the canonical norm of X & C

Proof. The canonical norm on X @ C is given by ||(z,¢)|| = |z||, + |l¢|l, so the triangle
inequality of [-||, shows that X & C' — U, (x,¢) — x +c is a bounded linear isomorphism,
which by the Inverse Mapping Theorem has a bounded inverse. The condition that X and
C are closed subspaces is to ensure that X @ C'is a Banach space, as required for the Inverse
Mapping Theorem. O

To conclude this warm-up section, let us comment on a repeating pattern that we will
encounter in regularization proofs over and over again:

Definition 2.11 (Escalator)

Given a filtration of sets Vo D V1 D ... D Vi D ... we say that a map

¢ : Vi — Vp is an escalator for (Vi)ken if at every k > 1 we have

z,p(x) € Vi, = x € Viq (2.1)

or in other words Vi, N ¢~ (Vi) C Vst

Auxiliary Lemma 2.12 (Escalators are regularizing)
Let ¢ : Vi — Vy be an escalator for (Vi)ren. Then ¢~ (Vi) C Vigt

Proof. At k=0 we trivially have ¢~(Vy) C V4. Assume by induction that ¢=!(V}) C Vii1
holds for a given k& > 0. Then any z € Vi with ¢(z) € Vi1 C Vi will belong to Vi
so property (2.1) implies 2 € Vi 4o and therefore ¢! (Viy1) C Vigo O

Auxiliary Lemma 2.13 (Stability of the preimage)

Assume that on a filtration of vector spaces (Vi)ren we are given operators Ag : Vi — Vp
and B : Vy — Vjy with Aal(Vk) C Vis1 and B(V) C Vi. Then Ao+ B : Vi — Vy satisfies
(Ao + B)"Y(V}) C Viy1 as well.

Proof. By Auxiliary Lemma 2.12 it suffices to verify that Ag+B : Vi — V4 is an escalator for
(Vk)ken. Indeed, consider x € Vi, such that (Ag+B)z € Vj. Then Aoz = (Ap+B)z—Bzx € Vj,
implies x € Vi1 ]
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2.2 Baseline Operators

In this section we explain how a Hilbert space structure on the lowest level of an almost sc-
Banach space Wy D W1 D ... can be transferred to all higher levels W}, making it possible to
apply the techniques of [RS] there as well. The key ingredient will be that of a distinguished
"baseline operator’.

Definition 2.14 (Hilbert scales)
An (almost) sc-Banach space (Wy)ren will be called (almost) sc-Hilbert space
if the norm |||, arises from a Hilbert space structure on H := Wy

Definition 2.15 (Baseline operator)
Let HDO W1 D...D> Wy D... be an almost sc-Hilbert space.
An operator Ag : W7 — H will be called sc-self-adjoint or baseline operator if

e Ay is an sc-operator, i.e. Ag(Wiy1) C Wy and Ag € L(Wy41, W)
e Ay is regularizing, i.e. A_I(Wk) = Wi
e Ay : Wy — H is self-adjoint as an unbounded operator on H

Note that the datum of a self-adjoint sc-operator Ay : W7 — H comes with a unique
equivalence class of possible norms H'HW{

Lemma 2.16 (Characterising the graph norm of a self-adjoint operator)

Let Ag : Wi — H be self-adjoint as an unbounded operator on H and assume that |- is
chosen in such a way that both Ay and the inclusion v : W1 — H belong to L(W1, H).

Then |||, is equivalent to the graph norm of Ag

Proof. Since Aj is a symmetric operator, we observe that for all A € C,w € W; one has
(Ao + Nl = [[ Aol + NP [[wll? + 2ReA (w, Agw)s (2.2
By inserting A = ¢ we see that the expression

(Ao +Dwlly = Il Aowll + [[wll (2.3)

defines a norm on Wj. This norm is equivalent to the graph norm of Ay, denoted by ||
Since Ap and the inclusion ¢ belong to £(W1, H) we immediately have

[|w Hm Dot HAOw”H + HwHH < [HAOH,C(U],H) + HL”,C(W],H):| ) Hw”uq

W :

Self-adjointness of Ay ensures that Ag + i: Wi — H is invertible and the Inverse Mapping The-
orem guarantees (Ag+1)~! € L(H,W;). Thus, equation (2.3) provides the missing inequality

Ao
[[wlly,

wlly, = [|(Ao + )~ (Ao +i)w][, < [|(Ao+1) (Ao +dwlly < ||(Ao+1)

ey | 1H
L(H, W) L(H, W)

O

On the other hand, the combination of Ay being a regularizing sc-operator leads to a de-
creasing filtration of spectra

o(Ag: W1 — H) Do(Ap: Wy — W1) D

We will use the dual version of this statement:

Lemma 2.17 (Increasing filtration of resolvent sets)

Let Ag : (Wia1)ken — (Wi)ken be a regularizing sc-operator.

Then p(AO W, — WO) - p(AO Wit1 — Wk) so the resolvent set can only grow

as we restrict Ag to higher levels 1 + k

Proof. Choosing A € p(AO W — Wo) means that Ag— A : W7 — W) is invertible, so the
restriction Ag— A\ : Wy1 —> Wy is at least injective. In fact it is also surjective because Aux-
iliary Lemma 2.13 guarantees (49— \) "1 (W) C Wi,1. Since Ag—\ belongs to L(Wyy1, Wi),
the Inverse Mapping Theorem ensures that its inverse (4g—\)~! € L(W}, Wy41) is a bounded
linear operator as well. ]
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The combination of Lemma 2.16 and Lemma 2.17 can be bootstrapped to establish the
conditions for [RS] Thm. 3.10 at every level W1 < Wy instead of just W, — H:
Proposition 2.18 (Self-adjointness at every level)

Let H=Wy D W1 D...D Wy D...bean (almost) sc-Hilbert space. Given a baseline opera-
tor Ag : W1 — H equip W1 with the inner product (v, w)w, ., = (v, w)w, +(Aov, Agw)w,
and write ||-{|,, , for the norm induced by (-, -)w,

Then the following statements hold true for all k > 0:

1) ||y, 4, s equivalent to the norm |||, already there

2) Ag: Wi1 —> Wy, is self-adjoint as an unbounded operator on (Wk, (-, >Wk)

Proof of Proposition 2.18.

For k = 0 note that ||-||, arises from an inner product (-,-)y and Ag : Wi — H is self-
adjoint as an unbounded operator on H = W.

Now assume by induction that conditions 1) and 2) are fulfilled at a given k£ > 0.
Condition 1) implies that Ag and the inclusion ¢ : Wy 1 < W} are bounded linear operators
from (Wi, ||~||WM) to (Wi, (-,-)w, ) whereas condition 2) says that Ag : Wyq1 —> Wy is
self-adjoint as an unbounded operator on (W, (-,-)w, ). Since [[Ilyy,,,. 4, TePresents the graph
norm of Ag : Wy —> (Wk, (-, ->Wk), we can apply Lemma 2.16 in the setting "H” = Wy
and "W1” = W41 to conclude that |-, -, is equivalent to the norm ||-[|,, —already there.
It remains to show that Ay : Wyyio — Wiy is self-adjoint as an unbounded operator
on (Wk+17 (-, '>Wk+1)' Since Ag : Wii1 — Wy is symmetric, symmetry of Ag : Wiio —> Wiy
follows from the calculation

<8, Aqw >Wk+1 = <E , A0I15I>Wk + < Aqw, Ay Agw >Wk
Wit2 Wiy Wieir Wiar Wi W41

= <A0 w,w>Wk + <A0 Aow,A0w>Wk = <A0w,w>Wk+l

To verify self-adjointness it remains to check +i € p(AO Wi — Wk+1)

which immediately follows from Lemma 2.17 because the self-adjointness of Ag : W, — H
ensures +i € p(Ao W — H) O
Remark. Proposition 2.18 shows that every baseline operator Ag : (Wi1)r>0 — (Wk)k>0
can be truncated to a baseline operator Ag : (Wit1)k>1 — (Wi)e>1-

Before invoking [RS], let us mention an additional property that is in a way built into the
definition of a baseline operator:

Lemma 2.19 (Horizontal Regularization)
Let Ay : W1 — H be a baseline operator on an almost sc-Hillbert space H D W1 D ... D Wy D ..

Then the map Ag : L3R, Wy) — L2(R, H) satisfies Ay’ (LZ(R, Wk)> — L2(R, Wiy1)

Proof. By Auxiliary Lemma 2.12 it suffices to verify that Ay is an escalator for [L2 (R, Wk)} heN®
Given w € L?(R,Wy) such that Agw belongs to L?(R, Wy,) as well, Ay (W},) = Wy, shows
that we have w(t) € W1 almost everywhere. In fact, by setting w(¢t) = 0 on the null set
where it would be violated, we can arrange for the statement that w(t) € Wy for all t € R.
Using the modified norms ||-||,. , from Proposition 2.18 we observe

2 2 2 2 2 2
@)}, < const. x (@), = const. x [ [t + 4o}, | < const. x | Jwle)}, + | Ao (B,
Integration over ¢t € R yields

2 2 2
[ w0l < const. x [ [l + [l ] < oo

and therefore w € L*(R, Wy1). O
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On the other hand, as a reward for Proposition 2.18, we obtain the following property:

Lemma 2.20 (Vertical Regularization)

Let Ay : W1 — H be a baseline operator on an almost sc-Hillbert space H > W1 D ... D Wy D ..

Then for every pair v,k > 0 the operator

d
Dy, = = Ay : L*(R,Wyp1) NWH2(R, W) — LA(R, Wy,)

satisfies D} (W“Q(R, Wk)> C WP2(R, Wist) N W HL2(R, W)

Proof. Proposition 2.18 shows that Ag can be regarded as a self-adjoint operator on the
Hilbert space (Wi, (-,-)w, ), whose graph norm is equivalent to the norm [[[lyy,,, already
there.

Note that [RS] Thm 3.10 (Elliptic regularity) relies on the operator ” A(¢)” being self-adjoint
at every ¢ € R but does not require existence of invertible endpoints A1 = tlg:nooA(t)'

[RS] Thm 3.13 is a direct consequence of Thm 3.10. Applied in the setting "H” = W,
"W = Wiq with 7 A(t)” = Ag it shows that D}! (W“Q(R, Wk)> C WAR, Wipr) N WH2R, W)
as claimed. 0

Our proof of the key Proposition 2.35 will be a combination of Lemma 2.20 (Vertical Reg-
ularization) and Lemma 2.19 (Horizontal Regularization). Note, however, that we need to
work with constant Aj instead of a time-dependent operator family A(¢) because the oper-
ators A(t) and A(tg) at different times t # to will in general no longer commute, making it
impossible for A(t) to be symmetric w.r.t. (v,w)w,,, = (v,w)w, + (A(to)v, A(to)w)w,.

2.3 Admissible perturbations of a baseline operator

As explained in the previous section, our proof of regularization requires a fixed baseline
operator Ay instead of a time-dependent family A(t). Nonetheless, we can introduce per-
turbations B(t) € L(H) on top of Ay that are a posteriori compatible with the process of
regularization.

Definition 2.21 (Perturbations of a baseline operator)

Let H=Wy D> W; D...D> W D...bean almost sc-Hilbert space.
As perturbations to the baseline operator Ag from Section 2.2

we will consider operator families B € C} 1.4 (R, L(H)).

Such a perturbation will be called...
o symmetric if at every ¢t € R the operator B(t) € L(H) is symmetric

e endpoint-regular if there exist invertible operators Ay € L(W1, H)
such that Ag + B(t) — Ay in L(W1,H) as t — o0

o localized it B € C*(R, L(H)) and |[B'(t)],, [|B"(t)]] ;) — 0 as t — o0

e moderate if B is a family of sc-operators B(t) : (Wk)r>0 — (Wk)k>0
such that at every k > 0 the map R — L(W}) is smooth with bounded derivatives,
i.e. all derivatives B(™)(t) € L(W}), m > 0 exist and satisfy sup HB(m)(t)Hm,> < 00
teR k

We will say that B(t) € L(H) is a...
e Robbin-Salamon perturbation if it is symmetric and endpoint-regular
e good perturbation if it is moderate, symmetric and endpoint-regular

e very good perturbation if it is moderate, symmetric, endpoint-regular and localized
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As a rule of thumb, we will rely on moderate perturbations to ensure that D 4 is regularizing,
whereas Robbin-Salamon perturbations are used to make D4 a Fredholm operator in the
classical sense. Very good perturbations will only be required for the proof of Theorem 4.15.

At the beginning of [RS] section 3, Robbin and Salamon give a list of three in part rather
specific properties that are assumed in order to make their proofs work. For the record, let us
observe that these properties are automatically covered by our notion of a 'Robbin-Salamon
perturbation’:

Lemma 2.22 (Applicability of the results from [RS])

Let Ag € L(W, H) be self-adjoint as an unbounded operator on H and assume

that B € Cgounded (R, E(H)) is a symmetric and endpoint-reqular perturbation of Ag.
Then A(t) := Ao + B(t) € L(W, H) satisfies the conditions (Al), (A2), (A3)
formulated at the beginning of [RS] Section 3.

Proof.
e A slightly stronger and more concise version of (A1) consists in the requirement

Ae Cﬁounded (R’ £(VV7 H))
as realized by demanding B € Céounded (R, L(H ))

e Since B(t) € L(H) is symmetric at every ¢t € R, the Kato-Rellich Theorem ensures
that A(t) : W — H is self-adjoint as an unbounded operator on H, which verifies the
first part of condition (A2). The second part is covered by the statement that |||, is
equivalent to the graph norm of A(t), with the equivalence being realized by constants
independent of ¢t. In our case, we know from the proof of Lemma 2.16 that

HwHu' < H(AO +Z‘)71H£(H,W) ( HAOWHH + HwHH)

=:C

so using  := sup || B(t)||, < co we obtain
teR

w < c([A®wly + @+ ) llwlly) < e +r) (AW, + vl )

[w

whereas the opposite direction is already settled by A € Clgounded (R, LW, H ))

e Finally, condition (A3) coincides with the statement that A(t) = Ag+ B(t) is endpoint-
regular. O

To increase flexibility and as a preparation for the next section, we briefly generalize the
notion of a moderate perturbation from Definition 2.21. In the following let U,V and W be
almost sc-Banach spaces.
Definition 2.23 (Moderate families of sc-operators)
We say that a family of sc-operators A(t) : (Ug)k>0 — (Vi)k>0 is moderate
if at every level £ > 0 the map A : R — L(Uy, Vi) is smooth with bounded derivatives,
i.e. all derivatives A(™(t) € L(Uy, Vi), m > 0 exist and satisfy suﬂgHA(m)(t)HL(Uk yy < 00
te ok

The set of moderate families A(¢) : U — V will be denoted by M (U, V).

Remark 2.24 (Moderate families are the morphisms of a C-linear category)
e The sum of moderate families A, B € M(U, V) is again moderate

o Let U % % @ W be moderate families. Then the product rule together with

HA(m)(t)B(”) (t) B™ (t)

<[4

L(U, Wy L(Vi, W) LUk V)

shows that the composition A(t) o B(t) is moderate, too.
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Example. Let Ay : Wiy — H be a baseline operator on an almost sc-Hilbert space
H>W;D...and denote by ¢ : Wi — H the canonical inclusion.

Then Ag : (Wit1)k>0 — (Wi)gk>0 and ¢ : (Wyy1)g>0 — (Wi)k>0 are constant families of
sc-operators. Given a moderate perturbation B(t) € L(H) the perturbed

A(t) = Ao + B(t) ot (Wit1)k>0 — (Wi)k>0

is a moderate family of sc-operators in the sense of Definition 2.23.

2.4 D, as a sc-operator

2.4.1 Banach-space-valued Sobolev spaces

Before turning to D 4, let us identify the condition under which a general ¢-family of operators
A(t) : E — F induces a map A : W"?(R, E) — W"%(R, F) between Banach-space-valued
Sobolev spaces.

We adopt a slightly unconventional perspective on Sobolev spaces, which as we shall see in
Part II Remark 6.1 opens a door to generalization:

Remark 2.25 (Alternative construction of Sobolev spaces)
Let E be a Banach space. Given any test function ¢ € C§°(R), Young’s inequality shows

that the expression
O (0, u1) := /u03¢+/u1¢

defines a bounded linear map d, : L*(R, E)®? — E. Hence, for every r > 1

W™2(R,E) := {(uo,ul, ) € LA(R, B)®rT! ’ (ug, ug+1) € ﬂ kerdg Vk=0,..,r— 1}
el (R)

is a closed subspace of L?(R, E)®"*+! and thus a Banach space itself.

The standard Sobolev spaces can be recovered as follows:
Lemma 2.26 (Identifying W2 with wr2)

-----

In particular, we can identify /V[?T’Q(R E) with its image under py, denoted by W™(R, E) C L*(R, E).

Proof. Consider (uo =0,u,..., ur) € /WT’Q(]R,E) and assume by contradiction that there
exists a minimal £ < r —1 such that ug+1 # 0. For the convolution with any ¢ € C5°(R) we
obtain

YUy = @rug =0
Now let . € C§°(R) be a standard Dirac sequence!. Then one has
lim [|0e * ups1 — uk-l'lHLZ(]R,E) =0

so having ¢¢ *ug+1 = 0 for all € > 0 implies ui1 = 0 in contradiction to our assumption. [

Now, as a first step, let us describe transitions between Banach-space-valued Sobolev spaces
WL2(R, E) and WH2(R, F):
Lemma 2.27 (Product rule)

Let E, F be Banach spaces. Assume that we are given (u,u’) € W1’2(R, E)
and A € C'(R,L(E, F)) with sup HA(m)(t)HuE p <00 form=0,1.
teR ’

Then one has Au € WY(R, F) with weak derivative 4 Au = A'u+ Au'

YHe. e = %ga (g) where ¢ > 0 is a smooth function supported in [—1,1] such that [p =1
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Proof. Given a standard Dirac sequence ¢, € C5°(R) we have u, := ¢, *u € C° NW"(R, E) and
=0

lim Hu - uH "
e 1€ W'Y2(R, E)

By combining Young’s inequality with our assumption sup ||A™ < oo one verifies that
teR

Ol

for any test function ¢ € C§°(R)
6o (Au, A'u+ Au') = /Au 0p + /[A/u + Au] ¢
= lir% [/Aue(?cb—i—[A'ug—i—Au } = hm [/8 Aueqb}
e—

and therefore (Au, A'u + Au') € WL2(R, F). O

Having understood the case r = 1, let us turn to higher Sobolev spaces:

Lemma 2.28 (W2 as a functor)
Let EE and F' be Banach spaces. Then for every C"-map A : R — L(E, F) whose derivatives

are bounded in the sense that sup HA < oo forallm=0,...,r
teR

there exists a unique bounded linear map WTQ(A) : /I/I7“2(R, E) — T//[/\T’2(R, F)
such that the diagram

(t) ‘ ‘E(E.F)

- Wr2(A) -
Wr2(R, E) WT2(R, F)
lpo lpo
I2(R, E) A I2(R, F)
’ ’ commudtes.
Proof. To verify that the bounded linear map
AT,Q
L*(R, E)®r+! W) L*(R, F)®r+t

F

[uk]kzo,...,r l

maps W’VQ(R, E) to W’VQ(R, F), let us pick any (uo,ul, ...,ur) € /WT’Q(R, E).
For 0< I,k—1 < k <r—1we have A®*V € CY(R, L(E, F)) and (uw, w1) € WH(R, E),
so Lemma 2.27 shows that [Au], € WI2(R, F) with weak derivative

k k+1
_ k k _
= =S )] =
=0 =0y 1
(1)
The injectivity of py : W"3(R, F) —s L2(R, F) ensures that /W?T’Q(A) is the unique map
lifting A : L?(R, E) — L*(R, F). O

Observe that according to our proof of Lemma 2.28, the operator norm of 4 : W"?(R, E) — W"*(R, F)

is bounded by
2t Z Sup HA )HL‘(E,F)
o t€R
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Typically, we will work with smooth families A(¢) to induce a bounded linear map at every
regularity level r > 0:
Corollary 2.29
Assume that A : R — L(E, F) is smooth with bounded derivatives,
i.e. all derivatives AU (t) € L(E,F), m >0 exist and satisfy sup HA(m) (t)Hﬂ(E <0
c :

Then A defines an sc-operator

A (VR B)), 0 — (W2EF)), .,

Proof. Given u € W™2(R, E) we can write u = po() with a unique @ € W“Q(R, E)

and the norm satisfies HUHW,‘_Q(R B U

) — e m)
The commutative diagram from Lemma 2.28 shows that Au € W"?(R, F) with

(R, F) < HW(A)H ’ HUHW"Z(R,E)

so we conclude that A : L?(R,E) — L?(R, F) restricts to a bounded linear map from
Wr2(R, E) to WH2(R, F). O

HAUHW"Z(R.F) = HApOﬂHW‘v?(R.F) = HPO /W(A)ﬂHW‘v?(R.F) = HW(A)ﬁ

2.4.2 Construction of the bifiltration W, and nested Sobolev spaces W,

Having worked with a fixed pair of Banach spaces F and F', we now turn to the ”bifiltration”
Wy = W72(R, W}) of Sobolev spaces associated to an almost sc-Banach space Wy D W1 D ...
Given an arbitrary subset S C N2, we describe a general recipe to regard the intersection

Ws = ﬂ %44
(k,r)es
as a Banach space in its own right. Our recipe consists in taking successive pullbacks in the
category B = [Banach spaces, bounded linear maps]. In fact, the following special case will
be sufficient for our purposes:

Auxiliary Lemma 2.30 (Intersection of Banach spaces)

Given bounded linear inclusions of Banach spaces X — H <+ Y equip X N'Y with the
norm ||w| .y == |lw|ly + |lwlly. Then (X NY,|||;.y) s a Banach space with bounded linear
inclusions X <~ XNY =Y

Proof. As the inclusions X NY — X and X NY < Y are bounded linear, every Cauchy
sequence w, € X NY gets mapped to Cauchy sequences w, € X and w, € Y, which by
completeness of X and Y converge to limits x € X and y € Y, respectively. Since the
inclusions X — H and Y — H are bounded linear, we observe that x = lim,,_, w, = y so
the limits agree and belong to X N'Y. Going back to the norm ||, ., we have

| wn — xHan = |lwn - xHx + [Jwy, — yHY —0
O

Remark 2.31 (Pullbacks in B)
By adapting the proof of Auxiliary Lemma 2.30 one can show that the Cartesian pullback

of any two bounded linear maps X — Z i Y is represented by the closed subspace
ker(aopro—ﬁoprl) CXopY

This explains our choice of the norm ||-||, + |||,
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Now we are ready to summarize our basic setup:

Construction (Bifiltration of Banach-space-valued Sobolev spaces)

e Given an almost sc-Banach space H DO W1 D ...D W, D ...
the subspaces W™2(R, W},) € L2(R, W) C L?(R, H) organise into a bifiltration

Wi = Wh4(R, W)
with W,:,, C W] whenever ' > r and k' > k.
e Given a finite set S € N? Auxiliary Lemma 2.30 shows that

Ws:= [ W2R,Wy)
(k,r)es

is a Banach space with norm HwHS = Z Hw‘

W (R, W)
(k,r)eS

e Of particular interest are the diagonals

Wii= [ WPR, W) = LAR,W,) N WH(R, Wyo1) 0. AW (R, H)

(k,r)EN?
k+r=n

e The lowest levels read

H:=L*R,H) W, =LRW)NWYR,H) W, =L*R W) n W3R, W) N W*A(R, H)

It is important to know how the maps % and A = Ap + B operate on the bifiltration W} .
As it turns out, this is question is easily settled by using our work from section 2.4.1:

Lemma 2.32 (Maps operating on the bifiltration)
1) The map 4 : WY2(R, H) — L*(R, H) satisfies %(W,:“) cwy

2) Given a moderate family of sc-operators A(t): (Wii1),5, — (Wk)

the map A : L*(R,W,) — L*(R, H) obeys A(W,:H) c Wy

k>0

8) Given a moderate family of sc-operators B(t): (Wi),~o — (Wk),50
the map B : L?>(H) — L?(H) preserves the bifiltration, i.e. B(W,:) c Wi

Proof. Fix any k > 0. Statement (1) is a result of the commutative diagram

WHL2R, W) < WRR,W,) < WLA(R, H)

4 d 4
dt dt dt

WrAR,W;,) < L*R,W,) < L*RH)

Moreover, the maps A : R — L(Wj41, W) and B : R — L(W},) being smooth with
bounded derivatives, statements (2) and (3) follow directly from Corollary 2.29. O
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Now that we know how its components operate, let us describe suitable domains for the
operator D 4.

Notation. By h,v : N> — N? we mean the maps
h:(k,r)y— (k+1,7) and v: (k,7) — (k,r+ 1)

Lemma 2.33 (Flexible target)
Let A(t): (Wk‘l'l)kzo — <W’€)k20

Then for every finite subset S C N? the operator

be a moderate family of sc-operators.

Dy = % —A: L*R W) NnWHA(R, H) — L*(R, H)

restricts to a bounded linear map Da : Wis)uws) — Ws
Proof. Combining & (W) C W} and A(W[,,) € W we have
T r+1 T
DA<Wk+1 W ) Wl

. d
Regarding the norms we observe that HawHW < [[w[|yo and [[Awlly, < Cpllwlly,
where the constants C;, > 0 arise from Lemma 2.28

Thus, by writing Cs := (injaxs(fz we find
,r)E

IDawlls = > Dawlly, < > Nwlly + D Chllwlly, < llwlls +Cs l[wlls
(k,r)es (k,r)es (k,r)es

O]

Iterating the prescription from Lemma 2.33 with Sy = L?(R, H) and S,11 = h(S,) Uv(S,),
we arrive at the following conclusion:

Corollary 2.34 (D4 as a sc-operator)
The map D4 = % — A AR W) NWHA(R, H) — L*(R,H) defines a sc-operator

D s Wat1) 5o = (Wa)

n>0

Proof. Let Dy, := {(k,7) € N*|k 4+ r =n} denote the n-th diagonal.
Then h(D,) U v(D,) = Dp+1 so Lemma 2.33 shows that Dy : W) — H restricts to
bounded linear maps Da € LWy11, Wh). O

2.5 Further properties of Dy

2.5.1 ... in the case of a moderate perturbation

Having identified D : Wht1)n>0 —> (Wn)n>0 as a sc-operator, one may ask whether it
is also regularizing. In the case where our family A(t) is replaced by a constant baseline
operator Ay, this question can be answered by combining Lemmas 2.19 and 2.20:
Proposition 2.35 (D4, : W' — W is regularizing)

Let Ag be a baseline operator on an almost sc-Hilbert space H D W1 D ... D Wi D ...
Then the operator D 5, = % — Ap : Wy — H satisfies DZ; (Wn) =Wht
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Proof of Proposition 2.35.

By Auxiliary Lemma 2.12 it suffices to verify that D4, is an escalator for (Wn)
Thus, given © € W,, with D4,u € W, we have to show that uv € W, 11

Step 1 (Vertical Shift). At every k =0,...,n — 1 we argue as follows:

The property v € W,, € L2(R, W,,) N W12(R, W,,_1) can be weakened to saying that

n>0"

u € L*(R, Wiy1) N WH2(R, W)

Meanwhile, we have Da,u € W,, C W %2(R, W},) so Vertical Regularization (Lemma 2.20)
implies that u € W *2(R, Wy1) N WP kTL2(R, 7).
By repeating this argument for all £ =0,..,n — 1 we arrive at

we [ WHR(R, W)
k=0

but it still remains to show u € L*(R, W,,11)

Step 2 (Horizontal Extension).

By Step 1 we have u € WH2(R, W,,) so the weak derivative 7 belongs to L?(R, W,,). Com-
bined with our assumption that Da,u € W,, C L*(R, W,,), this implies

Aou = 1 — Dagu € L*(R,W,,)

so Horizontal Regularization (Lemma 2.19) yields u € L?(R, W,,1) and we are done. O

10

t covered :':: >
>y(S ep 1

o

C

7

A O

Wapr  Wa Wi Wit W,

Figure 2.1: Illustration of Proposition 2.35. To any collection of points S C N? we associate
an intersection of subsets ﬂ W2 (R, W,,) C LQ(R, H).
(m,r)ES

Our claim W, N DZ;(Wn) C W41 is proven by a combination of

"Vertical Regularization’ . . 1
Dy WDl cwy © Wi NWETH - for k=0,.m — 1

and "Horizontal Regularization” Ay (W2) ¢ W2, .
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The result of Proposition 2.35 carries over to time-dependent operator families A(t) = Ao+ B(t),
provided that B(t) € L(H) is a moderate perturbation in the sense of Definition 2.21:

Proposition 2.36 (D4 : W! — W is regularizing)
Assume that A(t): W1 — H arises from a moderate perturbation of our baseline operator Ay.
Then the modified operator D = % — AW, — H still satisfies D;ll (Wn) = Wh+1

Proof. The perturbation A(t) = Ao + B(t) leads us to decompose Dy = Dy, — B. In
Proposition 2.35 we have shown that D4, is regularizing, i.e. DZ& (Wn) = Wy+1- On the
other hand, Lemma 2.32(3) guarantees that B € L(H) preserves the filtration in the sense
that B(Wn) C Why,. Thus, by Auxiliary Lemma 2.13 it cannot alter our conclusion that D4
is regularizing. O

2.5.2 ... in the case of a symmetric perturbation

Let Ag be a baseline operator on an almost sc-Hilbert space H D W=W7 D ... and consider
A(t) = Ag + B(t) € L(W, H) in the case where B(t) € L(H) is a symmetric perturbation.
Then we have the following result which is merely a reformulation of [RS] Thm. 3.10 (Elliptic
Regularity):

Lemma 2.37 (D*, = —Da,)

The operators D_4 : Wiy — H and —Dy : Wy — H are mutually adjoint.

Proof. Recall that the adjoint of an unbounded operator D_,4 is defined on the domain
D(D?,) :={{ € H| (& D-4-)3 is a bounded functional on (Wi, ||-[|,) }
We claim that

D(DZ,) g {€eH|IneM (& D pd)u+ (n,¢)u =0Vo e CF(R,W) } M S D(D*,)

To verify inclusion (1) pick any & € D(D*,). Since (§,D_4-)3 is a bounded functional
on Wi, ||-||,), the Hahn-Banach theorem shows that there exists an extension A € H*
with Alw, = (&, D-4-)%. By the Riesz represention theorem we can find 7 € H such that
A= —(n,-)n - Thus, for any ¢ € C°(R, W) C W; we have (§, D_,¢)y + (1, ¢)u = 0.

Inclusion (2) is the statement of [RS] Thm. 3.10 (Elliptic regularity).

Regarding inclusion (3) let us first establish a partial integration formula for weak derivatives.
Given &, p € Wy we can find approximating sequences ¢y, 1, € Cg°(R, H) such that ¢, — ¢
and v, — p in WI2(R, H). At fixed n € N the functions ¢,, and ¥, are smooth and
compactly supported, so the Fundamental Theorem of Calculus gives

0= [ S onvan = [6utadu+ [0t

On the other hand, using Young’s inequality we can identify the limit as

o+ 6= lim [ G+ [[(Gn vl =0

With this done, recall that A(t) : W — H is a symmetric operator at every t € R,
so given £(t), p(t) € W we obtain (£(t), A(t)p(t)),; = (A)E(), p(t)) ;-
Taking both ingredients together we conclude that for £, p € W one has

(Da&,p)u+ (& Dyp)u =0 (2.4)
In particular, (§, D_4-)3 = —(Da§, -)3 is a bounded functional on (W, [-[|,,) so & € D(DZ,).

Now that we have shown D(D*,) = Wi, note that according to formula (2.4) the adjoint
of D_, is given by D*, = —D 4. This choice is unique because W, is dense in H. O
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2.6 The sc-Fredholm property of D : W,i1)ns0 — Wa)no

Building on our observations in sections 2.5.1 and 2.5.2, the sc-Fredholm property of D4

arises from a nice general pattern:

Theorem 2.38 (Criterion for being sc-Fredholm)
Let HOW1 D ...DOW, D... be an almost sc-Hilbert space.

Assume we are given reqularizing sc-operators ¢+ : (Wat1)n>0 —> W )n>0 such that

at the lowest level n = 0 the operators ¢+ : Wi — H are Fredholm and mutually adjoint.

Then the operators o+ are sc-Fredholm.

Proof of Theorem 2.38.

Let us begin by the following observation, which works for ¢ and ¢_ individually:

e Since . is regularizing, we have ker pr = ¢31'(0) C () Wh

n>0
e Moreover, o1+ : Wi — H being Fredholm ensures that
ker 4 is finite-dimensional and ¢+ (W;) C H is a closed subspace.

Next let us study the interplay of ¢4 and ¢_:
As the operators o1 : W) — H are mutually adjoint, we have o (W;)+ = ker o+
so with ¢4+ (W;) C H being closed subspaces there are orthogonal decompositions

H = pr(W1) @ ker =

As mentioned above, ker ¢4 is contained in every W, and therefore
taking the intersection with W, yields decompositions

Wy = [WaNorWi)] @ ker oz = @i (Wha1) ® ker o=

where for the second equality we have used that gof(Wn) = W1

(2.5)

Corollary 2.6 shows that X, := ¢_(W,+1) and Y,, := ¢+ (W,,+1) are honest sc-subspaces of
W = (Wy)n>0. Setting K := kerpy and C' := ker p_ we have ticked all boxes to ensure
that ¢, : W! — W is sc-Fredholm in the sense of Definition 2.7. By symmetry of our

construction ¢_ : W' — W is sc-Fredholm as well.

Remark 2.39 (Double Helix I)

O]

As an important takeaway from the proof of Theorem 2.38, note that, according to the

decompositions (2.5), our maps ¢+ give rise to a ”double helix” of isomorphisms

keror ©p-Wi) = H = @i(W) Skerp
¥— P+

keroy @p_(Wa) = Wi = o (Wa) @kerp_
¥— P+

kero, ©o-(Ws) = W = ¢ (Ws) ©kerp
Y- Y+

kerpr @ p-(Wa) = Wi = o4(Wa) Blerp

This picture will be revisited in Remark 3.16 and provides guidance for Theorem 4.15.
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Let us put all pieces together and use Theorem 2.38 to exhibit D : Wht1)n>0 —> Wa)n>0
as a sc-Fredholm operator between almost sc-Banach spaces:

Theorem 2.40 (D4 as an sc-Fredholm operator in the unweighted case)

Let Ay : W1 — H be a baseline operator on an honest sc-Hilbert space H D W1 D ...D Wy D ...
Assume that B(t) € L(H) is a good perturbation (moderate, symmetric, endpoint-regular)
and write A(t) = Ao + B(t) .

Then Dig: (Whiti1)n>0 — Wa)n>0 are sc-Fredholm operators between almost sc-Banach spaces.

Proof. All we have to do is verify that the pair "¢1” = FDi4 satisfies the conditions of
Theorem 2.38: With A(t) : (Wit1)k>0 — (Wk)k>0 being a moderate family of sc-operators,
Corollary 2.34 ensures that also D14 : Wht1)>0 — (Wh)n>0 are sc-operators. Since more
specifically A(t) = Ag+ B(t) is a moderate perturbation of a baseline operator, we have seen
in Proposition 2.36 that D4 : Wp41)n>0 — (Whn)n>0 and similarly D_, is regularizing.
Moreover, we have observed in Lemma 2.37 that for a symmetric perturbation B(t) the
operators D_, and —D 4 are mutually adjoint.

Hence, it remains to explain why Dy 4 : Wi — H are Fredholm operators.

This, however, is the main statement of the paper [RS] (see [RS] Thm. A or [RS] Thm. 3.12)
and requires A(t) = Ao+ B(t) € L(W7, H) to be a symmetric, endpoint-regular perturbation
of Ay as well as our assumption that W; < H is a compact inclusion.? ]

Corollary 2.41 (Classical Fredholm property at every level)
The assumptions of Theorem 2.40 ensure that
Dig: Whi1 — Wy is a Fredholm operator at every level n > 0.

Proof. Combine Theorem 2.40 with Remark 2.8. O

2Compactness of the inclusion Wy < H enters [RS] Lem. 3.8 which by the inequality

[€lly, < comst. < [€]lyr) + [1Da€]l, ] (2:6)

from [RS] Lem. 3.9 makes it possible to apply the ’Abstract Closed Range Lemma’ [RS] Lem. 3.7
Note that the inequality (2.6) is the only step in the proof of [RS] Thm. 3.12 that requires invertible endpoints

At € L(W,H)
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2.7 (Wh)n>0 as an almost sc-Banach space

Let H D W; D ... be an almost sc-Banach space. Then the following result confirms

that the ”suspension” W, — ﬂ WT’Z(R, W)

r+k=n
constructed in section 2.4.2 is indeed an almost sc-Banach space (resp. almost sc-Hilbert
space if H was a Hilbert space). What we will prove is actually a bit stronger and will
therefore become important in section 4.1:

Proposition 2.42 (Density axiom for (W,,)n>0)
The space C§°(R)Woo C Wao consisting of finite sums Y s w; fi(+)
with f; € Cg°(R) and w; € Wy is dense in every Wy,

Proof. As a warm-up let us prove that S := C§°(R)Wo is dense in every W] = W"2(R, Wy).
To approximate a given u € W} pick a Dirac sequence p5 € C3°(R). Given a prescribed
accuracy € > 0, we fix § such that

H% U= u| e < €/3

Now that ¢ has been chosen, the expression x := Z ||g0((5l)HL1 g Can be treated as a constant.
1=0
Auxiliary Lemma 2.43 shows that for any w € L?(R, W},) we have @5 +w € W™2?(R, W},) with

T
H‘Pé*wHw“?m,m) - Z H‘Pfsl) *wHLz(M = ”HU)HLZR“A)
1=0

In our case, u can be approximated by a step function v = Zvi Xy, with v; € Wy and
i=1

< €/3k. Moreover, since Wy, is dense in Wy, we can

N (c/3r)2

m2-|I]

I; compact such that Hv uH SR

consider a modified step function o = Z’Di X1, with v; € W4, such that Hﬁl — UZH?h <
i=1
and therefore [|0 — o[ 5 ) < €/35.

Note that @5 * 0 € C°(R)Wo and

H<p5>x<f)—u —}—Hcpg*u

W(R, W) < H‘pé * [{) - U] H (R, W) + H<P5 * [U - u] HW"Z(R.W})

W (R, W)

< €

IN

+/<;Hv

wlo=v s xu—ul]

LA(R, W) L2(R, Wy,) WH(R, W)

To prove that S = C3°(R)W is dense in every W, let us repeat the above proof for
ue AR, W,) N WY2(R, W,_1)N...n W™*(R, H). This time we fix § such that

<¢€/3 for all » =0,...,n

s+ u—u W3R, W)

and define k := i H%(;l)

e Then as before we choose a step function v = Zlvi X1, with v, € W,

=0 i
such that Hv —u <e€/3k forallr =0,...,n

LX(R,W,) (R, W_y)
Since W, is dense in W,,, we can find a modified step function v = Zlﬁi X1, with v; € W

< €¢/3k and therefore automatically HU - uH P

such that Hfz - < ¢/3r and hence |i —vHLQ < €/3k for all rZ: 0,...n

Wlgm, (®W,)

With these adaptions we see that

< €

05 %@ = ul R, S HHﬁ_UHLQ(]R,Wn_,)+KHU_u”L2(]R.W + |5 #u —ul W2R, W)

holds simultaneously for all » =0,...,n. Thus, we have found ¢s * 0 € C§°(R)W with

ngg*f}—uHWn < (n+1)e
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Auxiliary Lemma 2.43 (Convolution inequality)
Let E be a Banach space. Then the convolution of ¢ € C°(R) and u € L*(R, E) satisfies

H(’D*UHLQ(R,E) < H‘/’HLl(R) HUHLZ(R,E)
Proof. The pointwise estimate
1/2 1/2
o= ut@l, < [ dylete =) lote - fut], < [ / dyls@(ﬂc—y)l] { [atete =l o

shows that 9

L'(R) /dy lp(z —y)|- Hu(y)HF

lexut@)[l; < ¢
so by Tonelli’s theorem we obtain

[tz llosu@l < |

2
I

2
(R) HUHLZ(]R,E)

and therefore H<,0 * UHLQ(RE) < HSDHLI(R) H“ }L'Z(R,E) :

Let us conclude this chapter by a simple argument showing that unboundedness of the
domain I = R poses an obstruction to W; < H being compact. Thus, (W, )n>0 may be an
almost sc-Banach space, but it fails to be an honest sc-Banach space, by lack of compact
inclusions:

Lemma 2.44 (Escape argument)
The inclusion operator L*(R,W1) N WLH2(R, H) — L?(R, H) is non-compact.

Proof. Consider a sequence of bump functions ¢, = ¢(- —n) € C5°(R, W) escaping to infin-
ity. The shift map being an isometry, this sequence remains bounded in L*(R, W;) N W*(R, H).
However, since for N large enough ¢, and ¢,x have disjoint support, we cannot find a
Cauchy subsequence even in L?(R, H). O

Before resolving this issue in Section 4.1, let us focus on the spectral-theoretic consequences
of our findings so far. This will provide useful tools for our main effort in Chapter 4.
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Chapter 3

Spectral Techniques

In this interlude chapter, we explore consequences of Corollary 2.41. This will give us the
necessary tools to prove Theorem 4.17 as an analogon to Theorem 2.40 in the 'weighted’ case.

From now on let Ay : W7 — H be a baseline operator on an honest sc-Hilbert space H D W, D ...
Further assume that B(t) € £(#) is a good perturbation (moderate, symmetric, endpoint-
regular) and write A(t) = A + B(t). These assumptions ensure that all results from Chap-
ter 2 apply at once.

3.1 The self-adjoint Fredholm operator D_,D4: Wy — H

Before applying our own results from Chapter 2, let us explain how observations from [RS]
lead to D4 : W1 — H being a closed operator. Note that closed operators are characterized
by completeness of their graph norm:

Auxiliary Lemma 3.1 (Completeness of the graph norm)
Let T : D(T) — H be an unbounded operator on a Hilbert space H.
Then T is a closed operator if and only if its graph norm makes D(T) a Banach space.

Proof. Using the injective map D(T) BT e N to identify D(T) with a

subspace graph(T") C H © H, the graph norm of 7' can be understood as pullback of ||-||,,., -
Now T being a closed operator is synonymous to graph(7') C H @ H being a closed subspace,
which again is equivalent to (graph(7T), |||, ) being complete. O

Lemma 3.2 Dy, : W, — H is a closed operator.

Proof. All assumptions are invariant under ”A — -A”, so it suffices to consider Dy 4.
By [RS] Lem 3.9 we can find a constant ¢y > 0 such that

Co - Hé”m < HfHH + ||DA§||H vVEewW

Conversely, both D4 and the inclusion ¢ : Wi — H are bounded linear operators from W,
to H, so with another constant ¢; > 0 we have

H£HH + HDA§HH < ngwl VEemW

The combination of these inequalities means that the graph norm of D4 is equivalent to
the norm ||-||,,, already there, which by the constructions from Section 2.4.2 is known to be
complete. Using Auxiliary Lemma 3.1 completeness of the graph norm can be rephrased as
saying that ”T” = D, is closed. O
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The following rather well-known result provides a recipe to build a self-adjoint operator from
any closed operator:

Lemma 3.3 (von Neumann’s theorem)
Let T : D(T) — H be a densely defined, closed operator on a Hilbert space H and write

D(T*T) := T YD(T*)) c D(T)
Then S =T*T : D(T*T) — H is self-adjoint and non-negative. Its kernel equals ker T’
Proof. For x € D(S) = T~YD(T*)) C D(T) one has

2
(z,8z) = (g, T Tx) = ||Tz||” > 0 (3.1)
D(T) D(T*)

so S is non-negative. Note that every non-negative operator is symmetric because to prove
that S is a symmetric operator it suffices to verify (x, Sz) € R for all z € D(S).
Equation (3.1) shows that Sz = 0 implies T’z = 0, so we have ker(S) C ker(7T).
With the reverse inclusion trivially satisfied, we obtain ker(S) = ker(7T).
The statement about self-adjointness is known as ”von Neumann’s Theorem” and can be
found in [Te] Problem 2.12 (p.73). As no proof is given there let us provide one here.

By [Te] Lemma 2.3 (p.63) it suffices to verify ran(S + 1) = H.
Since T': D(T') — H is a closed operator, the inner product

(.7.)T = (T, T - >H + (., >H
induces a complete norm on D(T) and gives D(T) itself the structure of a Hilbert space.

Given any z € H we observe that (z,-)|p(r) is a bounded linear functional on (D(T), ||-[|; )
so by the Riesz Representation Theorem there exists Z € D(T') with

<z">‘D(T) - (27 ')T - <T27T'>H + <2’>H (32)

This shows that (T'Z,T-)3 = (z — Z,-)% is a bounded linear functional on (D(T), |||, )
so we get T'Z € D(T™). Thus, we have zZ € D(T*T) and (3.2) can be rewritten as

<Zv >|D(T) = <(T*T + 1)27 >
As D(T) is dense in H, this implies z = (T*T + 1)z € ran(S + 1) and we are done. O

Remark. Our proof of Lemma 3.3 was inspired by the Friedrichs extension theorem as in
[Te] Section 2.3 (p.67) and in a sense bypasses the construction of a Friedrichs extension
to T*T.

The above observations suggest that the operator S = D_4 D 4, while sharing features of D 4
and D_,, has better properties than the original D4:

Theorem 3.4 ( Characterisation of S = D_,D4)

The operator S = D_,D 4 : Wa — H s non-positive, self-adjoint and Fredholm.

It has the same kernel as D4 and the same range as D_, .

Proof. Corollary 2.41 tells us that not only D_, : Wy — H but also Dy : Wo — W is Fred-
holm, so as the composition of Fredholm operators D_,D 4 : Wy — H is again Fredholm.

For the self-adjointness part let us apply Lemma 3.3 in the case "T” = D4 :

From Proposition 2.42 we know that W; C H is a dense subspace and Lemma 3.2 verifies
that Dy : Wiy — H is a closed operator. In Lemma 2.37 we have seen that the adjoint
operator D% is simply —D_4 : Wy — H, which exhibits S = D_,D4 : D;*(W1) — H as
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minus the operator T*T" from Lemma 3.3 . Using Proposition 2.36 to identify the domain as
D(T*T) = D' (W) =W,
we conclude that D_4D 4 : Wy — H is non-positive self-adjoint with kernel ker D 4 .

Last but not least, recall that our operators ¢+ = +D4 4 satisfy the conditions of Theorem 2.38
so by the proof of that theorem W; admits a decomposition

Wi = [Wl N DA(Wl)] @ker D_, = Da(Wh) @ ker D_4
As a direct result, we obtain D_,(Wy) = D_4Da(Ws). O

3.2 The spectrum of self-adjoint Fredholm operators

In this section, we describe the conditions that the properties from Theorem 3.4 impose on
the spectrum of S = D_4,D4. The consequences of being non-positive and self-adjoint are
well-known:

Lemma 3.5 The spectrum of a self-adjoint, non-positive operator S : D(S) — H satisfies
o(S) C (-o00,0]
Proof.  See [Te] Theorem 2.19 (p.77) O

Exploiting the combination of 'Fredholm’ and ’self-adjoint’ requires a bit more work: The
following statement is equivalent to [Wa] Lemma 2.2.5 (p.27). However, we give different,
possibly more intuitive proof.

Lemma 3.6 (Isolated Origin)

Let S : D(S) — H be Fredholm and self-adjoint.

Then we can find € > 0 such that B.(0) No(S) = {0} No,(S).

Proof. Self-adjointness implies that S is closed. S being closed has the following advantage:
When equipped with the graph norm of S the domain D(S) is a Banach space in its own
right and the inclusion ¢ is a bounded map from D(S) to H.

In particular, if for some A € C it turns out that S — XA € L(D(5),H) is invertible, the
Inverse Mapping Theorem guarantees that (S — \)~! € £ (H,D(S)) C L(H) is bounded
as well. This shows that the resolvent set can be described as

o(S)={reC|]S—\:D(S) — H is invertible }

Taking into account that self-adjoint operators satisfy o(S) C R, the spectrum of our oper-
ator S becomes

o(S)={AeR|S—AX:D(S) — H is not invertible } (3.3)

Next recall that the set of Fredholm operators from D(S) to H is open in L (D(S),H),
so with € > 0 small enough S — X\ : D(S) — H is Fredholm for all A € B.(0). We claim
that B.(0) No(S) C 0,(S5). Indeed, the Fredholm property guarantees that ran(S — ) C ‘H
is a closed subspace and therefore H# = ran(S — \) @ ran(S — \)*. Since S is self-adjoint, we
have ran(S — \)* = ker(S* — \) = ker(S — \). Specifying to A € RN B.(0) one gets

S — X invertible <= ker(S — \) =0
so going back to (3.3) we find
g(S) N B(0) C {X € R| ker(S —X) #0} = 0,(5) (3.4)
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We claim that it is possible to further shrink ¢ > 0 so that also o(S) N B.(0) C {0}.

Assume by contradiction that there exists a sequence A\, € o(S) with A\, # 0 and \,, — 0.
Inclusion (3.4) ensures that for n € N large enough the ), are contained in the point spec-
trum o, (S), so we can find ”eigenvectors” x,, € D(S) satisfying |[zn||, = 1 and (S — )z, = 0.
In particular, |[Sz,|,, = [Aa] - [|#a]l,, < [An| shows that Sz, — 0 in H.

By Atkinson’s Theorem our operator S comes with a parametrix S € £ (#,D(S)) such that
SS = Idp(s) — K with K : D(S) — D(S) compact. Passing to a subsequence we can assume
that Kz, — x converges in D(S), so

—0
B
Ty = I‘g(S’xn) + Kz, —x
L(H,D(S))

converges as well. Since S is a bounded operator from (D(S), H~HD(S)) to H, we have

Sx = li_>m Sz, = 0 and therefore = € ker(S). As for a self-adjoint operator eigenspaces
n o0

with different eigenvalues are always orthogonal, we obtain (x,z)y = h_rl}l (xn,x) = 0 and
n o0

thus z = 0. This is in contradiction to [z, = Jim |2l ps = 1. O

Taking all three properties together, we arrive at the following picture about the spectrum
of S:

Corollary 3.7 (Characterising the spectrum of S = D_,D4)

Let S : D(S) — S be non-positive, self-adjoint and Fredholm.

Then there exists a constant € > 0 such that the spectrum of S satisfies o(S)\ {0} C (—o0, —¢] .
The mazimum possible such € will be called the spectral gap of S.

Proof. Combine Lemmas 3.5 and 3.6 O

In particular, 0 € C will be isolated from the rest of the spectrum.

3.3 The operator norm of the resolvent

In section 3.4 Lemma 3.14(ii) we will show that around isolated points of the spectrum the
resolvent map Re(.S) can only have simple poles. The key ingredient will be Proposition 3.11
for which we will need Lemmas 3.8 and 3.10 as preparations. Proposition 3.12 is an immediate
consequence of Proposition 3.11, but will not be needed until chapter 4 Theorem 4.15.

We begin by the following result which is a simplification of [Ka] Theorem III. 6.15 and
Problem II1.6.16 (p.177):

Lemma 3.8 (Spectral mapping for z — z71)
Let S : D(S) — H be a closed (unbounded) operator on H.

i) If S is invertible, we can treat its inverse S~ as a bounded operator from H to itself.
The spectra o(S : D(S) — H) \ {0} and o(S™' € L(H)) \ {0} are related by z — 27"

it) Given X € p(S) = o(S)¢ we have dist(\,0(S)) = inf |o(S) — A| > 0 and the resolvent

RA(S) := (S — A\)~! € L(H) has spectral radius spr(Rx(S)) = m

Proof. Part (i). Recall from our proof of Lemma 3.6 that the resolvent set of a closed oper-
ator S is simply p(S) = {z € C| S—z: D(S) — H is bijective }. Moreover, for S invertible
the inverse S~ € L(H,D(S)) is a bounded operator. Since the inclusion ¢ : D(S) — H
is bounded as well, we can consider ”S™'” = 10 S~! € £(H) as a bounded operator from
H to itself. So as far as S~! is concerned we will use the resolvent formalism of bounded
operators. Now pick any z € C\ {0}. The calculation

voS™ — 27 lidy = (20— 8) o (28)7!
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translates into a commutative diagram

S—l _ Z—l
H H

o (28)1

D(5)
Since (29)~! : H — D(9) is invertible, we find that

z— S

S™L— 271 H — H bijective <=  z—S:D(S) — H bijective
so o(S € L(D(S),H)) \ {0} and o(S~t € L(H)) \ {0} are related by z +— 271
Part (ii). Let S : D(S) — H be closed but not necessarily invertible and consider A € p(S5).
As the resolvent set p(S) C C is open, there exists € > 0 such that
Q:=0(S—AN)=0(5)— X C C\ B0)

In particular, dist(\,o(S)) = inf 2] > € > 0. Since the property of being closed is sta-
ble under perturbation by bounded operators, we observe that S — A : D(S) — H is a
closed invertible operator. By part (i) we find that & = o((S — A)~1) \ {0} and therefore
sup |&| = sup |o((S — A)7!)|. For general Q C C\ {0} one has |§| = ﬁ C (0,00) and

11 .
SUp 11 = mrfay € [0, o], so in our case

1

spr (RA(9)) i Sup |U((S_>‘)_1)‘ = dist(\, o(S))

20— (2= A)7!
- 3

spectral mapping

Figure 3.1: Proof idea of Lemma 3.8(ii) for a closed operator S : D(S) — H.
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In the remainder of this section we investigate whether not only spr(Rx(S)) but also HR,\(S) H,C(H)

can be identified with m. Unfortunately, if .S is a general closed operator, we only
get a lower bound:

Corollary 3.9 (Resolvent norm of a closed operator)
Let S : D(S) — H be a closed operator. Given A € p(S) the resolvent satisfies

1
||R/\(S)HL(H) 2 m

Proof. The spectral radius of a bounded operator R € L(H) is constrained by
HRH,C(H) > spr(R)

so our claim follows from Lemma 3.8(ii) O

Part (ii) of our next result shows that [ReSi] Thm. VI.7 (p.192) extends to closed unbounded
operators. Moreover, as stated in part (iii), self-adjointness of S can be used to guarantee
that the resolvent is a normal operator. This will be key to improving on Corollary 3.9.

Lemma 3.10 (Adjoint of the resolvent)
Let S : D(S) — H be a closed, densely defined operator.

i) If S is invertible, then so is S* : D(S*) — H. Its inverse is given by (S*)~™1 = (S71)*

where in taking the adjoint we consider S™' € L(H) as a bounded operator.

ii) If A € C is in the resolvent set of S, then X is in the resolvent set of S* and we have
Rx(S™) = (Rx(S))"
where in taking the adjoint we consider Rx(S) € L(H) as a bounded operator.
iii) If S : D(S) — H is self-adjoint and \ € p(S) is in the resolvent set,
then Rx(S) € L(H) is a bounded normal operator.
Proof. Part (i). Assume that S : D(S) — H is invertible and consider x € D(S*).
Then for all y € H we have
— -1 _ * -1 _ —1\* qQ*
D(S*)  D(s) L(H)
which implies (S71)*S* = idp(g+). Conversely, consider y € H.
Then for all w € D(S) we calculate
(y,w) = (y, 8, Sw) = ((S7")*y, Sw)
L(H)
so ((S™1)*y,5-) = (y,-) is a bounded linear functional on (D(S), |||[,,). This shows that

given y € H we have (S71)*y € D(S*). Since D(S) C H is dense, our observation that
(S*(S™H*y,w) = (y,w) holds for all y € H and w € D(S) implies S*(S~1)* = idy.

Part (ii). Assume S : D(S) — H is closed and densely defined but not necessarily invertible.
Consider A € p(S) from the resolvent set. Then S — A : D(S) — H is closed and invertible.
Its adjoint is (S — A\)* = S* — A : D(S*) — H and with part (i) we obtain

(ST=N7T = ((S=N) T = (5= N7 e L)
Part (iii) The resolvent formula
(k= A) BA(S) Ru(S) = RA(S) [(S = A) = (8 — w)] Ru(S) = Ru(S) — Ra(S) (3.5)

shows that for any pair p, A € p(S) the operators R, (S), R\(S) € L(H) commute.
For S = S* self-adjoint and A € p(S) part (ii) yields Rx(S)* = R5(S) € L(H)
so Ry (S) commutes with its adjoint. O
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After these preparations, we are ready to prove that, for a self-adjoint operator, the norm
| RA(S) ]| £(H) is completely determined in terms of the distance to the spectrum o(.9).

This generalizes the formulae obtained in [Te] Thm. 2.18 (p.77).

Proposition 3.11 (Norm of the resolvent I)
Let S : D(S) — H be self-adjoint. Given A € p(S) the resolvent satisfies

_ 1
W dist(\, o (S))

Proof. Lemma 3.10(iii) shows that R)(S) € £(#H) is a bounded normal operator. In view of
Lemma 3.8(ii) it remains to prove that the spectral radius of any bounded normal operator

R € L(H) is given by
spr(R) = ||R||£(H)

To do so, we combine ideas from the discussion at “https://math.stackexchange.com/q/1052614”
(version: 2017-11-23). By [ReSi] Thm IV.3(f) (p.186) every bounded operator R € L(H)
satisfies ||[R*R|| = ||R||>. If R is normal, this generalizes to ||(R*R)"| = ||(R")*R"|| = ||R"||*.
Since R*R € L(H) is self-adjoint, [ReSi] Thm. VI.6 (p.192) tells us that

[1RACS)I (3.6)

IRIP = [B°RY = tim [(RRY[* = tim [R"|% = (tim B3 = spr(R)?
n—oo n—oo n—oo p
so spr(R) = ||R||. O

Formula (3.6) can be used to constrain the spectrum of perturbed operators S— K: D(S) — H
with K € L(H): As illustrated by Figure 4.2, the perturbed spectrum o(S — K) will be con-
tained in a HKHM)— thickening of ¢(S). In the proof of Theorem 4.15, however, we will be
dealing with unbounded perturbations K & E(D(S ), 7—[) which means that spectral pertur-
bation theory relies on an upper bound for HRA(S)Hﬁ(H D(S)) instead of just HRA(S)HL(H)

Proposition 3.12 (Norm of the resolvent II)

Let S : D(S) — H be self-adjoint and assume that W := D(S) is equipped with a complete
norm such that S and the inclusion ¢ : W — H belong to LOV,H) . Then for any X € p(S)
the resolvent satisfies

) 1+
| RA(S ||LH W) H 1HCW~W) (1 * dzst(A,a(S))) o

Proof. Self-adjointness of S ensures that (S — i) € L(W,H) is invertible. Since ||-[|,, is
complete, the Inverse Mapping Theorem shows that (S —i)~! € £(H, W) is bounded as well.
Thus, for A € p(S) and u € H we obtain

(S—N)+(A—9)
-1 ' '
165 =2 ull,, < (165 =7 ] g0, 15 =S =Xl
<165 = gy (L4 A =l IRAS) ey ) el
Using Proposition 3.11 to identify ||RA(S)|[,,, = m we arrive at
_1 ‘)‘ — Z’

HR)\ HLH w) H HL(?-{.W) (1 + dist ()\,O’(S))) (38)

so the claimed formula follows with |A —i| <14 |)]. O

Note that the r.h.s. of (3.7) is a continuous function of A € p(S) and will be uniformly
bounded on compact subsets of p(S). We will come back to this point in Theorem 4.15. For
the next section, however, formula (3.6) will be enough.
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3.4 An operator-valued Laurent expansion and its consequences

Even if Ay = 0 belongs to the spectrum of S = D_4D 4, it will be an isolated point, with
the rest of the spectrum satisfying o(S) \ {0} C (-00,-€]. In this section, we prove that the
resolvent of a general closed operator S can be Laurent-expanded around isolated points of
the spectrum, with the stronger requirement of S being a self-adjoint operator leading to a
truncation of higher poles in the Laurent expansion. This implies a set of algebraic conditions
on the coefficients, allowing us to dramatically simplify the expansion and geometrically
interpret the two fundamental coefficients’ P and Q.

In proving Lemma 3.14, we will repeatedly apply the following calculation rule:

Auxiliary Lemma 3.13 (Permutation of limit and Bochner-integral)
Let B be a Banach space and consider a sequence of continuous functions f, : S' — B,
uniformly convergent to f : S' — B. Then f and all the f,, are Bochner-integrable and we
have

lim [ f, = / feB

n—oo Jgs1 S
Proof. As the uniform limit of a sequence of continuous functions, f : S* — B is contin-
uous itself. Since S' is compact, all continuous functions S' — B are Bochner-integrable.
Moreover, one has

| [ [1

As we will see next, analyticity of the resolvent map allows us to deform integration contours,
leading to the following fundamental but still to be refined result:

= [ =l S D= (ST 0 asn— oo ;

Lemma 3.14 (Laurent expansion I)
Let S : D(S) — H be a closed, densely defined operator.

i) The resolvent map Re(S) : p(S) — L(H,D(S)) is analytic. In the vicinity of an
isolated point of the spectrum Ao € o(S) it admits the Laurent expansion

R)\oJr,u(S) = Zuan—n + ZﬂnQn
n=1 n=0

where the coefficients Q,, € L(H,D(S)) are uniquely given by Bochner contour integrals

1 du 1
Qn = 5 ?’u ER)\MH(S) around the origin u = 0.
O

i1) If S is self-adjoint, all Laurent coefficients with n < —2 vanish.
This means isolated points of the spectrum Ao € o(S) correspond to simple poles
of the resolvent and the Laurent expansion reads

1 < .
Rg4u(S) = *;P +) p4"Qn  with P=-Q,
n=0
The coefficients P, Q, € L(H,D(S)) obey
(S—=X)P=0 P(S—X)=0
(S —Xo) Qo =idy — P Qo (S — o) = [id — Plp(s)
(S - )‘0) Qn-i—l = Qn Qn+1 (S - >\0) = Qn|D(S)

where the bottom row holds for n > 0.

When considered as bounded operators from H to itself, all coefficients Q)" =10 Q, € L(H)
are self-adjoint, i.e. for alln € Z we have Q;, = Qn

!Disclaimer: This has nothing to do with position and momentum.
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Proof. Part (i). First, let us study how Re(S) behaves in the vicinity of a point p € p(S5).
By Corollary 3.9 we already know that
1

ry = e < dist(p, o (S
T RSy = st ()

and therefore u + B;,(0) C p(S5). Now fix a constant 0 < ¢ < 1. Choosing A\ € By.;,(0)

guarantees |A|[|R,(5)]|,,, < ¢, so we observe that the series expansion

Ruin(8) = [S—p— N1 = Ru(S) [idy —AR.(S) ] = Ru(S)Y [ARu(S)]"
L(H,D(S)) L(H) =0

converges uniformly on By, (0). This shows that Re(S) : p(S) — L(H,D(S)) is analytic.

Note that analytic functions f : U — B (where U C C is an open subset and B a Banach
space) automatically satisfy Cauchy’s integral formula. Indeed, when I' : S — U\ {u}
is a contour of winding number w(I', ) = 1 that stays within the radius of convergence
of f(n+A)=>_ fu A", we simply calculate
n=0
1 dX 1 dX 1
o [ f N = o wa an—. X" = fo = f(n)

21 T

where by Auxiliary Lemma 3.13 we were allowed to commute limit and integral.

Similarly, 2m JrdXAf(+ X) = 0 can be used to prove that contour integrals of analytic
functions are homotopy-invariant.

To obtain the Laurent expansion around an isolated point of the spectrum Ay € o(S)
pick € > 0 such that B.(Ag) No(S) = {Ao} and consider the contour shown in Figure 3.2.
Using Cauchy’s integral formula and homotopy—invariance of the contour integral we get

1 Ry +2(S / / Rygqx 5)
R S) = — [ d) dotAVr) d) 222 °
>\0+,Uf( ) 27TZ 1"” )\ M < 1_‘+ _
Along I'y we have |A| > |ul, so a geometric series expansion yields
1 1 > 1 d\ Ry, 42(S)
— A —— Rya(8) = S ot M)
omi Jr A—p aia(S) = > n 2m/ X an
| I n= ]
) del- On

where we have used Auxiliary Lemma 3.13 to commute limit and integral.
Along I'_ one has |\| < |u|, so we obtain

1 1 1 1 <1 1 [dx
ami ) P T BrenalS) = o A=A 2o+ (5) 7;) i Qm /F 3 ro+a(S)
%i ( ) Q—(n+1)
In summary we have found that at each u € B(0) \ {0} the resolvent can be written as
Qo = o,
R)\0+M<S) = Z " + ZM Qn (3.9)
n=1 n=0

Our derivation shows that convergence of (3.9) is uniform on sets By (0) \ By¢(0) with0 < ¢’ < ¢ < 1.
Thus, using Auxiliary Lemma 3.13, the coefficients can be uniquely extracted by contour in-

tegrals
L deA0+#(S)
2me Jp pooopt

where I' is a sufficiently small circle around the origin.

Qn = € L(H,D(S))
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Part (ii). Now assume in addition that S : D(S) — H is self-adjoint. If € > 0 is such that
Be(Ao) Na(S) = { Ao}, then for every u € B6/2( ) we have dist(Ao + p,0(S)) = |u| so using
Proposition 3.11 we obtain [[Ry,44(5)|l,, = \ul Choosing I" to be the contour () = re?™®
with 6 € [0,1] and constant 0 < r < €/2, we observe that
< [lalonlen _ 1
0

/1 d6 R)\O‘l'ﬂ
o M |l it

For n < —2 we have [|Qqnl|,, < r~" ! — 0 as r — 0, so in this case [@nll ;) = 0 and
therefore @, = 0 even in L(H,D(S5)).

Thus, for a self-adjoint operator the Laurent expansion reads

R)\OJr,u + Z nQn

1 [ du Ry
2mi Jp poopn

1@l = \

Multiplication by S — Ag = const. € L(D(5), H) produces competing Laurent expansions

(S = o) Ragu(S) = (S 20) Q-1+ (S = Xo) szwl (S — o) Quin
n=0

(S — o) Ragu(S) = idy + 1 Rag1(S) = 0+ [idy + Q1] + Z pQn
=0
As the coeflicients are unique, we obtain the relations !

(S — )\0) Qfl =0 s (S - )\0) QQ = idH + Qfl and (S - )\0) Qn+1 = Qn for n >0

Similarly, comparison of the Laurent expansions

Rxg1u(9) (S = o) = *Q 1 (5= X0) + Qo (5= Xo) +ZM”+1Qn+1 (S = o)
n=0

Rig+1(S) (S = o) = idps) + 1 Rag 4 (S)lpes) = 0+ [idp(sy + @-1lp(s)] + ZMnHQ Ip(s)

produces relations

Q-1(S=X) =0, Qo(S—X)=idps)+Q-1lpis) and Qui1(S — o) = Qulp(s) for n >0

Recall that the spectrum of a self-adjoint operator satisfies o(S) C R, so we necessarily are in
the situation Ay € R. Lemma 3.10(ii) shows that if we consider Ry,4,(S) € L(H,D(S)) C L(H)
as a bounded operator from H to itself, the adjoint is simply Rx,1,(S)* = Rxg+a(5)-

A straightforward calculation involving the inner product (-,-)3; shows that the Bochner
integral of an £(H)-valued function commutes with the operation of taking adjoints.

So in our case we find

*

. _ dp Ryg4u(S) ) 1 [diaRy4a(5)
Qn - n - . — —n
2ri I w 2m ) o T
O O
L fduRyu(S) 1 fduRagu(S)
S =+— = Un
2 ) u ur 2mi ) ur
O O

which verifies our claim that the coefficients @Q,, € L(H) are bounded self-adjoint operators.
O
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Figure 3.2: Integration contour used to derive the
Laurent expansion of Lemma 3.14(i)
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The algebraic relations from Lemma 3.14(ii) contain enough information to obtain the fol-
lowing refinement, together with a useful interpretation of the Laurent coefficients:

Proposition 3.15 (Laurent expansion IT)
Let S : D(S) — H be a densely defined, self-adjoint operator and assume that Ay € C is an
isolated point of the spectrum, i.e. B.(Ag) N (S) = {Ao} for some e > 0.

Then the Laurent expansion from Lemma 3.14(ii) leads to the following consequences:

i) Ao belongs to the point spectrum, ran(S — Ng) C H is a closed subspace
and we have an orthogonal decomposition H = ran(S — X\g) @ ker(S — Ag).

P=—-Q_1 and (S — X\o) Qo are the orthogonal projections
onto ker(S — Xo) and ran(S — \o), respectively.
it) For all n > 0 the operators P,Q, € L(H) satisfy
PQn=QnP =0

1
Qn - 6H_

In particular, the Laurent expansion can be rewritten as

Ryg4u(S) = —]; +Qo Y (1Qo)" = —]; + Qo - (idy — pQo) ™
n=0

Proof. The spectrum of a self-adjoint operator satisfies o(S) C R so we necessarily have
Ao € R. The shifted operator S — Ag is self-adjoint with spectrum o(S — Ag) = o(S) — Ao
so there is no loss of generality in assuming Ag = 0. All our claims will be derived from the
algebraic relations of Lemma 3.14(ii) which upon setting A9 = 0 take a more appealing form.

Part (i). The relation "QoS = idp(g) — Plp(s)” shows that Plye(s) = id. On the other
hand, ”PS = 0” means that P|..s) = 0. Since P € L(#H) is a bounded operator, this
implies P|m = 0. Recall that every self-adjoint operator comes with an orthogonal

decomposition H = ran(S) @ ker(S) so by the above remarks P = —(Q)_; is the orthogonal
projection operator onto ker(.S). As a result, the relation ”SQo = idy — P” shows that SQ
is the orthogonal projector onto ran(S) = ker(S)* . In particular, we have SQ0|ran © = =id,

which implies ran(S) C ran(S) and therefore proves that ran(S) C H is a closed subspace.
The decomposition H = ran(.S) @ ker(.S) shows that in our case ker(S) # 0 because otherwise
S would be bijective and A\g = 0 would belong to the resolvent set.

Part (ii). For n > 0 we can argue as follows: "Q,415 = Qn|D(s)” implies Q’N‘ker —0
and 7SQ,+1 = Q" shows Q,(H) C ran(S). Since by Part (i) P satisfies P(H) C ker( )
and P|,qn(s) = 0, we obtain Q, P = PQ, = 0.

To prove the second part of our claim we iteratively define
Do(S)=H Di(S)=D(S) Duri(S) = SHDu(S)) € Du(S)
and consider the filtration
..... Cran(S) NDy(S) C ... Cran(S) ND2(S) C ran(S) ND(S) C ran(S)

At each n > 0 the relation " SQo = idy — P” restricts to SQolran($)nDn(s) = idran($)nDn(s)
and similarly the relation " QoS = idp(g)—P|p(s)” yields QoS|ran($)nDpi1(S) = 1ran(S)nDpi(S)-
Thus, S and Qg provide a ladder of mutually inverse 1somorphlsms

S S S

..... = ran(S) N Da(S) =~ ran(S) ND(S) =~ ran(S)
Q Q Q
0 0 0
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In particular, we get Q8+1Sn+1|ran(S)ODn+1(S) = idyan(s)NDys1 (5) Which means that Q’S“ is a

left-inverse to S™*!. On the other hand, iterative application of ”SQ, .1 = @,” shows that
Qn(H) C STHDu(S)) = Dny1(S) and

Qo=5Q1=5Qr=...=5"Qy = ...
idy — P =5Qp = S""'Q,

The bottom line restricts to S”“inran(s) = idyan(s) 50 Qpn : Tan(S) — ran(S) N Dyy1(S) is
a right-inverse to S"*!. The idea behind our proof is that we can identify right-inverse and
left-inverse. Indeed,

idy—P
n+1 on+1 n+1 n+1 n+1
Qn:Qo S Qn:Qo _Qo P:Qo
) | I |
idran(s)nD, 41(5) =0

O

Remark 3.16 (Double Helix II)
Note that the condition of A(t) = Ay + B(t) : W1 — H being a good perturbation is
invariant under A — —A. Hence Theorem 3.4 shows that the operators Sy = D_,D 4 and
S_ = DyD_,4 are non-positive, self-adjoint and Fredholm. We have

ker S4 = ker D44

ran S+ = Dxa(W)

and for S = S5 the spaces Dy 41(S) = S71(Dy(5)) and ran(S) N D, (S) are given as

Dn(S) = Way,
ran (S) N Dy (S) = DraWan+1)

Writing Q+ := Qo(S+) we can interpret the proof of Proposition 3.15(ii) as providing a tower
of mutually inverse maps

St S+ St
s —_— —_—
..... o D:FA(W5) = D:':A(Wg) = D:,:A(Wl)
+ + +

Recall from Remark 3.16 that the maps ¢+ = £D44 can be organised into a double helix of
isomorphisms

kerDa@®D_4W,) = H = DaW)@kerD_y

D_4 Dy

kerDa@®D_4,(W2) = Wy = DaWa) @kerD_y

>

-/ Dy

kerDga@® D_4Ws) = Wy = Da(Ws)@kerD_y

!
=

_ D

kerDa®D_4,Wy) = W3 = Da(Wy) @kerD_4



from which we now extract a triangle of bijective maps

Da(Wr)
e
_a(Ws2) | Q—

S

Da(W3)

WL\

»

The new insight from Lemma 3.14 and Proposition 3.15 is that @ = S ‘1;11( g) can be expressed
as a Bochner integral
A [ de [

DaD_4 — ™!
omi Jor p AT T € L(H, W)

Q_ =

where S1 C p(S_) is a small circle around the origin. This observation will be key to our
proof of Theorem 4.15 Step 1.

To conlude this section, let us remark that the coefficient ) can be used to obtain an
integral representation for a quasi-inverse to D,, in a way similar to a Green’s function:

Corollary 3.17 (Parametrix)
The operator D_,Q_ : H — W is a parametriz to Dg : W)y — H..
In particular, we have D_,Q_ DA|D W) = id

D

Proof. In Remark 3.16 we have seen that

S,Q, == DAD—AQ— = ldDA(Wl)

fits into a triangle of bijective maps. Thus, with Auxiliary Lemma 3.18 (applied in the
category Sets) we obtain

D_4Q-Da =idp_ o) (3.10)

Recall from Proposition 3.15 that w.r.t. the decomposition W; = ker D4 @ D_,(Ws)
the Laurent coefficient P_ := P(S_) serves as the projector onto ker D 4.
Thus, Eq. (3.10) can be augmented to

D_,Q-Dy = idy, — P-
Note that P_ is finite rank and therefore compact. O

Auxiliary Lemma 3.18 (Cyclic reshuffling)
Assume that in any category we are given a triangle of isomorphisms

h

WL

Ry

=/

Then afy = ida implies Bya = idg .
Proof. Since « is invertible, our claim follows from the simple calculation

idg = o toidyoa = atoafyoa = Bya
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Chapter 4

APS operators on weighted Floer
path spaces

4.1 An abstract twisting procedure turning almost into hon-
est sc-Banach spaces

As mentioned at the end of section 2.7, our filtration (W), ),>¢ fails to be an honest sc-Banach
space, by lack of compact inclusions. In this section, however, we describe a systematic
procedure by which any almost sc-Banach space (W, )n>0 gives rise to a k-family of honest
sc-Banach spaces (ngk)nzg. This involves adopting an inverse perspective on the standard
technique of 'weight factors’ that is used for example in [FW].

Given 6 > 0 and n € C*°(R) such that n(t) = |t| for |t| > 1, we consider the inverse weight
function vs(t) = e ) < 1

Working at fixed t € R, we observe that A= v_5(¢) € R defines a sc-operator A: (Wj)i>0 — (Wj)r>0
with [[All,y,, = [Al. Moreover, t — 7_5(t) € R being smooth with bounded derivatives
ensures that v_5(t) : (Wi)k>0 —> (Wi)r>0 is a moderate family of sc-operators in the
sense of Definition 2.23. As a result, the map v.5 : H — H preserves the bifiltration
Wi = Wn"2(R, W) C L*(R, H) in the sense that

v-s(Wi) C Wi and .5 € L(W)

where the operator norms H7-6H Ly G be constructed with Lemma 2.28.
k

By a suitable restriction, v_5 can be regarded as a compact operator:
Lemma 4.1 (v_5 as a compact operator between tiles of the bifiltration)
At every v,k > 0 the map v-5 : H — H restricts to a compact operator y_s : W,:H — W
Proof. The statement that for a fixed Banach space B = W, the map
vos : WTLE R W) — WH(R, Wy)
is compact, can be seen as a reinterpretation of [FW| Lem. 8.4 and [FW] Lem. 8.5 .
For instance, to account for the case r = 0, the proof of [FW] Lem. 8.4 can be rephrased as
follows: At finite T" > 1 the "truncation map”
cr: WH(R,B) — WY ((-T,T),B) — L*((-T,T),B) — L*(R,B)
is compact and the calculation
—oT —oT
H'Y—(S' (U_v‘(fT,T))HLz[M) < e vl pgs < €7 flv

shows that y_5 0 cp — 7.5 converges in the operator norm. Hence, v_5: WH*(R, B) — L*(R, B)
is compact itself.

WY (R, B)

The case r > 1, as covered by [FW] Lem. 8.5 , can be seen by a subsequence argument
similar to the one encountered in Auxiliary Lemma 4.2(b) and relies on the fact that all

(

derivatives ~y ?) (t) are again multiples of the exponentially decaying ~y_s(t). O
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As a follow-up, Lemma 4.3 will show that not only ~_s : WgJFl — Wy

but also v_s5 : Wh4+1 — W, is a compact operator. This requires a two-step process:
Auxiliary Lemma 4.2 (Restriction of the domain and restriction of the target)
Let H,X,Y,Z and W be Banach spaces.

Assume we are given bounded linear inclusions X — H <Y

and consider the canonical inclusions X <> X NY <Y from Auziliary Lemma 2.30.

a) If f: X — Z is compact, then so is the restricted map X NY — X i) Z.

b) If g: W — X NY is a bounded linear map such that tx o g and 1y o g are compact,
then g is compact itself.

Proof. a) Since f is compact and ¢tx bounded linear, the composition forx is again compact.
b) Consider a bounded sequence w,, € W. As txog is compact, we can find a subsequence wy,,
such that g(wy, ) converges in X. Since ¢y og is compact, we can pass to a subsequence of wy,,
whose image converges in Y. The resulting sequence converges w.r.t. |||,y = |-y +Illy, &

Lemma 4.3 (7.5 as a compact operator between nested Sobolev spaces)
Fix an arbitrary 6 > 0. Then vy_5: H — H restricts to compact operators v_s: Wpy1 —> Wh,

Proof. Consider a fixed W} with k 4+ r = n. Lemma 4.1 shows that y_; € L(#) restricts to
a compact operator 75 : W, ' — W/, so by Auxiliary Lemma 4.2(a) the restriction

Vgt Wygr C Wi — WY
is compact as well. Now that v_5 : Wy11 — W] is compact for all  + k = n, we can use
Auxiliary Lemma 4.2(b) to conclude that also

Vo5 i Wit — Wy, = ﬂ Wi is compact.
k+r=n L]

The operator v_5 : (Wh)n>0 —> (Wh)n>0 serves as an inspiration for the following abstract,
but very useful definition:
Definition 4.4 (Twisting sequence)
Let W = (Wy)n>0 be an almost sc-Banach space. Given a sequence of injective sc-operators
(o7 (Wn)nzo — (Wn)nzo, 1€N
we say that (oy)ien is a twisting sequence on W if
1. For all 4,n > 0 the restricted operator a; : W,11 — W, is compact.

2. There exists a subset S C Wy, such that S is dense in every W,
and all o satisfy «;(S) =S

Let us elaborate on the implications of condition (2):

Remark 4.5 (Cumulated twisting sequence)

Along with a twisting sequence («;);en we consider the injective sc-operators
Bi s Wn)nzo — Wa)nzo defined by fo =idy, Bip1 =Fica;

The collection (5;);en will be called the cumulated twisting sequence associated to (a;)ien

Observe that Definition 4.4 immediately implies 3;(S) = S for all i > 0.
In fact, by bootstrapping condition (2) we get S C ap(S) C ap(1(S)) C ...
as well as S D ap(S) D ap(ai(S)) D ...

Moreover, we claim that, when 3;(W,,) is equipped with the norm coming from 8; : W,, — Si(
S C B;(W,) is a dense subset for all i,n > 0. Indeed, since S C W, is dense sub-
set, every x € W, can be approximated by a sequence xz,, € S. Using the injective
map 5; : W, — W, to identify W, with S;(W,), this can be rephrased as having
Bi(xm) — Bi(z) converge w.r.t the norm Hﬂz_l()HW coming from above.
Note that by 3;(S) C S not only the x,, but also the §;(x,,) belong to S.
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Let us check that the conditions from Definition 4.4 are fulfilled in our case of interest:

Lemma 4.6 (Verifying the conditions of Definition 4.4)

Consider a "weight sequence” 0 = dg < 61 < ...... and write Ad; := 0;01 — 6; > 0

Then a; == v_p5, * Wn)n>0 — (Wn)n>0 is a twisting sequence in the sense of Definition 4.4
and we have 3; = 7y_s,

Proof. Having v_5(t) = e~ 97() > 0 at every t € R ensures that v_5 : H — H is injective.
Moreover, Lemma 4.3 shows that v_as, : Wai1 — Wy, is a compact operator for all i,n > 0,
which accounts for the first condition of Definition 4.4.

So it remains to verify the second condition: In Proposition 2.42 we have seen that the set

S = C°(R)Wx
is dense in every W,. Since multiplication by vi5; € C*°(R) preserves C5°(R),
we immediately find v_5(S) C S and S = v_5(145(S)) C 7-5(S). O

Next we have to explain how the compact operators v_o5 : Wht1 — W, translate into
compact inclusions nglAé — W2
Remark 4.7 (Keeping track of compact inclusions)
Let us consider the following category, denoted by (B/H )i, :
e The objects are pairs (X, p) where X is a Banach space and
p: X — H a bounded linear injective map to our favorite ambient Banach space H

e A morphism (X, p) N (Y, k) is bounded linear map f : X — Y such that
f

X—Y

AN
H comimutes.

The reason for introducing (B/H)in; is the following functor (B/H)in; — B
to the category of Banach spaces and bounded linear maps:
e To a bounded linear injective map p : X — H we associate the subspace p(X) C H.
The linear isomorphism p : X — p(X) makes p(X) a Banach space
such that the inclusion p(X) C H is a bounded linear map.

e Crucially, every commutative triangle

f

X —Y

Nk
H

induces a bounded linear inclusion p(X) C £(Y’) whose operator norm equals || f|, , -

If the operator f: X — Y is compact, then so is the inclusion p(X) C x(Y).
Notation. Given a bounded linear injective map p : X < H we abbreviate X* := p(X)

Example. Going back to our operator v_5s € L(H), the maps v_5 : Wy, — H
induce linear isomorphisms Wy, —— v_5(W;) C H by which we can regard each

WP = .5 (W)

as a Banach space with norm [|||,,s = [|74+5(-) l,y,-

Given A¢ := 6 — ¢ > 0 Lemma 4.3 shows that v_o5 : Wyt1 —> W, is compact, so the
commutative triangle

Y-A6
Wn+ 1 — Wn

TN s

H

. . . !
induces a compact inclusion W? 1 C we.
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Returning to the abstract picture of Definition 4.4 and Remark 4.5, we observe that every
twisting sequence a; : Wy )n>0 — (Wn)n>0 comes with a commutative diagram

2

(Ws,idy) = Wa,idy) < Wr,idy) —— (H,idy)

Qg a/ @0 (&%)

L

(W3, B1) —— (Wa, B1) —— (W1, B1) —— (H, B1)

o a/ o a1

2

(W3, B2) —— (Wa, Ba) —— (Wi, B2) —— (H, B2)

that under the functor (B/H);n; — B translates to a bifiltration

Wy —— Wo —— W) —  H

U

Bi(Ws) —— Bi(Wa) ——— B1(W1) —— Bi(H)

U (4.1)

Ba(W3) —— fo(Wa) —— Bo(Wh) ——— Ba(H)

It turns out that the diagonals of this bifiltration are the desired ’honest sc-Banach spaces’:

Lemma 4.8 (Honest sc-Banach spaces from a twisting sequence)
Let (a;)ien be a twisting sequence on an almost sc-Banach space W = (Wp)n>0
and denote by (5;)ien the cumulated twisting sequence from Remark 4.5

Then at every k > 0 we have an honest sc-Banach space (ﬂn(Wn+k))n€N

Proof. From the definition of a twisting sequence we get a string of compact operators
Wk(a—OWk+1 &Wk+2 — ...

Writing Gy = idy, Bi+1 = B o a; this can be augmented to a string of morphisms
in the category (B/H)inj:

Wi, Bo) €= (W1, B1) <5 Wiz, B2) «— ...
By applying the functor (B/H)inj — B from Remark 4.7 we conclude that

Wi D B1(Wit1) D BoWii2) D ...

is a filtration of Banach spaces with compact inclusions.
Now let S C W4 be the mysterious set from the second condition of Definition 4.4. In
Remark 4.5 we have seen that S is densely contained in 8;(W,,) for all combinations ¢,n > 0.

Thus, we have found a subset S C (50 8n(Whn+k) such that S is dense in every B,(Wht)-
O
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4.2 Twistable and twist-regularizing operators

We introduce a class of operators D : W; — H that act as sc-operators on the bifiltration (4.1):
Definition 4.9 (Twistable operator)

Let (a;)ien be a twisting sequence on an almost sc-Banach space W = (W),,)n>0

and denote by (5;);en the cumulated twisting sequence from Remark 4.5

An operator D : W) — H will be called twistable if for every i € N

there exists a sc-operator D; : (Wy41)n>0 — (Wh)n>0 such that

Wy L H
15i 15
w, —P 4  commutes.
Moreover, we will say that D : Wy — H is strongly twistable
if the D; : Wh41)n>0 — (Wh)n>0 are regularizing sc-operators.
Remark. () = idy implies D = Dy, so only (regularizing) sc-operators can be (strongly) twistable.
Lemma 4.10 (Families of sc-operators induced by a twistable operator)
Let D : Wi — H be a twistable operator in the sense of Definition 4.9
Then for all i,n >0 we have D(B;(Wn41)) C Bi(Wn) and |]DHL<W"‘@H‘WA&) = [1Dill sy, o0,
In particular, we observe that

e for every fixed i > 0,

s a sc-operator between almost sc-Banach spaces

e for every fixed k > 0,
D: [Bn(Wn-i-k—i-l)]nZO — [ﬁn(wn—i-k)]nzo

s a sc-operator between honest sc-Banach spaces
Proof. Using D;(Wy4+1) C W,, we obtain D o 3;(Wp41) = Bio DiWhni1) C Bi(Why).
Given z € W;,4+1 we combine the calculations
1DBi(@)] 5,0,y = 1B Di(@) |50,y = [I1Di(@)lyy,  and  |[Bi(@)]l 50,y = %lly,.,
to conclude that the operator norms ||D|| = ||D;|| agree. O

While being 'twistable’ is enough to make D a sc-operator, D has to be ’strongly twistable’
to become a regularizing sc-operator. This kind of regularization, however, only works at
fixed weight level 3;, i.e. for the horizontal filtrations in (4.1):
Lemma 4.11 (Regularization property of ’strongly twistable’ operators)
Let D : Wy — H be strongly twistable. Then for every fixed i > 0

D: [Bi(wnﬂ)]nzo - [Bi(wn)]nzo
s a reqularizing sc-operator between almost sc-Banach spaces.
Proof. We work at fixed ¢ > 0. With Auxiliary Lemma 2.12 in mind let us verify that
D : 3i(W1) — Bi(H) is an escalator for [Bi(Wy)], -
Given n > 1 assume that for u € 3;(W,,) it so happens that Du belongs to 5;(W,) instead
of just B;(Wpn—1). This means can find v,w € W,, with

u=pFwv and Du= Fw

By definition of a strongly twistable operator there exists a regularizing sc-operator
D; : Whit1)n>0 —> (Wh)n>0 such that " D; 2

1B D 18

Wi H commutes.

Combining the two identities above we obtain 3; w = Du = ; D;v.
As B; : H — H is injective, this implies D;v = w € W,,. Now since D; is regularizing,
we conclude that v € W, 11 and therefore u = fiv € ;(Wh+1) - O
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In order to increase the weight level, we need an additional, more subtle property:

Definition 4.12 (Twist-regularizing operator)
Let (a;)ien be a twisting sequence on an almost sc-Banach space W = (W), )n>0
and denote by (5;);en the cumulated twisting sequence from Remark 4.5

An operator D : Wy — H will be called twist-reqularizing if it satisfies

D7Y(Bi(H)) € B;(Wr) for all i > 0

Finally, we have accumulated enough structure to conclude that operators D : W; — H
which are both ’strongly twistable’ and ’twist-regularizing’ lead to regularizing sc-operators
between honest sc-Banach spaces:

Proposition 4.13 (Combination of ’strongly twistable’ and ’twist-regularizing’)
Let D : W1 — H be strongly twistable and twist-reqularizing.

Then D : Wy — H satisfies D_l(ﬁi(Wn)) = Bi(Wh1) for all pairs i,n > 0.
In particular, for every fixed k > 0

D: [ﬂn(Wn+k+1)]n20 — [Bn(W”“’k)]nZO

is a reqularizing sc-operator between honest sc-Banach spaces.
Proof. Fix any ¢ > 0. By Lemma 4.11 we know that

is a regularizing sc-operator. Hence, the original operator D : W; — H satisfies

BiW1) N D™H(Bi(Wn)) = Bi(Wat1)
Since D is twist-regularizing, we have 3;(W;) = D~(8;(H)) and conclude that

Bi(Wat1) = D™H(Bi(H)) N D™H(B:(Wa)) = D™H(Bi(Wa))
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4.3 The sc-Fredholm property of D4 : (W’ )us0 — (Wo)u0

Inspired by Theorem 2.38, let us investigate whether not only D4 : Wit1)n>0 — Wa)n>0

but in fact also Dy : (ngl)nzo — (W2n),,>0 is a regularizing sc-operator.

According to Proposition 4.13 we have to verify that D4 : Wiy — H is both ’strongly
twistable’ and ’twist-regularizing’.

First of all, being ’strongly twistable’ is fairly straightforward:

Lemma 4.14 (D4 is strongly twistable)
Let Ay : W1 — H be a baseline operator on an almost sc-Hilbert space H D Wy D ...
Assume that B(t) € L(H) is a moderate perturbation and write A(t) = Ao + B(t).

Then given any weight sequence 0 = 0y < 61 < ... (bounded or not)
the operator D : Wi — H is strongly twistable w.r.t. B; =5, = e %

Proof. Fix any 6 > 0. Given & € W) we have Dgv_s& = 7-5 [DA — 677’]§, so the diagram

Dy — 6/
n Wy

s

He——F WM

Da commutes.

It remains to verify that D4 — ' is a regularizing sc-operator.

Indeed, for moderate perturbations B(t) € L£(H) the combination of Corollary 2.34 and
Proposition 2.36 shows that D4 : Wh+1)n>0 — (Wha)n>0 is a regularizing sc-operator.

On the other hand, its derivative %(517’ € C§°(R) being a bump supported in [—1, 1] ensures
that the function 07 is smooth with bounded derivatives, so multiplication by 7’ preserves
the bifiltration W}, = W"2?(R, Wy). In particular, we have én'(W,) C W, and 1/ € LIW,),
so with Auxiliary Lemma 2.13 we conclude that the perturbed Dg — 67 : Wat1)n>0 — (Wn)n>0
is a regularizing sc-operator as well. ]

Being twist-regularizing, on the other hand, poses constraints on the weight sequence
0 = dg<i <...

in a way that depends on the specific operator family A(t) : W, — H.
This requires a subtle two-step proof, probably the most interesting of this thesis:

Theorem 4.15 (D4 is twist-regularizing)
Let Ay : W1 — H be a baseline operator on an honest sc-Hilbert space H D W1 D ...
Assume that B(t) € L(H) is a very good perturbation and write A(t) = Ao + B(t).

Then there exists 0o > 0 such that the operator D : Wi — H satisfies
DN H?) WY for all § € [0,0)

In particular, for any weight sequence 0 = dg < 1 < ... bounded by o
the operator D : Wy — H is twist-reqularizing w.r.t. B; = .,
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Proof strategy. The ”double helix” of Remark 3.16 contains a triangle

H = DA(Wl) @ kerD_»

%

ker D4 & D-A(Wz) =W DaD_y||Q € ‘C(H7W2)

Wy =Ds(Ws) @ker D_4

where the Laurent coefficient

1 dA L

serves as a parametrix (quasi-inverse) to S = DaD_y4.

Our proof of Theorem 4.15 consists of two independent steps: Given u € Wj such that
Dau € H°, we decompose u = v + w into v € ker D4 and w € D_,(W), allowing us to
verify v € W? and w € WY individually.

e Step 1 (Spectral perturbation theory)

Corollary 3.17 shows that w = D_,QDu. Since from Lemma 4.14 we know that
D_,(W3) € W, it suffices to prove Q(H?) C W3. We will find this condition to hold
as long as § stays below a threshold 6,4, related to the spectral gap of S = DaD_4.

e Step 2 (Exponential decay of solutions to Dv = 0)

Note that D4v = 0 is agnostic about our particular choice of § > 0 in H? C H.
Instead, v will belong to W} for an intrinsic reason related to the operator family
A(t) € L(Wh, H) approaching invertible endpoints Ay as ¢ — £oo. More precisely,

choosing = min(d4) where d+ = r(AL) denotes the invertibility radius at A1 we will
observe that ker Dy C WY for all § € [0, 6).

After steps 1 and 2 have been accomplished, Theorem 4.15 holds with s := min(g, Omaz)-
Step 2 will be the only part of our argument that relies on B(t) € L(H) being a localized
perturbation in the sense of Definition 2.21. ]
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Let us now carry out the two steps of Theorem 4.15:
Step 1. There exists 8,4, > 0 such that Q(H®) C WS for all § € [0, dpmaz)-

Proof. Fix any § > 0. Given £ € W) we have Dy v € = V-5 [DiA — 577’]5.
Since for & € Wy the term [D_ A —on ]f itself belongs to W , iterating this formula yields
DaD_yv5€ = v-5[Da—0n|[Dy—o1']€
= y.5[DaD_y — 60 D_y — Dadn/ + (67)? € = 7-5[DaD_4 — 6 - K; ¢
where the perturbation

Ks:=10'[Da+D_g]+0" = 8(n)* € LW, H)
e — |

d
23

(4.2)

is universal in the sense that it no longer depends on A(t) but only on the chosen 1 and
d > 0. Given any A € C, Equation (4.2) shows that by restricting the domain of DgD_4 — A
to W9 C W, we obtain a commutative diagram

DuD_, — A

W,

24 — W (4.3)

Al V-6 ZIW’Y—é

DuD_,— 6 K5 — A

Thus, treating D4D_,4 on the subspaces Wg , H° is equivalent to considering a perturbed
operator D4 D_, —6- K on the original spaces Wh, H . In particular, DgD_, — X : Wg —
being invertible is equivalent to DyaD_4 — - K5 — A : Wo — H being invertible, so the two
operators share the same resolvent set

p(DaD_y - WS — H®) = p(DaD_y —6-Ks5: Wy — H) C C

As we will see below, this set inherits the relevant features of p(DAD_ 4 W — 7—[)
provided that § > 0 is small enough. Recall from Theorem 3.4 that S = DasD_, : Wy — H
is self-adjoint and Fredholm, so by Lemma 3.6 its spectrum admits a constant € > 0, called
spectral gap, such that o(S) N B.(0) C {0}. For instance, we have

SEI/Q = { |\ =¢/2} C p(9)
Given any A € C from the resolvent set of the unperturbed S = DgD_, : Wy — H, consider
the resolvent Ry(S) = (S — A\)~! as an operator in £(#H, W) and observe that
L(H)
—
DaD_y —X—6-Ks = [idy —0- K5 R\(S) | (DaD_4 — \)

idyy,
Now assume that the given combination of § > 0 and A € p(S) satisfies

0 ||K5R/\(S)HL(H) <1 (4-4)
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Then idy — 6 - K5Rx(S) € L(H) is invertible with inverse

= [6- KsRA(S)]" € L(H)

n=0

and therefore also DyD_, — X\ — 6 - K5 € L(Wa, H) is invertible with inverse

[idy — 6 - KsRa(S)] ™

o
-1
[DAD_A—A—(S-K(;] = R)\(S) Z [5-K5R,\(S)]n Eﬁ(H,Wg)

| I—|

L(HW2) "=0
We claim that with a suitable d,,4, the constraint (4.4) can be simultaneously satisfied for
all 0 € (0,0maz) and X € 56/2, hence proving that 551/2 C p(DAD,A -9 K(;).
First of all, by fixing an arbitrary 6., > 0 we guarantee that

+6- ()

LWy, H)

Hp(m,m < Kk = const.

d
/ i
HK5||L(W2.H) < H27] at +7
is uniformly bounded for all § € (0, §¢y¢). Now the bound

HKéRA(S)HaH) < HK5H£(W2,H) HR)\(S)H,C(H,WZ) < RHR)\(S)HL‘(H,W})

forces us to study [|[R\(S)]|,4,,, instead of the better-behaved [|Ry(S)]|,

However, in Proposition 3.12 we have found the formula

142
1B gy < 1165 =07 gy (1+dist&|a(‘s))> (4.5)

_ 1
H T dist(A,0(S))

which for A\ € 561/2 turns into a uniform bound

_ 2
[RA(S H.CHWz H 1H£(H‘W2) (2 + 6)

Hence, a suitable 0 < 42 < 0w can be obtained by satisfying the requirement

2 !
bmaz | KsBAS) ey < Omaz 5|5 =)L, <2+€> <1

Now that we have achieved 551/2 - p(DAD_A : Wg — H5) for 0 € (0, 0pmaz), recall that,
with DaD_4 : W9 — H° and the inclusion ¢ : W9 — H° being bounded operators between
Banach spaces, we immediately know that the map

A€ p(DaD_y : W3 — H°) > (DaD_y — \W,S e L(H, W)

is analytic and therefore continuous. As a result, the expression

1 dA
omi ) A
5/2

Q= (DaD-s = Ny

can be defined as a Bochner integral in L(H?, Wg ). The idea behind our proof is that this
Q € L(H’,W9) can be compared with the Laurent coefficient

1 d\
Q=95 ¥

Se/2

(DaD_sy — \) ' € L(H, Wy)

To do so, let us focus on the upper half of the diagram (4.3).
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Given ) € 561/2 C p(DAD_A Wy — ’H) N p(DAD_A : WS — H5) we can invert the horizontal
arrows to obtain a commutative square
(DaD_y -\ "

W
-7 2

H
L;Lmﬁ - }wzwg

MO - W3
(DAD—A - )\) Wg

showing that . .
(DaD_g =N 7" 0 tygs = tyyyyg © (DaD- A—A)\Wg (4.6)

Observe that the two sides of Equation (4.6) arise from bounded linear maps
_0 ¢ L 5 O _
LOH W) —— s L(HO W) 2" £ (10, W)
Since Bochner integrals commute with bounded linear maps, Equation (4.6) translates into
an identity @ o tyqs = by © Q. This proves our claim that Q(H°) C W9 O

O'(S) €/2

turbations
S—6-K)

Figure 4.1: Spectral perturbation theory for an unbounded perturbation K € L(H,W,) as
required by Step 1 of Theorem 4.15. Since the contour 561/2 is a compact subset of p(.9), it
will continue to be contained in p(S — § - K), provided that our tuning parameter ¢ is small
enough.

A dist(A, a(9)) > [|K|| .

Figure 4.2: Spectral perturbation theory with bounded perturbations K € £(H): Given a
self-adjoint operator S : D(S) — H and A € p(S), the calculation

S—XA—K = [idy — KR\(9)](S = N)
shows that demanding HRA(S)HZ(:;{) = dist(\,0(9)) > ||KH£(H) is sufficient to guarantee

invertibility of (S — K — \) : D(S) — H. Thus, the perturbed spectrum o (S — K) will be
contained in a || K| ) thickening of the original o(.5).
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Step 2. There exists § > 0 such that ker D4 C WY for all § € [O, 5)

Proof. As a preparation recall that A : R — L(Wj, H) is continuous with invertible end-

points Ay € Lin, (W1, H) such that . liin | A(t) - Ang(w y = 0. In particular, for |t| large
—0o0 L

enough A(t) will be contained in the open subset L, (W1, H) C L(W3, H), so according to
Auxiliary Lemma 4.16 we have a composition of continuous maps

o)
o)
()
é/f \ -1 .
( ) [:(H.,Wl)

******** >£inv(WlaH)*>’C(H’ 1)—>R

Hence, given our favourite constant ¢ > 1 we can find Ty such that for |¢t| > Tj the operator
A(t) : Wi — H is invertible and satisfies

At < el Az,

)71 ‘ ‘L(H. ) H,W)

with ” =7 for ¢ < =Ty and " +7” for ¢ > Tp. Recall from Auxiliary Lemma 4.16 that
r(AL) =1/ HA;l I sy 18 exactly the radius below which convergence of the Neumann series
at A4 is guaranteed.

Turning to our main business, assume that v € W satisfies D4v = 0, so with D4 being a
regularizing operator on (W, ),>0 we obtain

v € Wa C Wy C WHER, Wh)

Now Sobolev embedding W22(R, Wy) < C(R, W5) implies that the pointwise value v(t) is
well-defined and v belongs to C1(R, W) for all k < 2.

By using v € CY(R, W;) and A € C* (R, L(W1, H)) we see that the function

1

9(t) = 5{ AW, AW(t) )y = 5 IAvll} >0

is differentiable with continuous derivative
g(t) = Re [(Av, Av) + (Av, Av)]

Since the pair 0(t) € Wi, v(t) € Wa satisfies 0(t) = A(t)v(t), this can be rewritten as
g(t) = Re [(Av, Av) + (AAv, Av)]

Thus, by invoking A € C*(R, L(Wy, H)) N C' (R, L(W,,W1)) and v € CY(R,W>) we conclude
that g is differentiable with continuous derivative

() = Re[(Av,Av) v (Ab, Av) + (Av, Av) + (Av, A0) (4.7)
L ] L ] L 1
)] (1) (I11)

+ (AAv, Av) + (Adv, Av) + (AA0, Av) + (AAv, Av) + (AAU,A@)]
L ] L ] L 1
(I1) (I11) (I11)
Using the symmetry of A(t): Wy — H torewrite (AAv, Av) = (Av, AAv) , (AAv, Av) = (A0, AAv)
and once again substituting © = Av with v € Wi,v € Wy, Equation (4.7) can be brought into
the form

() = 2[|AAv|? + || Av|? + Re[<Av,Av> + 2(AAv, Av) + 3 (Av, AAv) (4.8)
) (11) (I111)
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In the following we would like to establish a lower bound g(¢) > 7
In doing so, the term HAvHi > 0 can be neglected. Note that ||4Av|? is the only term in

(4.8) that does not involve a derivative of A, whereas we will see that the terms containing A
and A decay in the limit ¢ — 4co. To obtain a clean estimate, let us bound (I), (I1), (I1T)
in relation to the leading term ||AAv||%. From now on we will work at |t| > Tj such that
A(t) : W1 — H is invertible with

HA(t)_lug(HJVl) S ¢ HA;1H£(H.W])

for our favourite constant 1 < ¢ < 2. For v € W7 we have

lolly, < 14O iy 14O < e AZ g 14011,
so for v € Wy we obtain
140]l, < [[4elly, < ellAZ |y, 14401,
Turning to the terms (1), (IT), (1) encountered above, we get upper estimates
. 40)] < [ ol Bl < L€ A g - 4401
o, 40)| < [l Al 10l < [l BAZ - 0]
‘<AU7AAU> < HAHz:(m,H)HU " Adol, < HAHL(WI,H)C2HAZTZIHZH,WI).HAA’UHE

Note that in our setup we consider A(t) = Ay + B(t) with a constant Ay € L(W;, H) and
potentially varying B(t) € L(H), so for derivatives of A we have the simplifications

140 iy < 1Bl
140w,y < 1Bl

The above ingredients show that for [t| > T the second derivative of g(t) = %HAUHf[ obeys

By = 5 AT 1BO

H,W H, W)

§(0) = [[Advl- |2 = ¢ [|A2|]

With our assumption that HB(t)Hﬁ(H), B(t)HE(H) — 0 for t — 400 we can find T} > T
such that for |[t| > T3 one has
2
_ . _ . c
¢ HAiIHZH.m) HB(t)HC(H) +5¢7 HAiIHZH{m) HB(t)Hﬂ(H) < 2- 9
and therefore )
i) > %HAAUHj > 524(t) (4.9)
with 0y 1= 1/HAEIH£(HM) = r(4z)

As shown in the proof of [Sa] Lem. 2.11 the differential inequality (4.9) implies a bound

g(t) < const. x 0l

with decay rates d_ for t < —T} and &4 for t > +T}. Thus, we have proven that the quantity
2¢9(t) = HA(t)v(t)Hi decays exponentially, with decay rates set by the convergence radius of
the Neumann series at A_ and A, , respectively.
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Finally, let us unveil the reason for considering HA(t)v(t)H , instead of the much simpler
Hv(t)HH that has been treated in [RS] Prop. 3.14 for instance:
Exponential decay of || A(t)v(t)]| , guarantees that the quantities

le®ll, = l[A@e@ll,
and [Jo®)]y, < e[ Az gy,

Altu(®)]]

H

decay exponentially as well. Hence, choosing § := min(d+) we have arranged for

H75U| wo H%U AR, W) + H%U cem H%[MU 'H.’] HL?(R,H) < 0

and thus v = v_5(75v) € WY at every § € [0,0). O

Auxiliary Lemma 4.16 (Topological properties of the inversion map)
Let W, H be Banach spaces. Then the invertible operators Lin,(W, H) form an open subset
=1
of LW, H) and the map Lip,(W, H) 07, L(H,W) is continuous.
Proof. Given an invertible Lo € L(W, H) the Inverse Mapping Theorem ensures that L Ve cH,W)
is bounded as well. For perturbations L € £L(W, H) we can rewrite
L(H)

| p— |
Lo+ L = [idg + LLy" | Lo
| I— |
idyy

where HLLalHL(H) < Ll g,y HLalHC( , motivates the definition

HW
r(Lo) :== 1/ HLSlHaH‘w')

Choosing [|L|| ; < r(Lo) guarantees that HLLaleﬂ <1,s0 Lo+ L € L(W, H) is invertible
with inverse 00
(Lo+ L)' = Lyt Y [-LLy'|" € L(H,W) (4.10)
— | IS |
cHW) ™= L(H)
Note that on any ball By,(r,)(Lo) C L(W, H) with 0 < g < 1 the expression (4.10) is the
uniform limit N — oo of continuous functions

N
L Lg! Z [-LLy'"
n=0

Hence, the map L € By,(1y)(Lo) — (Lo + L)™' € L(H,W) is continuous itself. O

Invertibles Invertibles

o kﬂ

' Al l |\ A+

|
1
\ ) V
. 4 N 4

LW, H)

Figure 4.3: Preparation for our proof of Theorem 4.15 Step 2. The invertible operators
Liny(W1,H) C L(W7, H) form an open subset. Since our operator family, while describing
a continuous path in £(W7y, H), approaches invertible endpoints Ay € Lin, (W1, H), it is
possible to find T' > 0 such that A(t) itself is invertible for all |¢| > T'.
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Having completed the proof of Theorem 4.15, we are ready to address our main result:

Theorem 4.17 (D4 as an sc-Fredholm operator)

Given a baseline operator Ay : Wi — H on an honest sc-Hilbert space H D W7 D ...
let us assume that B(t) € L(H) is a very good perturbation and consider the operator family
A(t) = Ag + B(t). Moreover, let 69 = 0 < 01 < ... be a weight sequence bounded by 0 as
determined in the proof of Theorem 4.15.

Then by restriction of D4 : Wi, — H we obtain a sc-Fredholm operator

Da: W1)nz0 — Wi )nzo
between honest sc-Banach spaces.

Proof. Let us first comment on the spaces ij;k: In Lemma 4.6 we have identified 3; = v_s,
as a cumulated twisting sequence on the almost sc-Banach space (W,,)n>0. Thus, Lemma 4.8
ensures that by using spaces of type W,fl :=v_5s(Wmn) C W,, we obtain an honest sc-Banach

space (W 5_’;k)n20 for every k > 0.

n
Now let us turn to the operator D4: In Lemma 4.14 we have seen that Dy : Wy — H
is strongly twistable w.r.t. 3; = 7.5, , whereas the more difficult Theorem 4.15 confirms
that D4 is also twist-regularizing. Note that all assumptions remain true when ”A” is
replaced by ”-A”. Thus, we can apply Proposition 4.13 to obtain regularizing sc-operators
Dy (Waik+1)n20 — (Wéik)nzo at every k > 0.

n n

With this information we are in a position to suitably adapt the proof of Theorem 2.38:

Since Dy g : (Wjil)nzo — (W2n),>0 is regularizing, we have

kerDyy C ﬂ ng‘_l - ﬂ Wl
n>0 n>0
and as before D1 4 : W) — H being Fredholm guarantees that ker D 4 is finite-dimensional
whereas Dy 4(W;) C H is a closed subspace.

n

sc-operator, the decomposition Wy = D_,(Ws) @ ker D4 can be augmented to

Now comes the only tricky part: With D_4 : (quiz)nzo — (W 51;1)”20 being a regularizing

n
]

D_o(W, 512

n

whereas the regularizing sc-operator Dy : (Wfil)nzg — W2)s0

turns H = D4 (W1) @ ker D_ 4 into
Wi = W N Da(W,) @ker D_y

DA(eril)

It remains to summarize our findings in the language of Definition 2.7: The sc-Banach spaces
U,= W,‘ffh and V,, = W,f" admit finite-dimensional subspaces ker D4 C Uy, and ker D_4 C V.

Moreover, since the regularizing sc-operator Dy : (Wﬁf&)nzo — W2

D A(W1) C ‘H while the regularizing sc-operator D_y : (qub)nzo — (Wfi1)nzo has closed
range D_,(Ws) = Wi N D_,(W1) C Wy, Corollary 2.6 confirms
X, =D_,(W,) and Y, =Da(Wr,)

n n

0n),>0 has closed range

as honest sc-subspaces of U = (W1 )50 and V = (W2

n n
Clearly,
Dy: W,fj_l =kerDy ® D_A(W‘S_T_Q) E— DA(Wéil) Sker D_y = Won

n n

")n>0, respectively.

Xn Yn

restricts to an isomorphism D4 : X,, — Y,, at every n > 0. O
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Chapter 5
Applicability to Floer theory

5.1 Construction of the Banach scale and baseline operator

5.1.1 ... in the general case of non-local Lagrangian boundary conditions
It is now time to provide examples for the baseline operator and admissible perturbations
that were postulated in Chapter 2.

Since our arguments do not involve any reference to finite dimension, we will consider the

infinite-dimensional case right away. Let (H, (-, >H) be a real Hilbert space. Given an ”almost

complex structure” Jy € L£(H) with J2 = —id and (Jo-, Jo-)u = (-, -)u, the "symplectic form”
w(u,v) := (Jou,v)g € R

is non-degenerate and satisfies [w(u, v)| < [[Jo||yg llull [[v]. The antisymmetry of w relies on

the symmetry of (-, -)g, thus requiring us to work with a real Hilbert space H.

Now let us consider the bounded open interval I = (0, 1). The operator
Ag = Jo0s : WHA(I,H) — L*(I,H)
is defined on all of W2(I, H). However, Sobolev embedding yields bounded linear maps
o ,m

. e Co(I,H)
unique representative e\\fl" H

Wh2(1,H)

so given any (closed) subspace A C H@H, we can restrict Ag = JoJs to the (closed) subspace
W1, H) = (evg x ev) (A) € WY2(1,H)

consisting of functions u € W*(I,H) C C°(I, H) such that (u(0),u(1)) € A.

In Corollary 5.5 we will give a full classification for which spaces A C H @ H the operator

Ao : W/{’Q(I,H) — L2(I,H) is symmetric (resp. self-adjoint).

As a first step, we observe the following:

Lemma 5.1 (Regularity of the adjoint)

Let A C H®H be any subspace.

Then the adjoint domain of Ag = JyOs : Wig(I,H) — L*(I,H) satisfies D(A}) ¢ Wh2(1,H)
and A} can be obtained by restricting JoOs : Wh2(I,H) — L*(I,H) to D(A}).

Proof. Let us abbreviate H = L?(I,H) and consider an element v € L?(I,H). The Riesz
Representation Theorem shows that u € D(Af) implies the existence of another uy € L?(I, H)
such that (u, Aof)m + (u1, flg = 0 for all f € W*(I, H).

We claim that consequently the expression

5¢(u,J0u1) = /u&zﬁ +/JOU1-¢ eH
I 1

vanishes for all test functions ¢ € C§°(I), exhibiting Jou; € L?(I,H) as the weak derivative
of u so that the adjoint can be expressed as Aju = —u; = JoOu.
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Indeed, given any test function ¢ € C§°(I) and constant vector v € H, the product ” f” = ¢v
belongs to Wig(I,H). As a bounded linear map, (-, Jov)g : H — R commutes with the
Bochner integral and with (-, -)g being non-degenerate, having

(06 (u, Jour), Jov)y = /I<U7J0 Igv] >H+/I<J0U1,Jo ov)m = (u, Aof)m + (ur, flu = 0

for all v € H implies 64(u, Joui) = 0. O

With the Fundamental Theorem of Calculus in mind, the boundary behaviour of our operator
Jo0s seems rather unsurprising. Yet, since our Sobolev spaces are defined on a bounded open
interval, a little argument involving the non-trivial Meyers-Serrin theorem is required:
Lemma 5.2 (Partial integration for Ag = Jy0s on I = (0,1))

For u,v € WY2(I,H) C C°(I,H) we have the formulae

a) (W, v)g + (u,v") g = (u(1),v(1))g — (u(0),v(0))y
b) (Aou,v) g — (u, Agv) g = w(u(1),v(1)) — w(u(0),v(0))

Proof. a) By the Meyers-Serrin theorem there exist sequences wu,,v, € C> N W1H2(I, H)
such that uw, — u and v, — v in WY2(I,H). Continuity of the evaluation maps
eve : WHA(I,H) € CO(I,H) — H, s € I allows us to use

lim [Jup(s) — u(s)

Jim =0 and nh_)n(f)lo lon(s) —v(s)]|[y; =0 at s=0,L1.

[

Thus, formula (a) follows from the calculation

(W v+ (0 = B | (g, o0+ (i, )
n—o0 L| 1

fol ds %<Unﬂ)n>]}ﬂ
= Tim | (1), 00(1)) = (10(0), 02 (0))yg | = (w(1),0(1)) 5 = ((0),0(0) )
b) Given u € Wh2(I, H) we have Jg 0 (u, du) = §4(Jou, JoOu) and therefore Jou € W12(1, H)
with d(Jou) = JoOu € L*(I,H). Using formula (a) we obtain

Agu,v)g — (u, Agv :/ JoOsu, v —/ u, JoOsv
(Aou, v) i — (u, Aov) 1< 0 Y 1< 0050y
9s Jou 7<J0u, asv>]].]1

= <83[Jou],v>H + <J0u, 8SU>H = <J0u(1),v(1)>H - <J0u(0),v(0)>H
= w(u(1),v(1)) — w(u(0),v(0))
]
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As promised in the introduction, there is a nice characterization of the adjoint (Jy0s|a)* in
terms of Q-orthogonal complements:

Proposition 5.3 (Calculating the adjoint of Ay = Jpds)

Given a subspace A C H @ H, denote by A C H@ H the Q-orthogonal complement of A
under the symplectic form Q = (—w) G w.

Then the adjoint of Ay = JoOs : W/{’Q(I,H) — L2(I,H) is simply

Jods : Wy (I, H) — L*(1,H)

Proof. From Lemma 5.1 we know that any u € D(Af) belongs to WH2(I, H) and A} arises
as the restriction of Ay = Jyds : WH2(I,H) — L*(I,H). To verify that the adjoint domain
is exactly D(Af) = Wig([, H), recall from Lemma 5.2 that any pair u,v € W12(I,H) obeys

(Agu,v) g — (u, Apv) g = w(u(1),v(1)) —w(u(0),v(0)) (5.1)

Having u € D(Af) ensures that the Lh.s. of (5.1) vanishes for all v € Wi’Z(I, H).

Since we can find a suitable v € W/{’2(I , H) for any combination (v(0),v(1)) € A, we conclude
that (u(0),u(1)) € A® and therefore D(Af) C Wi (I, H).

Conversely, u € W[ig (I, H) guarantees vanishing of the r.h.s. so vanishing of the l.h.s. implies
u € D(Af) and we have proven Wig([, H) C D(Af). O

The following auxiliary result shows that we have implications Wi’z = W]}f = A=B:

Auxiliary Lemma 5.4 (Faithful boundary detection by W1?2)
Given subspaces A, B C H @ H we have an equivalence

ACB <+  Wy(I,H) c Wg*(I,H)
Proof. Let us focus on the non-trivial direction and assume that in spite of le’Z (I,H) C Wé’z(l , H)
we can find a tuple (vg,v1) € AN B¢ Using bumps supported in the vicinity of 0 and 1,
we can construct v € W2 (I, H) with (v(0),v(1)) = (vo,v1). This produces a contradiction
between v € Wy*(I,H) ¢ WE*(I,H) and v ¢ Wy>(I, H). O

Now we are ready to describe the symmetric (resp. self-adjoint) restrictions of Jy0s:

Corollary 5.5 (Criteria for symmetry and self-adjointness)
Given a subspace A C H® H, the operator Ag = JoOs : Wi’Q(I,H) — L*(I,H) is ...
i) symmetric if and only if A is isotropic (z’.e. AC AQ)
i1) self-adjoint if and only if A is a Lagrangian subspace (z’.e. A= AQ)
Proof. Auxiliary Lemma 5.4 shows that A C A% is equivalent to the statement
Wy (1, H) C W (1, H)

which by Proposition 5.3 is reinterpreted as the statement Ay C Ag.
Similarly, A = A% is equivalent to W/{’Q(I JH) = Wig (I,H) which can be rephrased as Ay = Aj.
O
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Next, let us proceed to higher Sobolev spaces. As in section 2.4.1 every element u € W"+1’2(I, H)
can be identified with a tuple
u = (uo,u1, ...,un+1) € L*(I,H)®"+2

such that (ug,ug 1) € WH2(I,H) for all k = 0,...,n. Thus, for all k=0,...n and s € [
Sobolev embedding yields bounded linear maps

r = s
W2 (7, H) _Pe WL2(I,H) c CO(I,H) s H, wt U 1 ug(s)

and to any closed subspace A C H @ H we can associate the closed subspace

Wt (1 H) = ﬂ [(evo x evi) opry | (TF(A)) € W™HH2(1, H) (5.2)
k=0,..,n
where I := Jy & Jy € L(H & H). More explicitly, this space can be described as

WAL H) = { (o, ungr) € WL H) | (1g(0), (1)) € TE(A) for all k=0, ..,n}

which is reminiscent of the space encountered in section 7 of [FW].

Note that Ag = Jods : WH2(I,H) — L?(I, H) restricts to a composition of bounded linear maps

) n J N
W1, H) ———— Wi (1L H) —=— W (1, H)

(uo,ul,...7un+1) > (ul, ...,un+1) — (J0u17...,J0un+1)

so we can regard Ay as a sc-operator
1,2 2
Ay (Wit (I,H))nzo — (W (I,H))nzo
Our definition of WK“’Q(I ,H) is motivated by the following property:
Lemma 5.6 (Regularization imposes boundary conditions on derivatives)
The sc-operator Ay : (WX+1’2(I,H))n>O — (W]\l’Q(I,H-]I))n>0 is reqularizing,
ie. Ag: WoP(ILH) — L*(I,H) satisfies Ay (W2 (1, H)) = W2 (1, H).

Proof. By Auxiliary Lemma 2.12 it suffices to show that Ag = Jy0; : WI{’Q(I, H) — L2(I,H)
is an escalator for (WX’Q(I,H))nm. Hence, let us consider u € W™ 12(I H) such that
JoOu € W™tL2(T H) as well. Then u can be represented as a tuple

(u07 ULy eeey un+l) € LQ(Ia H)@n+2

with (ug(0), up(1)) € I¥(A) for k = 0,...,n whereas from du = —JyJodu € W11, H)

I(A)
we obtain a tuple
P (ula "'7un+17un+2) € LQ(I7 H)@n+2

with (ug(0),u(1)) € I¥(A) for k =1,...,n+ 1. Gluing these tuples shows that
(ur(0),ug(1)) € T¥(A) for k = 0,...,n + 1 and therefore u € Wy +*?(I, H). O

Up to this point, our discussion can be summarized by the following result:

Theorem 5.7 (Ay = Jy0Os as a baseline operator)
Assume that A C H@® H is a Lagrangian subspace, i.e. A% = A.
Then Ag = JoOs : WH2(I,H) — L?(I,H) restricts to a baseline operator

Ao : (W}\LHQ(LH))QO — (W;\L’Q(LH))QO

in the sense that Ag : Wi’Q(I,H) — L2(I,H) is self-adjoint as an unbounded operator

on L*(I,H) and Ay : (WTFLQ(I,H)) — (WXL’Q(I,H))n>O is a reqularizing sc-operator.

n>0

Proof. Combine Corollary 5.5 and Lemma 5.6. 0
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So far we have not verified that (WK’Z(I, H))n>0 is a sc-Banach space.

In fact, Woo :=(,,50 VVA,T\”’2 (I,H) being dense in every W, := WX’2(I, H) is far from obvious:
It might be tempting to regard C§°(I,H) C (>0 WF’Z(I,H) as a candidate for being
dense in every Wg’z(l ,H). However, [Ad] Thm. 3.37 shows that for example C5°(I) is not
dense in W12(I), the reason being that I¢ = (—00,0] U[1,00) has non-vanishing measure
and therefore cannot be (1, 2)-polar”. In a more modest attempt we observe that I = (0,1)
clearly obeys the segment condition from [Ad] Def. 3.21 so [Ad] Thm. 3.22 ensures that
the restriction map C§°(R) — W1?(I) has dense image. Now however we have lost control
over the boundary values uc(0), uc(1) of any approximating function u. € C§°(R).

We can circumvent these issues in a surprisingly simple way, namely by the mere presence
of a baseline operator:

Proposition 5.8 (Banach scales generated by a baseline operator)

Let Wo D W1 D ... be a filtration of Banach spaces with bounded inclusions

such that the norm ||-||,,. arises from a Hilbert space structure on H := Wy.

Assume that Wy, 1= ﬂn>0 W, is dense in H and there exists a baseline operator

Ag: Wns1)n>0 — (Wa)n>0

Then (Wy)n>0 is an almost sc-Banach space.
It is an honest sc-Banach space if Ag: W1 — H has compact resolvent.

Proof. Let us first prove our claim in the case of complex Banach spaces:

Self-adjointness of the operator Ag : Wi — H guarantees that Ag — ¢ : W7 — H is invertible.
By consulting Auxiliary Lemma 2.13 we know that Ay — ¢ : (Why1)n>0 —> (Whn)n>0 is a
regularizing sc-operator as well, so we get (Ag —4)~1(W,,) C Wy41 and the Inverse Mapping
Theorem implies (Ag — i)™t € L(Wp, Wyi1).

Pick any element « € W),. Since by assumption Wee = (),,,59 Wi is dense in H, we can find
an approximating sequence yi € Wy, such that B

Jim[|(Ao =)z = gif|p = 0
Now Ay — ¢ being a regularizing operator ensures that (Ay — i)*l(Woo) C W and with
o= (Ao =) "l < [1(Ao =) 7"{| gy - [1(Ao = )" — il

we conclude that xy, := (Ag — i) ""yr € W is an approximating sequence for x in W,,.
This proves that (W),,),>0 is an almost sc-Banach space.

For the statement about honest sc-Banach spaces note that at any A € p(Ap) from the
resolvent set, I

/ %(A())
(Ao —N)!

| R —— -
0
is a commutative diagram of bounded linear maps between Banach spaces. Since the class of
compact operators forms an ideal among bounded linear maps, we conclude that the resolvent
R)(Ap) € L(H) being compact is synonymous with compactness of the inclusion operator
v € L(Wy, H). Moreover, for every n > 0 we have a commutative diagram of bounded linear

maps H —t |44}

(A[] — i)"J T(AO - Z)n

L
W, ——— Wy

showing that compactness of ¢ : W7 — H implies compactness of ¢« € L(Wyy1,Wy)
at all higher orders. In summary, (W,),>0 is an honest sc-Banach space if and only if
Ag : W7 — H has compact resolvent.
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Finally, let us explain how our results can be transferred to the case of real Banach spaces:
Assume that Wy D Wip D ... is a filtration of real Banach spaces with bounded inclu-
sions such that [|||, originates from a real Hilbert space H = Wy. With details given in
Appendix A we can regard the complexification

WEoOWED . ..oWED ...

as a filtration of complex Banach spaces with bounded inclusions such that |[[-[|,,- originates
from the Hilbert space HC = H ® C. The complexified operator Ag @ idc = Ag & Ag now
being a baseline operator on (Wg)nzo, we can apply the above results to deduce that the

set
AWe=[ ) Wa] = 7]

m>0 m>0

is dense in every W< and therefore W, is dense in every W,.
In the case of honest sc-Banach spaces WEH — Wf being a compact inclusion is equivalent
to compactness of the inclusion W11 — W,,. L]

Having identified Jyds as a baseline operator on (WZL’Q(I , H))n>0, we obtain an honest sc-
Hilbert space for every Lagrangian subspace A C H & H: B

Corollary 5.9 (Honest sc-Hilbert spaces generated by restrictions of Jyds)
Let A = A% be a Lagrangian subspace of H @ H.
Then (WX’Q(I,H))TL>O is an honest sc-Hilbert space.

Proof. Approximate f € L?(I,H) by f - Xe - € L?(I,H) and use mollification to conclude
that the set
Coo(ILH) c () Wy*(I,H)
’ A ’
n>0

is dense in H := L?(I,H). From Theorem 5.7 we know that

Ag = Jo0s : [WFFI’Z(LH)]@O — [W}\L’Z(LH)]@O

is a baseline operator, so Proposition 5.8 guarantees that [WX”’Z(I ,H)}n>0 is an almost sc-

Banach space. By combining Sobolev embedding with the Arzela-Ascoli theorem, we observe
that the inclusion

WA (L H) -------- > L2(I,H)
4 N
Wh2(1,H) CO(I,H)

COV2(1H) = COV/2(1,H)
is compact, so Ay : W/{Q(I ,H) — L?(I,H) has compact resolvent and Proposition 5.8

confirms that [WK’Q(I, H)}n>0 is an honest sc-Banach space. The lowest level H = L?(I, H)
being a Hilbert space, we are in fact dealing with an honest sc-Hilbert space. O
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5.1.2 ... in the special cases of local Lagrangian or periodic boundary
conditions

Our treatment of non-local Lagrangian boundary conditions A C H & H automatically in-
corporates two important special cases:

e Local Lagrangian boundary conditions:
Choose A = Ay @ Ay where Ay and A; are Lagrangian subspaces of (H,w). Then the
Banach scale from subsection 5.1.1 can be described as

Wbl (1,H) = {u e WHL2(1 H) | 9Fu(0) € J¥(Ag) and dFu(1) € J¥(A) for all k = 0, n}

which can be seen as a generalization of the Lagrangian boundary conditions considered
in section 7 of [FW].

e Periodic boundary conditions:
Let A be the diagonal A C H® H. Note that A = I(A) is invariant under application
of = J & J, so the Banach scale is simply

W1 H) = {u e WnHL2(1, H) ) 9Fu(0) = 8Fu(1) for all k = 0, n}

By Part II Auxiliary Lemma 7.8 we will be able to define W™2(S*,H) c W™%((0,1),H) as
the projection of
T4+1 -1
1 -1

ker | W2((0,1),H) & W"2((-¢, ), H) = W2 ((-¢,0), H) & W"2((0,¢), H) |

We use the remainder of this subsection to justify why WXH’Q(I ,H) is the same closed
subspace of W H12(1 H) as WH12(S1 H):

Lemma 5.10 (Pointwise gluing of Sobolev spaces W12)
Let us split 1. = (-€,€) into adjacent intervals I = (-¢,0) and I = (0,¢)
and denote by WH2(I_,H) & WL2(I;,H) the kernel of
lue
g _ _ 81)0‘[7— (31)0|]Jr
WLQ([—aH) © Wl)Z(I-I-aH) - CO(I—aH) ® CO(I-I-:H) — H, (U7U) — ’U,(O) - U(O) :

Then the restriction map

WL2(I, H) —= W[, H) & WH2(L, H),  w— (w]_,wlr,)

induces an isomorphism of Banach spaces W12(I.,H) — W12(I_ H) @ W2(I,, H).
glue

Proof. To verify that the map

WLQ(I&H) — W172(I—7H) & WLQ(I—HH)
glue

is surjective, let us consider u € W12(I_ H) and v € W'2(I,, H) with u(0) = v(0).

By the Meyers-Serrin theorem we can find approximating sequences u,, € C° N W12(I_ H)

and v, € C®°NWH2(I H) such that lim Hu — Up, 0= 0 and lim Hv - vn’ =0.
n—00 n—00

Taking into account that

HWL?(L, W2 (1, H)

W2(Le, H) —— CO(Ly H) —% |
are bounded linear maps, we conclude that u,(0) — u(0) and v, (0) — v(0) and therefore

lim ||un(0) = va(0)[|; = O

n—oo

67



For any test function ¢ € C5°(I) we find

dp(uUv,aU0) = /[u@qﬁ—i—i@] + / [0 + V]

I_ I
= lim [Un 0@ + Uno] + lim [V, 0P + Up P]
n—0o0 Jr 1 1 n—o0 Iy —_
A (und) A(vnd)
= ILm #(0) - [un(0) —v,(0)] =0
showing that v Uv € WH2(I., H) is the desired preimage. O

Remark 5.11 (Pointwise gluing of higher Sobolev spaces W"1:2)
The result of Lemma 5.10 extends to higher Sobolev spaces:
For k£ =0,...,n we have bounded linear maps

pr
WrHL2(1,, H) BN WE2(Ie,  H),  (wo, w1, ey Wng1) — (Why Wey1)
exhibiting
WnH’Q(I_,H) @ W”+172(I+,H) pp— (prk D prk)_1 [Wl’z(f_, H) & Wl’z(I—&-a H)]
glue glue

as a closed subspace of W12(I_ H) @ WhH2(I,, H).

To verify that the restriction map

W HL2(I, H) — W (12 H) © W1 H)
glue
is surjective, let us consider u € W"12(1_ H) and v € W™L2(I, | H) with u(0) = vy(0)
for all k =0,...,n. Since (ug,ug,1) and (vg, vp41) belong to WH2(1_) and W12(I,) respec-
tively, we can apply Lemma 5.10 to conclude that (u L vk, ugtq Uvgsr) € W1’2(I€,H) and
therefore (ug U v, u1 vy, ...\ Upy1 Uvpyr) € WHL2(1 H).
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5.2 Ciriteria for moderate and localized perturbations
5.2.1 Differentiation of maps valued in Cp . (I, B)

As perturbations to our baseline operator Jods : (W3 TH%(1, H)), <o — (W1, H)), -, we
study maps I' : R x I — L(H) which are admissible in a sense to be determined below.
When cutting such a map into time-slices 'y : I — L(H), we want each I'; to be contained
in Cf'ded (I , L’(H)) so that it can operate by multiplication on W™2(I, H). Moreover, just

as in Lemma 2.28 or Corollary 2.29 the map

'R— Cl?ounded (I’ £(]HI))
has to be of class C" with bounded derivatives in order to operate on W2 (]R, wn2(I, H))
We verify this kind of differentiability from scratch, by using completeness of the spaces

O wded (I, L(H)). This will require bounds on the second time derivatives 029FT(t,z) to
ensure uniform convergence of the difference quotients

OET(t + ot,-) — kT (¢, -)
ot ’
As indicated in Figure 5.1, we will be able to keep the number of z-derivatives constant,

while arbitrarily increasing the number of t-derivatives.
The following arguments work for a general open interval I C R and Banach space B.

k=0,..,n

Lemma 5.12 (First derivative of CP . (I, B)-valued maps)
Given a map I' : R x I — B such that

o I'(t,)eC) . .(I,B) at everyt € R
e I'(,x) € C*(R,B) at everyz € I

let us assume  sup HGEFHB < 00.
(t,r) eRx I

ThenT :R — CP . (I,B) is differentiable with derivative t — 9,I'(t,-) € Cp . 1a(I,B).

Proof. We apply the Fundamental Theorem of Calculus twice:
Using I'(+, ) € C1(R,B) one has
I(t+ 6t,x) — T'(t,x) !
5t = /0 ds atr}(t-{—sz?t,x)

and with 9,T'(-,z) € C}(R, B) we get

1
0Tt + sit,2) — 0T (8,2, < |s] \M/O ar |21 stiae sup o]

t+r-50t,x) H]B = (t,2)eRx

Thus, calculating pointwise at = € I, we obtain

T(t+ 0t,x) — T(t !
H U062) “VD) g0 < /ds |0t + s6t,x) — O (t.z)||, < |6¢] sup [T,
ot B 0 (t,x)ERXT
so the difference quotient W € Ck?ounde 4, B) converges not only pointwise but

in fact uniformly. By completeness of C{. . .(I,B) we conclude that 9,I'(¢,-) belongs to
CP. nded (I, B) as well and serves as the derivative of I': R — CP (I, B). O

Remark 5.13 (The Banach space C}! ...(I,B))
Choose n > 1. Then

Comded L, B) == {(uo, ULy ooy Up) € O goq (1, B)P Ty, is differentiable with derivative uj, = Uk+1}

is a closed subspace of Cl())ounde nes B)®"*! and therefore a Banach space itself.
By abuse of notation, we can identify C{\ . .(I,B) with its image under the projection
(U07U17 7un) > ug € Cl?ounded(I’B)
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Lemma 5.14 (First derivative of C}' . .(I,B)-valued maps)
Given a map I' : R x I — B with

o I'(t,-) e Cp . .i(I,B) at everyt € R
e I'(-,z), ..., 0" (-,x) € C*(R,B) at every xz € T

assume that  sup H82 8kFHB < oo forall k=0,.
(t,x) eRx I

Then we have O, € Cp (I, B) with derivatives OF[0,T] = O;[OKT].
Moreover, I' : R — C} (I, B) is differentiable with derivative o' : R — C}! . (I, B).

Proof. As in Lemma 5.12 we have pointwise estimates
OFT(t 4 6t,z) — OFT(t,2)
at

— 0,0k T (t, z)

< |6t| sup H@QQIEFHE
B (t,x)eRXT

showing that

. okr ) — Ok (¢, -
6,58];1—‘(15, ) — hm 61: (t+5t7 ) 69: (tv )

0
50 5t € C’bounded(I? E)

Since C% (I, B) € C)1oq(1,B)¥" 1 is a closed subspace, we conclude
that O,(¢,-) € Ct 1.4(I,B) with z-derivatives OF[9,I'] = 9,[04T]
is the t-derivative of I' : R — C} 104 (1, B). O

Proposition 5.15 (Smooth C}! . (I, B)-valued maps)
i) Given a map T' : R x I — B with
o I'(t,-) e Cp i, B) at everyt € R
o I'(,z), ....,00T(-,x) € C*(R,B) at every x € 1
assume that  sup H@é 8§FHB < oo forallk=0,..,nandl > 2.
(t,x) eRx I
Then we have T' € C*(R,C} . (I,B)) with derivatives t — 8{T'(t,-) € C} . (I,B).
it) If in addition  sup H@f 6";FHB <o forallk=0,...,nandl=0,1
(t,z) eRx I
then T': R — Cp . (I, B) is smooth with bounded derivatives.

Proof. 1) All we have to do is iterate Lemma 5.14:

With the functions 85T € C2 | (I, B) satisfying 05T (-, z) € C*°(R,B) at every z € I,
existence of the expressions 9/0FT : R x I — B is guaranteed from the outset.

Now assume that at every ¢ € R the map 0/ : R x I — B obeys 9/['(t,) € C", (I, B)
with z-derivatives given by . i 0
a [8 F] = at [axl—‘] = C'bounded(Iv]B%)

Then we have  sup Hat oklolr HB < 00, 50 Lemma 5.14 shows that 9T I'(¢, -) € Ol nded (> B)
(t,z) eRx I
with z-derivatives

8!06[81%—’—1“ = ataa]j[air] = ai+1[a]:1?r] € Ck()]ounded(I?IB)
is the t-derivative of 9" : R — Cp2 . (I, B) and our claim follows by induction.
ii) By part (i) we have a sequence of derivatives 0/ T : R — Cgounded(‘[ B), I > 0 with norm

l ok l k
= 21 g < 3 s

ForI':R — C} e d(I ,B) to be smooth with bounded derlvatlves, all of these norms have
to be uniformly bounded in t € R, as can be achieved by assuming

sup H@i 8’;F(t7x)||ﬁ <oo forallk=0,.,nand! >0
(t,x) eRXI OJ

loprt

70



For practical situations, there is no cost in discarding our constraint on the number of z-
derivatives since I' (for example being the Hessian of a Hamiltonian function) comes from
smooth data anyway. Thus, we will from now on continue with the much more generous
assumption of I' being a C'"*°-function on ¥ =R x 1.

Corollary 5.16 (Simplifying the conditions of Proposition 5.15)
Given a map I' € C*(R x I,B) assume that
sup HQ{ 8§FHB <oo foralll,k>0
(t,x)eRx T
Then I' satisfies the conditions of Proposition 5.15,
soI':R—Cp . (I,B) is smooth with bounded derivatives for all n > 0.

Proof. Let us begin by an alternative definition that clarifies the ” computational complexity”
of belonging to C*°(R x I, B): Having I' € C*°(R x I, B) means that to every binary sequence

A = ajaz....a, with a; € {t,z}
we can assign a map 'y € C1(R x I,B) such that
0.1'4 = Tga  for all binary sequences A and a € {t,x}.

Note that by Schwarz’s theorem the terms I'y, .. 4, are necessarily permutation invariant, so

every I'4 can be written in the form I'; 4. . and our assumption  sup H@é@I;FHB < 0
(t,z) eRXT
translates to .
sup HF AHIB% < oo for all binary sequences A

(t,z) eRx I
The conditions of Proposition 5.15 are immediate because I'(t,-) € C} (I,B) follows

ounded
from sup H@’;FHB < oo forall k=0,...n

(t,x) eRXT
and I'(-,x), ...., 00T (-, z) € C*°(R,B) is due to the possibility of successively applying ;. [

o | 3 | :
3 T T T T 3 3 Q Q Q o 3 Oy pointwise derivatives
L = j %
| j | lolotol
i 0 1 . n 1 1 } 0 = bounded on R x I
3 —é A i 1 1 ® = bounded continuous in /-direction
i i i I I I I i i o o o o i
| | | 3 Tololo] !
o i : - — 1 1 — 1 1
I |Slele] feTetel

Figure 5.1: Schematic illustration of the inductive argument proving Proposition 5.15.
Each point in the diagram represents an R-family of maps I — B. An arrow indicates that
two such families R x I — B are related by taking a pointwise derivative. Note that by
the assumptions of Proposition 5.15, we can arbitrarily increase the number of t-derivatives,
while keeping the number of z-derivatives constant. As indicated by the ”commutative
squares”, we obtain an alternative to the classical Schwarz theorem.
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5.2.2 Compatibility with the boundary conditions
From now on, we will only consider the interval I = (0, 1).

Returning to the setting of section 5.1.1, let us choose B = L(H), where (]HI, (-, ->H) is a
Hilbert space equipped with an ”almost complex structure” Jy € L(H) and ”symplectic
form” w = (Jo-, )m.

The proof of Lemma 2.28 provides us with inequalities

Hf“HW"? (1,1 < const. X 1]l H—H))HUHW”'Z(LH)

bounded (

giving rise to bounded linear inclusions

Cl?ounded (I’ E(H)) — E(WnQ(I’ H))

Thus, any I' € C* (R x I, E(H)) satisfying the requirements of Corollary 5.16 will induce
a moderate family of sc-operators on the filtration (W”’2(I ,H))n>0. Note however that,
according to section 5.1.1, we have to impose boundary conditions by choosing a Lagrangian
subspace A C (H&H, Q = (—w) ®w) and that scalar multiplication by f € Ct (I, L(H))
does not necessarily preserve the subspace WX’2(I JH) € Wn2(1,H).

We will overcome this issue by going to the subspace C}' (I , E(H)) , to be introduced in
Remark 5.19. To properly define this space, some preparations are in order:

Remark 5.17 (The space of A-compatible operators £, C L(H & H))
Let us consider E := H & H as a Hilbert space with block-diagonal inner product

(uo ® u1,v0 ® v1)Hem = (uo,vo)m + (U1, v1)m
By defining I := (—Jp) & Jo € L(H) & L(H) C L(H & H) in contrast to I = Jy & Jo, the
symplectic form Q = (—w) @ w can be written as Q = (I-, )gen. Since for any v € H @ H
we have Q(u,-) € L(H @ H,R), the Q-orthogonal complement of any subset A C H ¢ H
is automatically a closed subspace A ¢ H @ H. In particular, every Lagrangian subspace
A = A% is closed.
Now given a closed subspace A C [E, we have an orthogonal decomposition E = A @ A+ with
projectors pa,paL € L(E), allowing us to exhibit

Lx:={a€LE)|a(A) CAand a(I(A) CI(A)} = ﬂ ker(ev, opyio_) N ker(ev, opyrolo o)
ucA
and Ly 1= {aecL(E)|a(l(A) CAand a(A) CI(A)}
as closed subspaces of L(E) = L(H® H).

Remark 5.18 (Extracting the boundary behaviour of f € C&Tnllded(LB))
Consider any two points zg, 1 from our interval I = (0,1).
Then any [ € C% (I,B) obeys

f($1) - f(‘/EU) = (331 _:CO)/ de ‘:L"o+s (x1—0)

ounded

s0 with £ (1) = flaolllg < ler =0l - [Flco 1

we conclude that f(z) € B becomes a Cauchy sequence whenever = approaches the boundary.
By completeness of B, we receive well-defined boundary values f(0) and f(1), putting us into
a position to consider bounded linear maps

PTy

Cgo—;rllded(I’B) - Cbotln(led(LB) — CO(I_,B) evo—><evl> BoB
(fo, fr, oos 1) ———= (fi, frg1) ¢ Jr [f1(0), fr(1)]

Note that in our situation B @ B = L(H) & L(H) C L(H & H) is simply the subspace of
block-diagonal maps.
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Remark 5.19 (Making C&Tnlldgd(I’B) respect the boundary conditions)

Let A C H® H be a closed subspace.
By combining Remarks 5.17 and 5.18 we observe that

n

Chounded (1 ﬂ [levo x evi] o pry] - 1(LA-]I’f)

= {f € Ot o (1, L) | [/1(0), fy(1)] € £ T for all k= 0,...,n}

is a closed subspace of Cg(:ull 4ed (L, L(H)). To understand the motivation for this definition,
let us multiply u € W2 (1,H) by f € Ol (1, £(H)):

Having u € WXLHQ(I,H) means that [u(0),ur(1)] € IF(A) for all k =0,...,n

Recall that maps from £, preserve the subspaces A and I(A), so for m =0, ...,n we have

()@ (1) = Y- (7}) [nr(©) © sl [0) @ us(1)] € 1(A)

k=0 LaIm—Fk (M)

and therefore fu € WXJrl’z(I, H).
Writing E(W”’Q(I,H))A for the space of all « € E(W”’Q(I,H)) that preserve the subspace
WK’2(I, H) c W™2(I,H), we obtain a commutative diagram

C{)lounded (I’ E(H)) - E(WnQ(Ia H)) restr. E(WZ\LQ(I, H); Wn’Q(L H))
n n\Q/ restr. n.2
Cbounded(l’ E(H))A EE— E(W ’ (LH))A —_— ﬁ(WA’ (I,H))

improving on the map C}\ ., (I,L‘(H)) — E(W"’2(I,H)) mentioned in the beginning of
this section.

With the extra ingredient of compatible boundary conditions, we are now ready to refine
Corollary 5.16 such as to provide the desired information about moderate and localized
perturbations:

Proposition 5.20 (Criterium for moderate and localized perturbations)
Let A = A% be a Lagrangian subspace of H & H.

i) Assume we are given a map I' € C*(R x I, L(H)) that in addition to
sup H@l 8kFHB <oo foralll,k>0
(t,z) eRx T
satisfies [OFT'(t,0),05T(t,1)] € La -I* for allk >0 and t € R.
Then )
I:R— Ch (L, L(H)) , — L(W(1,H))

s smooth with bounded derivatives for all n > 0,

exhibiting T'(t) as a moderate perturbation on the Banach scale (WX’Z(I,]I))RN.
it) If in addition

lim sup H@t t m)HC(H) =0 forl=1,2

t—+o0

then I'(t) is not only moderate, but also a localized perturbation.
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Proof. i) From Corollary 5.16 we already know that I' : R — CJ' . (I, E(H)) is smooth
with bounded derivatives. The additional requirement

[0FT(t,0),08T(t,1)] € La - T

ensures that I'(t) € CJ\ 4 (I,E(H))A for all n > 0. Since C}' 14 (I,E(H))A is a closed
subspace of Cl! (I, L(H)), we observe that having I'(t) € CJ' ...(I,L(H)), at every
t € R automatically implies I'D(¢) € C (I, L(H)) , for all higher derivatives [ > 1 and
therefore I' € C*(R,Cp: (1, [,(H))A) instead of just I' € C°(R, O, 1.4 (1, L(H))).

By applying the bounded linear map

Cl?ounded (I’ ‘C(H))A — ‘C(WmQ(Iv H))A - ‘C(W}\L’Q(I’ H))

from Remark 5.19, we conclude that I' : R — ,C(WX”’Q(I ,H)) is smooth with bounded
derivatives at every n > 0.

ii) For H = L?(I,H) we have

H@él“(tp)HE(H) < H@él“(t,)”co

bounded

= sup ||0 T(t,x
(r.cm) = 50 [eax )HE(H)
so localized perturbations can be realized by demanding

tl}iinoo ilé;j) H@il“(t,a:)Hﬁ(H) =0 fori=1,2.

While motivated by abstract consistency arguments, our boundary conditions deliver rea-
sonable output in the two special cases of interest:

Example 5.21 (Periodic boundary conditions)

Let A be the diagonal A ¢ H® H.

Then A is invariant under application of I = Jy @ Jo, i.e. we have I(A) = A.
As a result, we obtain £ -1 = L and

LaN[LH)® LMH)] = {a € L(H) @ LH)|a(A) C A}
is simply the diagonal in £(H)@® £(H). Thus, having [9F I'(¢,0), % T'(¢,1)] € La -I* amounts
to demanding 9% T'(¢,0) = OFT'(¢,1).
Example 5.22 (Local Lagrangian boundary conditions)

Assume that A is of the form A = Ay @ Ay with Lagrangian subspaces Ag, A1 C (H,w).
Since the symplectic form arises as w = (Jp-, -}, we have identifications

A = Jo(AY) = Jo(Ay)

showing that I(A) = Ag @ A{. Thus, when restricted to £(H) @ £(H) C L(H @ H), the
spaces L and Ly - I consist of matrices My @ M; where M; is diagonal (resp. off-diagonal)
w.r.t. the decomposition H = A; & Af‘.
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5.2.3 Simplified criteria in the case of linear sigma models ® : R x S! — H

Up to now, we allowed our ”target” H to be a possibly infinite-dimensional Hilbert space.
In realistic situations, outlined for instance in [Sa], one may consider maps ® : R x I — M
into a symplectic manifold (M, w, J) together with an I-family of Hamiltonians H, : M — R
such that & is of finite energy

1

|
E(®) = 2/R ]|8t<1>|2+|8x<1>—VHx|2 < 00
X

and subject to the constraint that
h® + J(P)0,P — [VH,|(P) € D*TM

vanishes at every (¢,x) € R x I. As explained in [Sa] Prop. 1.21, these conditions lead to
a-priori estimates bounding the derivatives of ®.

Regarding the ’linearized Floer equation’
01 0P + Jp0p, 60 +T1-00 =0

for example encoutered in [Sa] and [RS], it is the ®-part in I' = " F' o ®” that is responsible
for I' being a ’localized moderate perturbation’ in the sense of Definition 2.21.
Proposition 5.23 illustrates this point in the simplified setting where I' arises as a composition

R x [ — o —— £(H)

with linear target space H = R?”. This situation is of interest for Landau-Ginzburg models
where our Hamiltonian H is replaced by a holomorphic ’superpotential’ W : M — C and
holomorphy of W requires M to be non-compact, so one typically takes M = C".

Proposition 5.23 (Moderate localized perturbations in the closed string setting)
Let us focus on the situation H = R?", I = (0,1).

i) Assume we are given maps ® € C°(Rx I, H) and F € C°°(H, L(H)) such that ® satisfies

e sup H@é@’;@HH<oo foralll,kE >0
(t,z) eRx 1T

o OF®(t,0)=0rd(t,1) forallk>0andtecR
ThenT = Fo®: R x I — L(H) defines a moderate perturbation on (W™?(S*, H))
1) If in addition

n>0"
tl}rinoo iléII) H@ifb(t,:c)HH =0 forl=1,2

then I' is not only moderate, but also a localized perturbation.
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Proof. 1) The set

Rq,::{Zai-[BioCI)]

finite
sum

B, :H— L(H) smooth
a; : R x I — R smooth w/ bounded derivatives

is a subring of C*° (R x 1, E(H)) Since for simplicity we are working with a finite-dimensional
target space H = R?", the condition sup H@HH < oo implies that ®(R x I, H) is compact.
As a result, all terms of the form B o ® with B € C*°(H, £L(H)) and therefore all elements
of Re are bounded functions on our ”"world-sheet” ¥ =R x I.

Note that Re C C®° (R x 1, £(H)) is closed under application of 9; and 0,:

For example, the t-derivative of an element ), a; - [B; o ®] € Rg consists of terms

ora; - [Bz o (I)] + a;0; P [8uBz] od

where our assumption

sup [|0j 0k ||, < oo foralll>1,k>0
(t,z) eRx I

ensures that 9;®* : R x I — R is smooth with bounded derivatives.
The above discussion shows that all derivatives of I' = F o ® belong to Re and therefore

sup H@é 8§FHL(H) <oo foralll,k>0
(t,x) eRx I

Next remark that our assumption ®(¢,0) = ®(¢,1) guarantees B o ®(¢,0) = B o ®(¢,1) for
all B € C*(H, L(H)). Since 04T € Rg is of the form ), a; - [B; o ®] where B; is a derivative
of F' and a; contains only z-derivatives 0 ®#, we observe that our assumption

ok d(t,0) =k d(t,1) forall k>0

translates to the statement 9FT'(t,0) = 0¥T'(t,1) encountered in Example 5.21.
Thus, we can apply Proposition 5.20 to conclude that ' = Fo® : R x I — L(H) is a
moderate perturbation.

ii) With the lowest order ¢-derivatives given by

O[F o @] = 0,P"[0,F] 0 ®

O2[F o ®] = J}OH[9,F) o ® + 0,9"0,9"[0,0,F] o ®
our assumptions

®(R x I,H) compact and  lim sup||0}®(t,z)||y = 0 for I =1,2

t—+oo zel
suffice to ensure
lim supH@éF(t,x)HE(H) =0 forl=1,2

t—+oo zel

as required for Proposition 5.20(ii). O
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Part 11

An M-polyfold chart assembling
the topology-changing time slices of
a pair-of-pants worldsheet
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Chapter 6

Contravariant Sobolev Spaces

6.1 The Sobolev space associated to a vector field

Before being able to formulate the ’crossover retraction’ in Chapter 7 and prove its sc-
smoothness in Chapter 8, we have to introduce vector-field-dependent Sobolev spaces as a
framework for calculations.

Throughout this section, we will consider open subsets 2 C R" equipped with the datum of
a metric g and a distinguished vector field V.
Moreover, we will work with test functions ¢ € C3(Q) instead of C§°(Q).

Generalizing our approach from Remark 2.25, we will use the following construction:

Remark 6.1 (Sobolev space associated to a vector field)
Given a fixed Banach space B like for instance B = R™ we consider functions v : Q2 — B
and define L2(Q) by demanding [, \/g [lul|? < oo.

With Young’s inequality we verify that

1
5\‘;@? (uo,ul) = /\/§ ﬁé?u(\/gdﬁ“) uo +/\/§¢U1
e — |
€C(Q)
defines a bounded linear map LZ(Q) @ Lg (Q) — B.

This makes
W‘l/;(ﬂ) = ﬂ ker (5};
¢€C5(Q)
a closed subspace of L;(Q) & LE(Q) and thus a Banach space itself.

Higher Sobolev spaces will be defined as
Wb 2(Q) i= {(uo, ..., tns1) € LA™ | (wp, ups1) € Wir2(Q) for all k = 0,...,n}

so all relevant properties can be derived from Wé’; (Q).
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Our specific choice of the ’differentiation constraints’ 5¥(u0,u1) guarantees the following
simple transformation behaviour under diffeomorphisms of the domain €:

Proposition 6.2 (Contravariant transformation behaviour of the Sobolev spaces W‘l/z)
Let ® : Q' — Q be a diffeomorphism between open subsets of R™
Then ® induces an isometry

1,2 1,2
ng(Q) — W@V’q)*g(ﬂ’)
(ug,u1) — (ug o @, uy o )
Proof. By the Transformation Theorem for L'-functions one has
n 2 _ n dy 2
| auval? = [ @ 2)] Vaes fuea
VP*g

so the componentwise map L2(€)%? — L?I,*Q(QI)692 , (ug,u1) — (up o ®,uy o D)
is an isometry. Using the Levi-Civita connection of g we observe that for every vector field V'
the quantity

%au(\/gw‘) — V,V* = trace[X — VxV] (6.1)

transforms as a scalar, in the sense that under a diffeomorphism ® we have

[jgai,,, [ﬁV“ﬂ 0@ = 2 [Vag V)]

Rescaling V' by ¢ € C;(Q) we get ®*[¢V] = (¢ o ®) - &*V,

so with the Transformation Theorem we find

Vgl w) = [ G L0, [VaoV wa+ [ avvaou

:/ d"x\/q)*g\/%au[s/i@*g(@o{))~[®*V]“} uOOCI)—l—/ A"z \/B*g ($o ®) - up o ®
’ g 94
:5%@@(%0@@10@)

Given p € C®°(Y,R+) and a diffeomorphism ® : Q' — € one has bijections
Co(Q) — () Co () — ()
pr—— po® E———p-¢&

Thus, every ¢ € CZ(£)) can be written as ¢ = \/®*g ¢po® for some ¢ € C}(£2) and we obtain

5 (ug 0 D,ur 0 ®) = 8.4 (uo,ur)

As a result, the isometry L2(€2)%? =% L2(€Y)%% maps W&,;(Q) to W(Il,;QVq)*g(Q’). O

d,\/dei(g) _ 1

Remark. To obtain formula 6.1 compare i) §tr(g—la,,g) with the pu-contraction of
T2, = 2 0 (Bygiup + Optiew — O
uy 5 g ( v kp + Oubry — fig,uzz)
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6.2 Criteria for compactness

From now on we will focus on the case n = 1 and replace 2 by open intervals I C R.
As a useful tool, we will consider the following 1-dimensional version of a flow:
Remark 6.3 (Straightening diffeomorphism)

Let I, C R be an open interval and fix a basepoint zg € I, .
Given a vector field V' = V(x)0, with V(z) > 0, the map

x
p: I, — I, CR :1:»—>y(a:):/

o

da’
V(a')
defines a diffeomorphism between I, and another open interval I, C R.

Its inverse ® = o~ ! : I, — I, will be called the straightening diffeomorphism for V
because it trivialises our vector field in the sense that ®*V = J,. Note, however, that the
pullback of a given metric g on I, will be an a priori unspecified metric gs, := ®*g on I,,.

Luckily, some information about gs;, can be recovered directly from the data (I, V, g).

For instance, the divergence of our vector field V' can be used to control the logarithmic
variation %V;;t:. This allows us to derive the following criteria for (non-)compactness of the
inclusion W{b; (I) = Lg([ ) depending on whether the flow of V' exists for all times:
Lemma 6.4 (Criteria for/against Compactness)

Let I C R be an open interval with metric g and distinguished vector field V =V (x)0y, V(z) >0
i) Assume that div(V) = %8[\/@/] is bounded, whe'reas/
I

Then the inclusion W‘l/’g(f) — LZ(I) is non-compact.

dv =0
V()

ii) Assume there exist constants c,C > 0 such that ¢ < \/gV < C'.

- d: . .
Then the condition /V(x) < 0o ensures that there are compact inclusions
I X

W‘l/ﬁ(l) — L2(I) and W‘l/:z(l) s 00 ea(D)

Proof. Let @ : Iy, — I be the straightening diffeomorphism from Remark 6.3 and write gg, = ®*g

Part (i). The condition / e oo means that Iy, C R is an unbounded interval.

V(z)
I
So let us treat the case [0,00) C Is;, @ Given a bump ¢ € C§°(—a,a) with a < 1 let us write
Wy, = max gstr and consider the sequence ¢, := %/2 T_n® .
[n—a,n+ad Wy

Note that the action of ®*V = 0 on ¢, is just 0¢, = [8¢]n , S0 the estimate

[ ool < [l = [ 1o = const
Ist'r R R

shows that ¢,, € W(;’;m (Istr) is a bounded sequence.
To argue that ¢, € Lgs o (Istr) does not admit a convergent subsequence,

\Gstr |
Wy

we first establish a lower bound on

ONGotr _ 1 g1 = [ L o
S = V] [ﬂa[\/gv]] ®

is bounded by some constant C' > 0. Now choose yj € [n — a,n + a] such that \/gse (yo) = [ max ] Ostr -
n—an+a
With the Fundamental Theorem of Calculus we find

By assumption, the expression

) Yy
0 2 log \/gstr — / a\/gstr — _ 8\/gstr Z _ / a\/gstr 2 _2(10
Wn, Yo \ Ystr Yo v/ YGstr v/ Gstr
[n—a,n+a]
and therefore VIstr > e 2C — const. > 0
W,
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Since any two different ¢,,, ¢, have disjoint supports, we observe that

/ Vi llonll? + / Voo lomll? > 2. e~20C / 1612
R

[n—a,n+al [m—a,m+a]

[én — %HL

atv

S0 ¢y € Lgs .. (Istr) cannot contain a Cauchy sequence.

Part (ii). By assumption ,/gstr = [\/§V] o &g, is bounded above and below. As a result,
we have isomorphisms of Banach spaces L;(I str) = L?(Ig,) and Wé’i” (Igtr) = W12 (Ig,) .

Sobolev embedding yields a commutative diagram

canonical projection

1,2
Wv’g (I) L (I> ) CI())ounded(I>
e =2
1,2 T“i‘ ¢
Wa:gst'r <ISt7") L?;S” (Istr> '
Al 2l
WLQ(ISW) ‘ ’ LQ(ISW) > Cl?ounded(IStT’>

! ;]

COV (L= COV T) = C(It)

Note that the condition / < oo makes I, C R a bounded interval,

V(x)
so by the Arzela-Ascoli Theorem the embedding o : C%Y2(Iy,) < CO(I,.) is compact.

Our claims follow because the compact operators form an 1deal among bounded linear maps.
O

Example. The 1nclu81on wh 2. 1(5 1) = L?(8,1) is compact for § > 0 and non-compact for § = 0.
As aresult, W 8 1(0,1) cannot continuously embed into the standard Sobolev space wt2(0,1).

The reverse inclusion WH2(0,1) — Wma 1( 1), however, does exist, as can be seen by the
methods of the next section.
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6.3 Algebraic structures
6.3.1 Rules for changing the vector field

In this interlude section, we establish a rule by which Sobolev spaces associated to different
vector fields can be related. For this purpose, we continue to work over a general open interval
I C R. Our discussion will exploit the interplay between iteratively defined ’expansion
coefficients’ CV, [f] € C*®(I) and a certain subring R(I,V) C C*(I) from which they
cannot escape. 7

Remark 6.5 (Ring of smooth functions with bounded powers of V)
The set R(I,V) := {f e C™(I) ‘ sup HVk[f]H < oo for all k > O} is a subring of C'*°(I).
zel

It is closed under the action of V in the sense that
feERU,V) =  V[fle R(L,V)

Definition 6.6 (Expansion Coefficients)
Given vector fields V, W and a function f € C*°(I) we define the coefficients CKk (£, C’,‘;k [f] € C=(I)

iteratively by _
Cor = dok Cox = ok

Crpr =WI[Cop] + - Crpa Cny1 =k -V[fICnx + f - VI[Cr] + Cpi1
Remark 6.7 (Immediate Properties of the Expansion Coefficients)
e Induction in n > 1 shows that C),,, =1 and Cj, , = 0 unless 1 < k < n.
Thus, [C’mk]k: IAV € SL(N,C®(I)) is a lower triangular matrix with unit diagonal.
e Having f € R(I,V) ensures C,, € R(I,V) for all n, k.

n=1,..,
o Having f € R(I,W) ensures C,,j € R(I,W) for all n, k.

Example 6.8 (Integer coefficients)
In the case I =R, V =0, and f = x one has V[f] = 1, so induction in n
shows that V[C,, ;] = 0. Again by induction we conclude that C,, , € N for all n, k.

Remark 6.9 (Relating the powers of different vector fields)
Induction in n shows that C~'an [f] = C'T‘:k [f]- "
Thus, if W and V are related by W = f -V, we have expansions
Wnlgl = > Gl VFgl =) CYy V)
k=0 k=0
relating the powers of W and V on any g € C*°(I).

Lemma 6.10 (Rescaling the vector field gives ring extensions)
Given vector fields V,W such that W = f -V for some f € C*(I) assume that

a) feRU,V) or b)feRU,W)
Then we have an inclusion R(I,V) C R(I,W).

Proof. Consider g € C*(I) such that all powers V*[g] are bounded functions on I.
Provided that f € R(I,W) or f € R(I,V), the expansions

Wrlgl =3 Cuplf] Vil W7lgl =) Cuxlf1f* Vg
| I | I
k=0 "R(1.w) k=0 ""R(1,V)
if fER(I,W) if fER(I,V)
show that the powers W"[g] are bounded as well. O

Example 6.11 (Strict inclusion)
For I = (0,1) one has x € R(/,0,) C R({,z0,).
This inclusion is strict because v/z € R(I,xd,) but vz ¢ R(I,d,).
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VIfl 1
NN
ANANAY

n €N

Figure 6.1: Iterative construction of the ’expansion
coefficients’ C,‘fk[f] € C*°(I) associated to f € C*(I).
Observe that for every N > 1,

(Cnvk)lgn,kSN

will be an invertible N x N-matrix over the ring C*°(I),
so the expansion

V"= Cop- fFVF
k=1
can be inverted to give

n
rvr=y Co vk
k=1
In the case I = R,,V = %, f = a, this inverted expan-

sion reads 3
n a " _ S —1 (9
o |z =Sk o]

with integer coefficients C;,lf € 7.
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Coming back to our ’contravariant Sobolev spaces’, we will adopt the perspective that
W"};(I) is a module over the ring R(I,V).

In the following we assume that a particular metric g has been singled out, so we can identify
K W‘T/L’Q(I)” = W‘?;(I) with a subspace of L2(I) just like in Lemma 2.26.

Using only minimal assumptions, we obtain the following basic result:

Auxiliary Lemma 6.12 (Rescaling of the vector field vs. rescaling of the argument)
Pick f € CY(I).
1) Assume sup ||f]| < co. Then u € W‘I/2(I) implies u € W}%,(I)
zel
2) Assume sup ||f]| < oo and sup || V[f]|| < oo.
xel zel
Then wu € W‘I/’Q(I) implies f-u € W‘l,’Q(I) with V[f -u] = V[flu+ fV]u]
Proof. Write u = (up,u1) € Wé—’z(.’) C L2(1)%?
The assumptions ensure fuy € L2(I) and fuy + V[f]ug € Lg (I), respectively.
Multiplying ¢ € C$(I) by f € C*(I) we have f - ¢ € Ci(I). Thus, our claims follow from

38 (o, fur) = [wod(FV o)+ [ Fur =y (un,ur) =0

5 (Fuo, VIfluo + fur) = [[uo [500V6) 4 VI7Io] + [ Fur6 = 8, (o, ur) =0
oV ) =

By combining parts 1) and 2), we arrive at the following extension criterion
for our vector-field-dependent Sobolev spaces:

Lemma 6.13 (Rescaling the vector field extends the Sobolev space)
Given vector fields related as W = f -V with f € R(I,W)
there is a (unique) bounded linear map W&’Q(I) — W;ZV’2(I) covering idrz ).

Proof. Having f € R(I, W) ensures that all C’rvnvk [f] belong to R(I, W), so in particular they

are bounded functions. We show that, when restricted to W(}’Q(I ), the bounded linear map

Lg([)®ﬂ+1 — LE(I)@nJrl’ [Um]mZO,...,n — [Z émJg uk]
k=0 m=0,...,

takes values in WVnV’Q(I): Pick u € W$’2(I). For k < n — 1 we have VFu ¢ W‘1/’2(I) and
since part 1) of Auxiliary Lemma 6.12 does not rely on information about "V[f]” we get
Vky € WI}‘}Z(I). Now apply part 2) with W instead of V' to verify that for m =0,...,n — 1

> ConpVFu € WD)
k

with W[Z ém’kvku} VEu+ Cpe f -V
k

Z
Z[ Cona] + Gt f] VEu = 3 Conr sV
k k

O
Corollary 6.14 Given f € R(I,V)* there is an isomorphism of Banach spaces WS’Q(I) = W}l’a(I)

Proof. Having W = f-V with f € R(I,V) C R(I, W) provides a morphism W3’2(I) - WI’}/’Z(I)

and having V = f~'W with f=! € R(I,V) provides a morphism W;lv’2(l) N W(}Q(I).
These morphisms as well as their compositions cover the identity id £2(1)- Since morphisms
covering the identity are unique, we conclude that « and S are mutually inverse. O
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6.3.2 The category of displacement and pointwise superposition

In this slightly technical section, we introduce rules by which the superposition of functions
from different Sobolev spaces can be evaluated in the Sobolev space of yet another vector field.
This allows us to regard matrices over the rings Rp = C*°(R) and Rpg = D sepinrr) C 7 (R)-¢
as morphisms between the correct Sobolev spaces. As an application, we will be able to
rigorously identify the space N, (-a,a) = W 2« (-a,a) involved in our formulation of the

znt’pzn
”anti-gluing map” in Proposition 7.3.

The following notation will also be used in subsequent chapters:
. n,2 n,2
Notation (Wy; vs. W)
Instead of demanding /\/§ |ul|* < oo it will be more convenient to write / lp-ul)? < co.
I I

To highlight the difference we denote the respective spaces by L2(I) and L*(I),, .
At higher orders n > 1 we will adopt the notations W(};(I) C Ly (I)®"*! and WGQP(I) c LA™t
Note that p plays the role of g*/4, i.e. under diffeomorphisms ® : I, —» I, it transforms as
. ay 1/2
voe (2 hes
In Chapters 7 and 8 we will be dealing with different powers p™ of the same function p.
When working with W"’?m the transformation behaviour is still

m/2
= e wor -2

so Wi (L) = Weil gy () 2 W"fv; (@

OV D (p (I;) unless |0y/dx| = 1.

p)m™

The matrix [R];L/“a Byadl from Proposition 7.3 can be regarded as a morphism in the

—dt1/07 Rl/aO‘
following category:

Definition 6.15 (The category of pointwise superposition P )
Denote by P the ”category of pointwise superposition” consisting of the following data:
0) The objects (I,V,p) are ordered tuples ([I;, Vi, pi]),_,
with open intervals I; C R and V;, p; € C*°(1;,R~q)

1) Morphisms (J, W,0) — (I,V, p) are matrices (a”) 11 "' with entries in C*°(R)

MM
satisfying the following three constraints:

° Iiﬁ{ozij#O}CJj
e a;; € R(L;,V;)

e there exist open sets S;; with I; N {a;; # 0} C S;; C I; N J;
so that V;/W; € R(S;;,V;) and pi/Gj}S” is bounded
ij
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Lemma 6.16 (Composition in P)
Multiplication of matrices equips P with a well-defined composition.

Proof. Consider a pair of composable morphisms (K, Z, k) N (J,W,0) = (I,V, p).
Bullet point 3 of the definition yields open neighbourhoods S;; and T}, satisfying

Iiﬂ{aij#O}CSijCIiﬁJj and Jjﬂ{ﬂjk#O}CTjkCJjﬂKk
One has
Ii 0 {aijBjr # 0} = Iin{og; # 0; 0 {Bjk # 0} C Sy N € LinJ;N Ky
e — |

CJj

so choosing R, = UjSij N T}, we get
IinN {Z] aijﬂjk =+ 0} C Uj ;N {Oéijﬂjk #* 0} C Ry, C I;N Ky,

Lemma 6.10 with ” f” = V‘[/;] € R(Sij, Vi) ensures that R(S;;, W;) C R(Si;, Vi).
This has the following consequences:
o [Bjr € R(J;, W;) restricts to Bji € R(Si;, Vi), so the product a;;5;, belongs to R(S;;, Vi).
Since «;; vanishes on an open neighbourhood of I; N 955,

extension by zero shows «;0;; € R(;, Vi) and therefore (aﬁ)ik = Z]- a;jBik € R(1;, V;).

. Wj/Zk € R(T]k, Wj) restricts to Wj/Zk € R(Sw N Ty, Vi),
SO V;/Zk = V;/Wj . Wj/Zk S R(SZ']‘ ﬂT]k,V,)
Since R;;. = Uj Sij N T}y, is a finite cover, we conclude that V;/Z;, € R(Ry;, V;).
Similarly p;/kr = pi/0;-6;/kk is bounded on each component S;;N7T}j, and therefore bounded
on the entire R;j. ]

Lemma 6.17 (Constructing a family of functors F : P — Banach spaces)
Denote by B the category of Banach spaces and bounded linear maps.
For every n > 0 there exists a well-defined functor F,, : P — B such that

. ([IiaViaPi])i: . gets mapped to @ W“pl( i)
i=1,....m

e cvery morphism (J,W,0) = (I,V,p) translates into a bounded linear map

Fala) : @; Wiy, o, (Jj) ——— @, W2, (1)
sending u; € WW 0, (Jj) to > ciju; € W; 2,) (1i)-

Proof. Consider a morphism (J, W,0) % (I, V, p).
As in point 3 of the definition we have open sets S;; with I; N {a;; # 0} C Si; C I; N J;.
By Lemma 6.13 with ” f” = V;/W; € R(S;j,V;) there is a bounded linear inclusion

ng’f 0, (Sij) = W\Z’?ej(sij) (6.2)

Taking into account that cj; € R(I;,V;), the assignment u; — «;;ju; can be understood as
a composition of bounded linear maps

n,2 S (62) n,2 S alj - n,2 S
Wi, (5 2 Wi (5) 05 Wi (8) s W

(3

n,2 restr.
WWj;ej(Jj) - ,pZ(S )

where in the last step we have used that p;/60; is a bounded function on S;;.
With gij =1LN {Otz'j #+ O}C we have an open cover I; = Sij @] Si]',
so by gluing a;ju; € W{}lzpz(S”) and 0 € W‘ZQ;JZ(SU) we obtain a;ju; € W{}fpz (I;) with

Jasuslhgge sy = Nl s, + D00z 5,0 = 100z 5,5, = Dol ) < const. x luslyg:

That F,, : P — B respects the composition of morphisms is a special case of Lemma 6.21 [
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Ryjo(riaa?)-id  Ryjg(riiay) - 7yo

To interpret matrices like ;
p Ryjo(r107) 70 Rujelr-17?)-id

}, we have to reiterate our discussion by

allowing diffeomorphisms of the domains.

As an extension of Rp = C*°(R), we will use the following ring:
Definition 6.18 (The ring Rpo)

In the following, we will consider Rpg = @ C*(R) - ¢ as a ring with multiplication
HEDIff(R)

(alg) - (Ble) == (a-(Bog)|poo)

Thus, using the notation (ag)gepigr) one has (af)e = Z @ (Bpop-100) € CP°(R).
$EDiff(R)

Definition 6.19 (The category of displacement and pointwise superposition PQ)
Denote by PQ the ”category of displacement and pointwise superposition” consisting of the
following data:

0) The objects (I,V, p) are ordered tuples ([Ii, Vi, pi])z’:l .
with open intervals I; C R and V;, p; € C*° (Ii,R\ {O})

1) Morphisms (J, W, 0) — (I,V, p) are matrices (a”)f;l:l with entries «a;; = Z Oé?j € Rpo

satisfying the following three constraints: ¢€Diff(R)

o ;n{af, #0} Co7L(J))
o af, € R(I;, Vi)

e there exist open sets SZ. with I; N {a?j #* 0} C SZ- c ;N c/b_l(Jj)
so that V;/¢*W; € R(S%,V;) and pi/qﬁ*ﬂj‘sé is bounded
ij

177

Reminder. Under diffeomorphisms ¢ :  — y we impose the transformation behaviour

1/2

Oy poo so p plays the role of 91/4.

o'V o Sp=|g

1
= mvo

Convention. We choose S;? = () whenever afj = 0. This is the case for all but finitely many ¢ € Diff(R).
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Lemma 6.20 (Composition in PQ)
Multiplication of matrices equips PQ with a well-defined composition.

Proof. Consider a pair of composable morphisms (K, Z, k) N (J,W,0) % (I,V, p).
At fixed 4,7,k and fixed ¢, € Diff(R) bullet point 3 of the definition yields open sets
S% and T, with

Iim{afj;«éo}csf}cliﬁqb*l(Jj) and  J; m{ » 70} C T, 2 CJiNe H(Ky)
By applying ¢~!(-) the second identity can be rewritten as
) N {Bf oo £ 0} C o7 (Th) € 67 H(J5) N(pod) T (Kk)

Thus, one has

Lin{ad - (B5,00) #0} = Lin{af #0} {8500 #0} C SENe " (TH) € Ling " (J;) N (pod) " (Ki)
C¢*1(J')

and choosing R% = U S¢ Ne! q>°¢ ) we get

{Zaw Bheo™ o #0} c JLn{al (85 00) #0} C RS C [ind ' (Ky)
J:9

Lemma 6.10 with ” f” = ¢*‘{jv € R(Sf;,Vi) ensures R(L,»*W;) C R(L,V;) for all open

subsets L C Sf; This has the following consequences:
o flopeR(p™ L(J; ) ¢*W;) restricts to 8]0 ¢ € R(SU,V)
so the product a -+ (B 0 ¢) belongs to R(S”, Vi).
Since a¢’ vanlshes on an open neighbourhood of I; N 85‘3 , extension by zero
shows a .+ (B3, 0 ¢) € R(I;,V;) and therefore (aﬁ) Zafj . (ﬂﬁf% ®) € R(I;, V;).
J¢
o Vi)@' Zi =Vi/¢*W; - ¢"W;/®" Z;, belongs to R(SS N ¢~ (TH), Vi)
because we have V;/¢*W; € R(Sf;? ;) and by combining Lemma 8.6 with Remark 8.10

W, /o*Z € R( ]ka) gets mapped to ¢*W;/®*Z, = (W; /" Zy) o ¢ € R(¢~ L jk),gb*W]).

Since Ry = U S¢ Ne! ‘I’O‘t ) is a finite cover, we conclude that V;/®*Z;, € R(R%, V;).

Similarly pl/q) Kk = pi/$*0; - (Qj/w*mk) o ¢ is bounded on each component Sf;- Ne¢! (TﬁC)
and therefore bounded on the entire Ri. O
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Lemma 6.21 (Constructing a family of functors F : PQ — Banach spaces)
As before, denote by B the category of Banach spaces and bounded linear maps.
For every n > 0 there exists a well-defined functor F, : PQ — B such that

o (L Viipi),ey,.,, gets mapped to €5 Wy, (1)
i=1,....m
o cvery morphism (J,W,0) == (I,V, p) translates into a bounded linear map

Fula) : @; Wi, (Jj) ——— @, W2, (1)

) 2 2
sending u; € W;/j;ej(zjj) to Z]qsawgb uj € Wy i (L)

Proof. Well-definedness of the map Mor(PQ) — [bounded linear maps] can be seen by adapting
the proof of Lemma 6.17.

Now let (K, Z, k) N (J,W,0) =% (I, V, p) be consecutive morphisms in PQ.
With the same notation as in the proof of Lemma 6.20 we consider the following commutative
diagram in B: P

T

WEILQ%&k(Kk) W;};QZk;w*Hk ( (p_l(Kk)) — ngZk;d)*nk ( (b_l(Kk))

\
\\ l[/qy« W;/®* 7, ores
\ o*
N n,2 © f n,2 —1 /e
AN WWj;9j<T‘jk) W, *Wj;¢*9j(¢ (T]k)) [/Vi/(b*zk ores
R R \Uv;/o*w’j ores
. e

T Wi (SN (@)
showing that

Ly, o+ z, 01es 0 ®* = (Ly, jgrw, 0 TES O ¢*) o (Lw, gz, o Tes 0 ")
Using the ring morphisms
R(S56 T 1) RIS, N IW;) R 6W) T RITL W) S R{ ) >
R(S5 N6~ (TR), ') ¢ R(67H(Tf).0*W))

to restrict scalars, we can regard the maps Ly, /41y, res, ¢* as morphisms of
R(J;j, Wj)-modules, meaning that they commute with multﬁ_wk.
J

Thus, multiplying by B;‘Dk o ¢ we verify
multﬁjwkod) oLy, grz, oTes o ®F = (L%/¢*Wj oreso¢*) o multﬁjwk o (LWj/sa*Zk ores o ¢*)
When applied to uy € Wg}fﬁk (K k) this becomes
(B 00) ®'up = ¢"[ B - ur] = ¢ [ (Bl us ]
so calculating in the R(Sf Nn¢~'(T}h), Vi)-module W(}Zp (Sf; N¢~'(T})) we have

[(@f]0) - (BG1e) Juk = [0f - (8% 09)] - @ wp = of; - ¢* [ (B5l0)ur ] = (afi]) [ (B850 ]
By linearity we obtain

[Bluur = [(af)le)- (8 M@w—22¢ 16) [ X, (8510) i

J:9p Bin

Hence the multiplication on Rpg is defined in such a way to ensure F,(a o 5) = Fy,(a) o Fp,(5).
O
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Chapter 7

Construction of the Crossover
Retraction

7.1 Geometric Setup

Though this will not be used in subsequent sections, we start our discussion by describing a
distinguished Morse function on a pair-of-pants worldsheet ¥ = CP!\ {#1, 0o}, allowing us
to parametrize all level sets in a uniform way. This will become relevant as soon as one tries
to pullback geometric data from ¥ to the M-polyfold im(ry) that we seek to construct.

As a first attempt to write down an explicit Morse function on ¥ = C \ {£1}, the author
considered the absolute value of

1 1
f(z)— 1—z+ 1+ 2z
but then realized that
1 1 2

1—z+1+z: 1—22
is the (w = 22)-pullback of a simpler function 2 defined on the cylinder C \ {-+1}.
This inspires the following general procedure:

Proposition 7.1 (Recipe for obtaining Morse functions on a Riemann surface)

Let ¥ be a compact Riemann surface and assume we are given a non-constant

holomorphic function f : ¥ —s CP! such that f has no branch points p € CP' of order >3
except possibly 0 and oo. From these ingredients we obtain the following structure:

1) v=1logl|f|: ¥ — R is a Morse function on ¥ :=% — f~1(0) — f~1(00)
whose critical points are exactly the ramification points of flsx .
All of these have Morse index 1.

2)  Every non-critical p € ¥ admits a neighbourhood U, such that
k =log f : U, — C is the unique holomorphic chart with p — k(p) and Rek = v .
3)  Writing k = v +iw one has globally defined vector fields 0, 0, on X\ {crit. pts.}
With z a local coordinate and ¢(0s,0,) = ¢(0z,0z) =0, ¢(0;,0z) = c(z,Z) any hermitean
melric on ¥ we have
9(0,,0,) =0

c(z2)|f12
9(0,.0,) = 9(0u, 0) = 2520

so the vector fields 9,0, are always orthogonal and their norms blow up at critical points.
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Proof. 1) Since we are working on ¥ := ¥ — f~1({0,00}), the identities

20, log |f| = 8, log |f|* = 0.1/ f
20-log |f| = d:log |f|* = 0=/

show that dv=0 < 0,f=0

Thus, critical points of v correspond to ramification points of f|x. Since by assumption all
of these ramification points have order 2, we can find coordinates z = = + iy such that in
the vicinity of a critical point p € ¥ we get an exact identity

f(z) = f(p)(1 +2%)
For small |z| we approximate
v(z) —v(p) zlog’1 +2'2‘ ~ ’1 +22‘ —1=~Rez? =2 —¢?

which exhibits p as a saddle point of v.

2) At a non-critical p € ¥ we have 0, f(p) # 0 and therefore 0.x(p) = 0. f/f (p) # 0,

so by the Inverse Function Theorem there exist neighbourhoods U, C ¥, V,, C C

such that « : U, — V), is a diffeomorphism whose inverse is automatically holomorphic.

It so happens that Rex = Re log f = log|f| = v and by Auxiliary Lemma 7.2 we observe
that (after suitably shrinking U,) & : U, — C is the unique holomorphic map sending p to
k(p) with this property.

3) Under a holomorphic coordinate change k — z we have 0, = 9,k - 0x = 0.f/f - Ow

and thus

0, = 2Red, = affaz +ec
Op=—-2Imo, =1 L()ffaz - C.C]
This can be understood as expressing the global vector fields d,, 9, in any coordinate z on X..

Note the appearance of a first order pole singularity ff ~ Zip at critical points p € . [

Auxiliary Lemma 7.2 (Rigidity of holomorphic maps with prescribed real part)
Let h: v +iw — U+ i@ be a holomorphic map defined on an open ball B.(0) C C
and assume that v(v,w) = v as well as h(0) = 0.

Then h is the identity.

Proof. This is an application of the Cauchy-Riemann equations:
Since ‘3—"3 = —% = 0 implies that @(v,w) = &(w) does not depend on v,

we can use g—g = % =1 to conclude that & = w + const.

As we are working on a connected domain, our assumption h(0) = 0 guarantees that the
constant offset has to vanish and therefore w = w in addition to 7 = v. O
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Figure 7.1: Illustration of Proposition 7.1 in the case of a pair-of-pants worldsheet.

The holomorphic map

restricts to a ramified cover

_ — 52 _
fy—cpt 2= opt

f: Y =CP'\ {£1,00} —— C :=CP!\ {0,}
with ramification locus R = {0} and branch locus B = {—1}.

Every injective path v : (0,1) — C'\ B has two non-intersecting lifts,
so we can use the angular coordinate on C' to parametrize the level sets of | f|.

In fact, using log f = v + iw as a holomorphic change of coordinates on ¥\ R, the level sets
are locally presented as v = const. with a common parametrization by the angle w.

92



7.2 Modelling Morse critical points by Dynamical Gluing

In this section, we provide an explicit formula for the ’crossover retraction’, while postponing
the proof of its sc-smoothness to our main effort in Chapter 8. Let us start with the most
basic building block, the ’dynamical gluing’ of two adjacent intervals (-1,0) and (0, 1) on an
overlap of size 2a.

As mentioned in the introduction, we will replace the cutoff functions 8 and 1 — 8 shown in
Figure 7.2 by their normalized versions

5 1-5
d =
VEra-pr T Era-ap

with supp(a) = supp(8) = (-00, ;) and supp(y) = supp(l — ) = (-;, 00).

Observe that o and 42 = 1 — o have the same shape as 3 and 1 — 3 respectively,
whereas ay € C§° (—%, %) is a bump.

To calculate the retraction, we work at fixed gluing parameter a > 0. While (-1,0) and (0, 1)
are equipped with weight factors p = # and vector fields Vi = +x0,, their overlap (-a,a)

will carry the vector field
Vine = Rl/aﬁ “TyraV4 + Rl/a[l — ﬁ] - T_gV_

and weight factor
p’cilnt = Rl/aﬁ “TraP + Rl/a[l - B] *T—aP

which, as shown in Figure 7.2, interpolate between the data coming from (-1,0) and (0,1).

Figure 7.2: Data associated with the overlap (-a,a).
The cutoff functions Ry /,0 and 1— Ry /.8 can be used to
_a ta interpolate between Sobolev functions from (-1 + a,a)
and (-a,1-a). Similarly, V%, and p , are interpolated

va, ! ! versions of the vector field and weight function, here

shown in the case Vi = +20, and p = ﬁ
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The functor F, : PQ — B from section 6.3.2 allows us to perform our calculations by
multiplying matrices over the ring

Rpo = @ c>(
HEDIf(R)
while making sure that these act between the correct Sobolev spaces:
Proposition 7.3 (Gluing adjacent intervals (-1,0) and (0,1))

e At fized a > 0 there are mutually inverse isomorphisms of Banach spaces

Rl/aBT T
 — | I 1
[ Rl/aa +R1/a7:| F T_a

" 7R1/a7 Rl/aa " Tta

—— 2 — Wl

2 2 2 2
Wg;l (71+a.17a) ) Wa ( a,,a) y WLan;Lap<_l +a.a) &) Wﬁravﬁﬂraﬂ(_a'l —a) N Vf;p(_l’o) 6 W‘Z;p(ﬂ,l)

int? pmt

F [Rl/a& *Rl/ﬂ} j‘_‘n [ﬂ»a T_J

" +R1/a7 Rl/aa
e — | e
Ry,B Tt
1/a

1 1 n, n,2
0:| :|: 0:| CW87 ( 1+(ll a)eawﬂzt’pznt( ‘1«,(1) '

When restricted to the image of the retraction

o Let us "insert” the projector pPy.- F,

Ta:f-n

Rl/a(HCW) T-2a Rl/a<7—17 ) id

the gluing map

[Rl/aa’r— Rl a’)/T-I—a} Ri_,
Gu : imfra) C W (<1,0)8 Wi (0,1) 0,1 -0) S W)

s an isomorphism of Banach spaces.

Proof. The isomorphism [T
T+J

2 2 «— 2 2
Wy o ra @W (1) Wy (-10) @ Wy (0.1)

is a direct result of Proposition 6.2.
On the other hand, note that BT = {:’7 :ﬂ belongs to O(2,C*(R)) € O(2,Rpq),

so after applying the ring morphism Ry, = (1|Ry/4) o -0 (1|Ry/0) " : Rpg — Rpq ,

Rijqc  Ryjqy Ryjga0 —Ryj0y
R BT = { 1/a 1/a } and R.,. B = { 1/a 1/a ]
1/0‘ _Rl/a’y Rl/aOé 1/(1 Rl/afy Rl/aa

are still mutually inverse matrices over the ring C*°(R) C Rpq.
The choice of Vi, and pf, , is such that R, /, B and Ry /aBT can be understood as P-morphisms

int

between ([(71+a, a), T Vo, T_ap], [(-a, 1-a), T4, Vi, T_MpD and ([(,1+a7 1-a),1,1], [(-a, +a), Vi, pih] ) .
Thus, by applying the functor F,, of Lemma 6.17 we obtain an isomorphism

Fu|Ri/oBT]
2 2 — n ,
ng ( 1+a,1- a) @ W(}at pmt(—a a) ~ WT_’?IV_;T_(IP(—lira.a) @ WT+121V+1,T+aP(7a‘1 —a)
Fu|Ri/oB]
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It remains to verify the explicit expression for our retraction r CW{}_Q ,(=1,0)& W‘T}f ,0,1).

According to Lemma 6.21 this can be done by multiplying matrices over the ring Rpg = @ C®(R)¢ :

$EDIff(R)
1 T _ a -y| |1 a vl o? ay| Rl/a(x2 Rl/aa'y
i3 { 0} RijaB™ = Hiya {7 a} { 0] [-v a} = f Lw 72} - [Rl/acw Rijv?
—_ | Il Il ] | |
R[] B |u)yl BT |By)(BY|

and therefore 1 — |:T+a HRl/aa2 Rl/afw} |:T-a } _ [Rl/a(7+10¢2)id Rl/a(7+10")/)7+2a:|
T-a R1/a0ﬂ’ R1/ﬂ2 T+a R1/a(7—10‘“/)7—2a Rl/a(T—ﬂz)id
—_

T-1 T

where in the last step we have used that on f € C°°(R) one has 7,R\(f) = Ramax(f)-
To see that the gluing map G, is an isomorphism, observe that r is constructed asr = C ! o Py o C
with an invertible map

C=Fu[RiyoBT oT): Wi () @ Wy (01) ——— Wyt (tsat-0) @, (-0)

=P int?

that identifies im(r) C Wy (—1,0) & Wir2 (0,1) and im(Pp) = Wit (—1+a,1—a). O

Next, let us state our main result, which, by interweaving two copies of the retraction
from Proposition 7.3, allows us to model the transition at a Morse critical point as a two-
sided breaking process. To ensure that our Banach scales have compact inclusions, we will
use increasing powers of our basic weight factor p = |:z:]_1. As we shall see in the proof
of Proposition 8.27, the weight difference between different levels of regularity will also
be required to cancel pole divergences that would otherwise prevent sc-smoothness of the
retraction at a = 0.

Theorem 7.4 (Sc-smooth retraction associated to a Morse critical point)
The ’crossover retraction’ defined in Figure 7.3 is a fibre-linear sc*-map

©2 2 D2 2
TCross : (-€,€) @ {Wé‘ii’f(-l,O)} @ {W"H’Q(O,l)} — [ng;’f(—m)] ® [W"“’Q(o,l)]

o Vispn Visp™
a A,B C,D A,B C,D
Proof. Combine Propositions 7.5 and 7.6 below. O

Proposition 7.5 (Sc-Smoothness of the off-diagonal terms)
The prescription

Ryjo(ri109) m0u if a >0

(a,u) —— :
0 ifa<0

defines a fibre-linear sc™-map (—€,€) ® W&:’;;’E(O, 1) —— W;i;’f(—LO).
Proof. According to Proposition 8.27 our map satisfies all conditions of Theorem 8.26. [

Proposition 7.6 (Sc-Smoothness of the diagonal terms)
The prescription

(a ’U) R1/|a|(7+1a2)v z'fa 7’é 0
’ v ifa=0

defines a fibre-linear sc*-map (—6, 6) ® W{}i;’f(—l,()) — W&j;’f(—l,O).

Proof. Omitted, but similar to (and simpler than) the off-diagonal case. O
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O o w »

A B C D

R% (T+laz) id R% (T+1()é’\/) T42p
Ri( )i(lé Ri(r ) T
R% (7110’\,) T 9 R% (Ll ,2) id
Ri( ) T. : R ( ) id

o a w =

Ri(r107) 720 Ri(r12?)id

a>0

(b > 0) 0= 0 a (:
A A C D
11 D B = Al id +1 —1
o\/o/ i ..................... 1d ............... D § & B
0 0 :
/\\ b A N
A Cf -1 1

Figure 7.3: The ’crossover retraction’ r¢.0ss of Theorem 7.4
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7.3 Transition to the global setting (Static Gluing)

To globalize our construction from the previous section, we have to connect the intervals
A, D as well as B, C at a safe distance where the dynamical gluing process remains invisible.
This can be achieved in a static, a-independent way by restricting each copy of
+1,2 +1,2
W\T},;pn (-1,0)® W‘Z;p" (0,1)
to the kernel of a bounded linear map called ’static gluing’.

Remark 7.7 (Static Gluing)
The combined ’static gluing’

2 2 1 o1\]%? 8692 1 ]
WL e w0 e w ()| = 2 (o) e w2 (0.4)]
iven by th iti
given by the composition A D E B C F
A D E B C F AT
DE T+1 TS 1) D res(% +1)
AE | 71 —res<0‘+1> E 1
592 = 2 © :
CF T4+1 —res(iql_“) B reb(’ ;>
res,
BF _— _res<0l+l> C (+§,+1)
3 P 1

is a bounded linear map, so its kernel ker(S®?) = ker(S)®? is again a Banach space.
Auxiliary Lemma 7.8 shows that, via the canonical projection, ker(S) can be identified with
a closed subspace of ng(;(—l,o) @ ng.@ (0, 1).

Figure 7.4: Globalized version of Figure 7.3, exhibiting the topologically distinct level sets
at ¢ < 0 and a > 0. The general recipe of Auxiliary Lemma 7.8 has been used to ”plaster”
the intervals A and D as well as B and C.
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As already mentioned, our static gluing procedure makes use of the following general obser-
vation which allows us to discard the 'plaster’ once gluing has been achieved.

Auxiliary Lemma 7.8 (Plastering of domain gaps)

Given Banach spaces X,Y,Z lety: X &Y — Z be a bounded linear map such that ||y|| < ||7(0,y)]|

for ally € Y. Then the canonical projectionp: X &Y — X restricts to a linear isomorphism
p: kery —~— p(ker~)

With p(kervy) C X being a closed subspace, this becomes an isomorphism of Banach spaces.

Proof. Since v is a bounded linear map, we can find a constant C' > 0 such that

Iyl < IOl < C- ol + Iyl ]

For (x,y) € ker~ this becomes

lyll < C-[lz| (7.1)
which immediately implies that plier : (2,y) — « is injective.
To establish that p(ker~y) C X is a closed subspace, consider a convergent sequence z,, — = € X
with z,, € p(ker~). Let y, € Y be such that (x,,y,) € kervy. Then (7.1) implies that y, is
a Cauchy sequence. By completeness of Y, the limit (x,,y,) — (z,y) exists and since 7 is
continuous, we have (z,y) € ker v which shows that = € p(ker~). O

By using static gluing to constrain the fibres of our splicing core, we obtain the following
globalized version of Theorem 7.4:

Theorem 7.9 (Globalization by restriction)
Denote by W,, C W{}j;’f(—l,o) <) W(/Lj})f (O, 1) the closed subspace representing ker S.
Then 1 cross Testricts to a sc-smooth splicing r : (—e, €) & W2 —s WP2,

Sketch of proof. Since our ”static gluing” is implemented at a safe distance where deforma-
tions due to the dynamical gluing are invisible, the relations

Tes (Rl/aa2) es( (Rl/aow) =0
=1

=1
res(g.u) (Rl/aa'Y) =0 res(g.ﬂ) (Rl/(ﬂ?)

ensure that at every a € R we have

8@2 o |:TCross (CL)

As a result, 7 cross maps W2 to W2,

It remains to show that [Wn] indeed defines a sc-Banach space. This can be analysed by

neN

writing W,, as a space W":};Z(—Q, 0) and applying the straightening diffeomorphism from
Remark 6.3 to compare this space with ordinary Sobolev spaces. ]
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As a preparation for Proposition 7.11 below, we collect some immediate properties of the
static and dynamical gluing maps:

Remark 7.10 (Compatibility between Dynamical and Static Gluing)

For simplicity we work at fixed a > 0. To treat the case a < 0 one has to put (-)
and modify the ”combinatorics” of the maps.

®2 everywhere

a) When restricted to im [r, @ id] = ker [(1 —7,) @ 0], the dynamical gluing

Rifa) 7y Rify)-7ag
id

5 n, n,2
Ga: (Wi (1.0 @ Wy2y(0,1)

oW (L) » W (-1+a,1-a) @ W™ (-11)

22
becomes an isomorphism of Banach spaces.

b) The static gluings

T+1 -1
T-1 -1

g
T-14a -1

are bounded linear operators between Banach spaces, so their kernels are Banach spaces
as well. Auxiliary Lemma 7.8 shows that the canonical projection

p
W (-1+a,1-a) @ W™ (1)) ——— W"2(-1 + 4,1 - a) - Wm3(-1,1)

22

S: W{}fa(—l, 0)® Wﬁﬁa(o, 1)ewr? (L] Wn2 (-L0) & W2 (0,1)

i)

So: Wh(-14a,1-a)@Wn? (—l 1)

22

>y W2 (-1,0) @ W2 (0, )

1-a
restricts to an isomorphism of Banach spaces

ker S, —~=— p(kerS,) RL> Wn2(SY) c Wn2(-1,1)

1-a

c) Compatibility between the dynamical gluing G, and the static gluings S, S, is expressed
by the commutative diagram

W2 (-,0) & W2 (0,)

Pl ~ N
/:|/ ’ T—a
7 T+G,
1 ~
wr2(-1,-Hewr? (L) ewn? (L) -2 - oo > W2 (1+a,- o) @2 (L —a,1—a) @ W2 (-L])
- ~
/ ~
%/ RN
'&// (B) b \6\)@
// S AN N
Wity (1,00 @ Wiy (0,1) @ W2 (-1, ) W2 (-1+a,1-a) & W2 (-1 1)

g_ _ [Rl/aa *T—a Rl/a’y " T+a ]
@ 1

The factorisations (A) and (A’) can be seen as defining S and S, respectively, whereas
the commutative square (B) is due to

1 on (-14a,-1+a) 0 on (-1+a,-L+a)
R —_ 2 R — 2
1/a® {0 on (l—a,l—a) Vel {1 on (%—a,l—a)

2

Note that S, 0 G, = S implies G ! ( ker Sa) = ker S.
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After these preparations, we are ready to recover the fibre
Tas0 (WT?Q) ~ [Wn+172(51)]

of the splicing core constructed in Theorem 7.9:

Proposition 7.11 (Interpretation of the fibre at a > 0)
Static gluing constructs closed subspaces W,y C W‘ﬁfe(—l, 0) @ ng.e(Q 1)
and W™?(SYY ¢ W™?(—1,1) such that the dynamical gluing map

Go s Wi7(=1,0) & W2 (0,1) ———— W™2(~1,1)
restricts to an isomorphism between W, _, and W™2(S').
Proof. Observations a-c from Remark 7.10 can be assembled into a commutative diagram

2 (400 W (0.

o

Wi (IO@WV{,OI}@W“(E% — W14 a,1-a) @ W (LY B 21 40,1 - 0) = W11

p— T

m(r, ®id) ker S, ~ p(kcha) — = (S

U o

m(r, ®id) Nker S
=G, (kerSa)

im(rq®id)
Using Auxiliary Lemma 7.8 to identify im(r, @ id) Nker S with the closed subspace
Wy o= im(ra) N Wy © W25(=1,0) @ W2 (0,1)

we observe that the gluing map G, : Wi¥%,(~1,0) & W&QQ(O, 1) — W™2(—1,1) induces an
isomorphism of Banach spaces between W, _; and W™2(S?!). O
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Chapter 8

Sc-smoothness of the retraction

8.1 Differentiation by the gluing parameter
In this final chapter we prove the sc-smoothness of our retraction rg.oss from Figure 7.3,
focussing on its off-diagonal parts. As a first step, we calculate the a-derivatives of

Rl/af * ToqaU € W‘l/’_2(—1, O)

with u € W&:rm(O, 1) and a bump f € C§° (—%, —%) We give individual treatments for the
'shift” and ’rescaling’ parts m,u and R/, f in sections 8.1.1 and 8.1.2 respectively, before

combining these in section 8.1.3.

domain where mu € ng‘q (-2a,1-2a) is defined

I
Ly

Kk————A
—2a _3,  suwpRyf @ 2a
P Vo2

\ 14 Al
\ I_ IS 71
—_— ] o -

" domain where Ryjof - oau € W{,Lf(fl,()) "K 3 A
gets evaluated domain where u € Wy (0,1) is defined

ToqU
I I +2a
Figure 8.1: Illustration of the map a —— Ry, f T2qu € W&Q(—l, 0) with f € C§° (—g, —%) and

u € ng(o, 1). To analyse differentiability, we work on a sufficiently small neighbourhood
(ap — Aa, ag + Aa) where it is possible to treat our maps on a fixed domain I_ that due to
its ag-dependence will be called the ’comoving interval’.
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8.1.1 Differentiation of the shift map

Let us work locally in the gluing parameter around a value ag > 0. According to Figure 8.1,
we can find an ag-dependent width Aa as well as ag-dependent open intervals I+ such that

(32) L C(200) wd L +2cCIcc ()

for all @ € (ap — Aa,ap + Aa). These conditions ensure that for any given f € Cg° (—%,—%)
and v € W22(I,), the Sobolev function Ry f - T2qu will be compactly supported inside 1
as long as |a — ag| < Aa. As illustrated in Figure 8.1, this allows us to differentiate

a € (ag — Aa,ag + Aa) — meu € WHAH(I1)

as a family of functions over a fixed domain 1_.
Our strategy will be to rewrite the difference quotient

T2(a+8a)¥ — T2aU
da

as a W12(I_)-valued Bochner integral with continuous integrand.

In the following, it will be convenient to abbreviate (ag + Aa) := (a9 — Aa, ap + Aa).

Lemma 8.1 (Continuity of the shift map on L?)
Given a fived u € L*(Iy), the map a € (ag + Aa) — Toqu € L2(I_) is continuous.

Proof. Given € > 0 let us fix 4 € C*°(R) N L?(R) such that |lu — |, < €/4.
Having = € I_ guarantees x + 2a € I for all a € (ag £ Aa). Thus, going from a to a+da
we get

1 1
. _ d . _
i(z+2(a+da)) — iz +2a) = /0 thu(:c +2(a + tda)) = 25@/0 dt 8u}x+2(a+t5a)
Taking the supremum over all x € I_ we observe that

K:=

1
sup HTQ(a+5a)a_7-2aﬂH]B < |5a| -2 Sup ||aﬂHB
zel_ zely

and therefore

HTQ(M—M)“ - T2auHL2(L) < Hu - aHLZ(L+2(a+§a)) + Hu - aHL2(1,+2a) + IHTQ(a+5a)a - TQaﬁHLQ(L)I
L (]

<e/2 <+/I_|-K |éa]

Corollary 8.2 (Continuity of the shift map on W"™?)
Given a fived u € W™2(I), the map a € (ag £ Aa) — Toqu € W2(I_) is continuous.

Proof. In keeping with Proposition 6.2 the map
Toq - (Uo,ul, ,Un) S Wn’Q(IJr) — (TQaanTZaula '--a7_2aun) € W’mz([*)
acts componentwise, so our claim follows by componentwise application of Lemma 8.1. [

Lemma 8.3 (Difference quotient of the shift map as a W'?-valued Bochner integral)
Given a1, as € (ag = Aa) and a fived u € W2(1,),

1
the formula  794,u — 100, u = 2(ag — al)/ @t Toq, +2(ag—ar)t O holds in Wh2(1_).
0
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Proof. Givenu € W22(I,) we have du € W?(I,). By Corollary 8.2 the map a — m0u € Wh(I_)
1
is continuous, so / dt Taa,42(az—ar )t Ou is a well-defined Bochner integral in Wh2(1).
0

With Sobolev embedding W22(I,) < C'(I}) we may assume that u is continuously differ-
entiable. Thus, pointwise at a fixed = € I_ (corresponding to z + 2a € I ) the Fundamental
Theorem of Calculus yields

1 1

d

u(x + 2a2) —u(x + 2a1) = / dtau(l‘ +2a1 + 2(ag — ar)t) = 2(az — a1) / dt Toq, +2(ag—ay )t OU (T)
0 0

As a bounded linear map ev, : WH23(I_) — C°(I_) — B commutes with the Bochner
integral, so we get

1
evy |:T2a2u — Tog, U — 2(ag — al)/ dt Toq, +2(ag—ar )t 8u] =0 forall z € I_
0

Corollary 8.4 (Differentiation w.r.t. the shift parameter)
Given a fived u € W2(1), the map a € (ag = Aa) — Toqu € WY2(1_) is differentiable
with derivative a —s 279, Ou € WH2(I_).

Proof. This is a straightforward application of Lemma 8.3 and Corollary 8.2:
Using the triangle inequality for Bochner integrals in W12(I_) as well as continuity of the
map a — Toqu € WH2(1_) we get

T2(a+6a)U — T2aU

5 — 2T9,0u

1
< 2/ dt HTQ(QH(;G)(?U - TzaauHWm(L) — 0 asda—0
Wh(1) 0

O
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8.1.2 Differentiation of the rescaling map

Essentially repeating our strategy from the previous section, we will differentiate the rescaled
bump coefficient Ry, f by interpreting its difference quotient
Ryyornf — Raf
oA

as a Bochner integral in a suitably constructed Banach space C} (R, V_).
By construction of this space, every element o € Cgounded(R<0’V*) acts through scalar

multiplication on the module W&Q(—l, 0), with an inequality

HavHW{f(—l,O) < const. X HaHCﬁmde(l(R@,V,) H”HW&?(-LO)

making it possible to differentiate R)(4)f - T2qv by the product rule.

n

Let us begin by introducing the spaces C}! . .(I,V) and discussing their relation to the
ring R(I,V) from section 6.3.1.

Definition 8.5 (Generalized C''-spaces)
Let B be a Banach space, I C R an open interval and V (x)d, a vector field on I with V' > 0.

As a generalization of the classical Céounded(I ) we consider the space

Counded (I, V5 B) = {(uo, u1) € Cpnded (I, B)®? [ug : T — B is differentiable and u; = V@uo}

Whenever our choice of B is clear, we will simply write C%ounded(l , V). In the following it
will be sufficient to work with B = R.

Lemma 8.6 (Contravariance of the spaces Ci,niea(I,V))
Gwen ® : I, — I, a diffeomorphism between open intervals in R, the isometry

Ol?ounded(ly)@Q — Clg)ounded(lz)@Q’ (u()’ ul) — (UO o®,uy 0 (I))
identifies C,,1..(I,, V) with C} (I, ®*V).
Proof. Consider (ug,u1) € Cly qeq(Tys V) Then dug = % € CY(1,) guarantees ug € C1(I,),
so we can apply the chain rule to observe that dfug o @] = % [Oup] o @ and therefore
X

Vod

UIO(I) = (VO@)[&UO]O@Z m

6[u0 o ‘P] = o'V a[uo ] CD]

Lemma 8.7 (Completeness of C!)
Cl naeaI: V) is a closed subspace of Cy (I)®2 and therefore a Banach space itself.

ounded

Proof. Let ® : I, — I be the straightening diffeomorphism from Remark 6.3.
Then we have ®*V = 9, , so by Lemma 8.6 the componentwise isometry

_od

Cl()) (I) w2 C'f())ounded(Iﬂ”)692

ounded

identifies our space Cy,...q(I,V) with the classical Cl ., (Iz) which is known to be com-

plete. O

Remark 8.8 (Completeness of C™1)
Lemma 8.7 guarantees that for every n > 0

Cgo';flded(f, V)= {(uo,ul, vy Upt1) € 6’8011nded(1)@”+2 (uj,ujs1) € Céounded(I7 V) for all j =0, ,n}

is a closed subspace of Ck())ounded(j )P +2 and therefore a Banach space itself.
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The next observation is a follow-up on Remark 6.9 and will later allow us to extract the pole
divergence from (%)n Ry /o f Toau:

Auxiliary Lemma 8.9 (Rescaling of derivatives)

Let I C R be an open subset and p € C°(I) a smooth function with p # 0 everywhere.

Assume that for B a normed vector space we are given maps v, : I — B, n=0,.... N
such that

e Uy 1S continuous

e forn=0,...N —1 the map v, is differentiable with derivative v/, = Untl

Then we have vg € CN(I,B) and

n

Un = (,08)”’00 = Z Cn,k[p] Pkakvo (81)
k=0

P OMo = > Crilpl vk (8.2)
k=0

foralln=0,...,N.

Proof. Our claim that vy € C¥ (I, B) follows from a chain of implications

UNECO
/ __UN 0
Un 1_760 :>UN,1601
! UN-1 1
Un_o = P el :>’UN2€C2

Equation (8.1) is obtained by successive application of p d
using that C,, 1, p* € C°(I) and d*vy € CN=H(I).

Equation (8.2) exploits the fact that [C), x] € SL(N,C>(I)) is invertible. O

Remark 8.10 (Relating C}! . (I,V) to R(I,V) )

o Theset R"([,V) = {f e o™(I)

sup ||[V*(f]]| < oo for all k =0, ,n} is a subring of C°(I).
zel

e The ring from Remark 6.5 can be recovered as R(I,V) = ﬂR"(I, V).

n>0
e We have a linear isomorphism
R (I7 V) Cl:f)unded(l’ V) - Clg)ounded (I)@R—H
U ——s [uj = Viu],

7=0,....n

Note that the surjectivity of this map is a result of Auxiliary Lemma 8.9.

Notation. When our choice of I and V' is clear, we will sometimes write R™ instead of R" (I, V).
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Now we are ready to repeat our recipe from section 8.1.1. It turns out that the vector field
V_ = -0, shows up naturally as we differentiate R) f.

Lemma 8.11 (Domain rescaling acts continuously on C?)
Given a fized f € R'(Reo,V_), the map X € (0,00) —> Ryf € CP . (Reg) is continuous.

Proof. For A, A\ + 6\ > 0 and pointwise at 2 € R+ the function f € C'(R.() obeys

tod b
Rayarf(z) = Raf(z) = / de Ef«)\ +t0N)z) = — oA / dt 3 RyV-[f] (x) (8.3)
R v — 0 b=A-+t6X
Xz Of|(Arton)a
Restricting to the case 2 |d\| < A we have m < % and thus
oA
IRrssrfla) - Raftol] < 2| sup V-7
yE€R<o

where the right hand side does not depend on x anymore. ]

Corollary 8.12 (Domain rescaling acts continuously on C™)
Given a fized f € R" ™ (Reo, Vo), the map A € (0,00) — Ryf € Cp . (Reo, V) is continuous.

Proof. Given a fixed A € (0,00), the diffecomorphism Ry : Rcg — Rog, x — X\ -z satisfies

1
R{V. =~ da=V_

so f—— Ryf=foRyeC) ..4Rcp) is covered by a componentwise map

Cl?ounded(R<0’ V_) — Cg (R<07 R;V—) = C’k7)Lounded<R<0’ V_>

ounded

(f, f17 ceeny fn) — (R)\f, R)\fl, veeey R)\fn)
Note that we have f; = VI f € R"7T1 C R!, so continuity follows from Lemma 8.11. O

Lemma 8.13 (Difference quotient of the rescaling map as a Bochner integral)
Given \, A+ 30X > 0 and f € R" (R, V_), the formula

holds in C} 1 /(R<o,V_).

1
1
Ruworf — Baf ==ox- [ at pRV-IS
b=A+to\

0

Proof. Having f € R"*2 ensures V_[f] € R"*! so themap b +— $R,V_[f] € CI niea R<0, V2)
is continuous and we get a well-defined Bochner integral

€ C’{)Lounded (R<07 V—)
b=A+to\

|
/ dt ERbV_ [£]

0

The Bochner integral commutes with ev,, : Ct())oundcd

(R<o,B) — B so equation (8.3) implies

1
1
€Uy R)\+(5)\f - R)\f + oA / dt gRbV, [f] =0 for all z € R<0
0

b=A+té\

Corollary 8.14 (Differentiation w.r.t. the scale parameter)
Given a fized f € R"*(Reo, V), the map X € (0,00) — Ryf € Cp: (R, V2)
is differentiable with derivative A\ — — tR\V_[f] € CF . (Reo, V).

Proof. Since b+ %RbV_ [f] € CF undeaR<o, V-) is continuous, one has
R R 1 1 1 A+t
|l BTy Shs < [t s 0 as oA — 0
CIZMmdcd(R<0' V*) 0 A Cl;i)unded(R<07 V,)

O]
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By considering A\(a) = a~", we observe that )\%RA [f]1=-Rx [V,f} and a%R/\(a) [f1=F" Ry [V,f}
agree up to a prefactor, so our discussion will not rely on any particular choice of k > 1

I 7Ry gk [ e Toqru”:

Corollary 8.15 (Inverting the scale parameter)

Write A(a) = 1/a*. Then for f € R""2(R.y,V_), the derivative of the

map a € (0,00) — Ry(q)f € Chppnaed(R<0, V-) satisfies

0
Ry@)f = k- Ry V-[f]

“9a
Proof. Since [A — R, f] belongs to C'[(0,00), Cfbyngea(R<o, V-)] the chain rule shows
0 N(a) k
a0l = —3p Baa@V-lf] = J Baw V-U/] .

Let us conclude this section by an illustration of Auxiliary Lemma 8.9 and Remark 8.10:
Lemma 8.16 (The rescaling map has bounded logarithmic derivatives)
Given f € R™T (R, VL), the map [a — Ry(q)f] belongs to R™ (0,00),a%; Cg)unded(R<0’V—)]'

Proof. We have VZ[f] € R™2 for j =0,...,m — 1 and V™[f] € R+,
Thus, the sequence of maps v; : (0,00) — C}. . (Reo,V-), j =0, ...,m given by

vj(a) == Ry V[f]

satisfies a%vj =w;q1 for j=0,...,m —1 and v, is continuous.
With Auxiliary Lemma 8.9 we conclude that a — v;(a) is of class C™. Moreover,

919
[“%} 0

does not depend on a. ]

Rx(a)Verk[f]‘ =Y sup

k=0 z€Ro

= HRx(a)Vf[f]

VI

: =2 sw
Cbmmded<R<07 V—) k=0 z € Ry
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8.1.3 Differentiating the off-diagonal part of the retraction

Let us now combine our findings from sections 8.1.1 and 8.1.2.
Notation.
e In the following we will continue to write A(a) = 1/a.

e Moreover, we will consider all intervals I C R, equipped with the metric g = dz? and
identify W” 2(1) = W;;(I) with a subspace of L2(I).

The following technical result builds on the observation that, thanks to
the prefactor Ry, f € C§° (— Sa, - 2) there is an unproblematic transition

from u € VVV+ (0,1) to Ry/qf - T2qu € WV ?(-1,0).

Lemma 8.17 (Transfer from W ® to W, is differentiable w.r.t. the gluing parameter )

Given f € C§°(—3,—3) and u € W2+2(0, 1) the map a — Ry(q)f - T2au € Wv_ (—1,0)
is differentiable and its derivative satisfies
0

age B S - T2au = Rag) V=[] m2att + Byay (f - h) maViw € W% (=1,0)

Proof. We work locally in a with a € (ag + Aa).

Given u € Wéf(O, 1) Lemma 6.13 applied to ” f” = 2 € R(I;,V,) shows that u € W§’2(I+)
where du = 2V, u holds as an identity in the R(Zy, V)-module Wéf(Lr).

There are ring homomorphisms
R(Ly, Vi) 295 R4, 0 = Vi) 2 R(L,0) 2% R, V- = —a0)
accompanied by module homomorphisms
W‘v/zf (I_|_) incl. Wg72(1+) T2a ng(lf) incl. WSLQ([—)
1

Since we have u € VV8 2(I,), Corollary 8.4 shows that the map a —s Tou € W 2(I_) is
differentiable with derivative a — 2 19,0u € I/Va1 2(1).

TgaV+u can be understood as an equation in the R(/_, V_)-module VV‘l/’_2 (1-).

Using the bounded linear inclusion W; 2(1.) — Wé’? (1) the same statement holds in Wé’f (1-),

ie. ar— muu € Wé’_Q (I-) is differentiable and its derivative satisfies

0 2a 1.2

— =2 ou = ——— T V. e W, 7 (1-

A5 Toal aTa0u = — % Toa Vil Vo)

Now consider the general situation where a —— s(a) € CJ! 1 1(Reo,V_) and a — v(a) € W&Q(I,)
are differentiable with derivatives s'(a) € C}! (Reo, V_) and v/(a) € W‘T}f (I-) respectively.
Then by the identity

HS'vHng(L) < const. X HSHCgounded(R@,V,) HUHVI/&?(L)
the map a — s(a)v(a) is differentiable with derivative s'(a)v(a) + s(a)v'(a).
Consequently, in our case a — Ry(q)f - T2au € Wl’i2 (1_) is differentiable with derivative

0
g Ry f att = Ra@)Vo[f]moat+ Ragay (f - h) aViu € WA (1) (8.4)

where h := T+2 € C*°(—2,0) and by assumption f € C§°(—3/2,—1/2).
Notice that for all a € (ap+Aa) both Ry(q)f m2qu and %RA(a)f Toqu belong to C§O(1-) - W (I-).
For v € C§°(I-) - Wy,*(I-) one has v € Wy (=1,0) with [vllyaz o = lollyz -

ounded

Therefore the statement (8.4) continues to hold when le/’f (I-) is replaced by W 2( 1,0)
and our claim can be patched together by varying the interval (ag £ Aa). O
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Lemma 8.17 shows that the logarithmic derivative a% [Rl ol - Tzau] is again a sum of terms
" Ryq [bump] 724 [Sobolev function] ”

Coming to our main result of this section, we will iteratively calculate the bump coefficients
appearing in (a%)n [Rl Ja ngau}, before applying Auxiliary Lemma 8.9 to conclude that
(%)n [Rl Ja ngau] involves a pole of order exactly n.

Definition 8.18 (Bump coefficients Nj; and 1)
As in Lemma 8. 17 let us write h = 172-2 € C*(-2,0).
Given f € C3°(—3,—13) we define the coefficients Ny ;[f] € C5°(—2, —1) iteratively by

Noy = f-doy
Niy10=V_[Npi)+ Ngj—1-h

In the following, by Cy, 1, we will always mean the coefﬁcients CXL? plpl with V=0 and p(a) =
For instance, [Cpy x| € SL(m,Z) and Ny [f] € C§°(—3,—3) combine into coefficients

Xmlf ZCm Nialf] € C5° (—5,—%>

Proposition 8.19 (Pole order arising from derivatives in a)
Given f € C§°(—3,—1) and u € W‘J/\Jfrﬂ’z(o, 1), the map a — Ry f - T2au € W‘l,’_Q(—l,O)
belongs to C’N((O, 00), W‘l/’f(—l,())), with derivatives given by
a\" I
1,2

(5:) Ry s = o >~ Bao xadlf) Vb € W10
Proof. We apply Auxiliary Lemma 8.9 in the case I = (0,), p(a) = a, B = W‘f(fl, 0):
Given u € W‘JZJFI’Q(O, 1) and f € C°(—3,—3) let us define

n
a) = Ry Nualf] maViu € Wi*(=1,0) forn=0,..,N

These maps are continuous in a, as can be seen by combining Corollaries 8.12 and 8.2.
Moreover, restricting to n =0, ...., N — 1 we have

I<n<N-1 = Viee W3*(0,1)

so by Lemma 8.17 the map a — v, (a) is differentiable with derivative

9 +1
CL% Un = ZR/\ nl T2aV+U+R,\( )( nl* h) Tgav++ U
= ZR)\ [Nn] + Npj—1 - h} maViu = Upt1
Nn+1l

Taking into account that Cy, x[p(a) = a] € Z, our claim follows from equation (8.2) of Aux-
iliary Lemma 8.9. O
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Having settled the ’longitudinal’ derivatives in a-direction, we still have to discuss the
‘transversal’ derivatives in direction of the level sets. For the term Ry /o f - T2qu € W(}f(—l, 0)

these arise as powers of V_ = -z0,. Just as for the ’longitudinal’ derivatives (a%)n, we

start by a technical argument for the case n = 1, before introducing yet another variant of
bump coefficients Mj,; € C§° (—g, —%) to formulate our result in the case of general n.

Lemma 8.20 (Translating V_ into V)
Let us consider f € Cg°(—32,-3) and w € W‘l/f(O, 1).
Then Ry(a)f - T2aw belongs to C3°(I-) - Wi*(I-) € W*(—1,0) with

V_[Ry@)f - maw] = Ry@)V-If] maw + Ry [f - (h=1)] - m2aViw

Proof. At fixed a € (ap+Aa) we consider the diffeomorphism ® : I_— I_+2a C I, 2 — x + 2a.
With /®*g = /g = 1 we have an implication

(w, Viw) € WiA(I) = (wo®, [Viw]o®) € Wgiy, (1)
and in C*°(I_) we calculate

2a
T+ 2a

Vo= —z = { - 1] (z+2a) = Ryq)(h—1) "V,

Note that the prefactor Ry(4)(h —1) is bounded on I C (—2a,0), so by part 1) of Auxiliary
Lemma 6.12 one has mow =wo ® € W‘l/’?(I,) with

V_ [TQaw] =V_ [w o (I)] = R)\(a) (h - 1) . (I)*V+ [’UJ o (I)]
= Ryq)(h = 1) [Viw]o® = Ryg)(h—1) mViw

Regarding the multiplication by R, f € C§°(1-), part 2) of Auxiliary Lemma 6.12 ensures
that Ry (g f - mew € Wy*(I-) with

V_ [Rk(a)f . TQa'LU] =V_ [R)\(a)f] *ToqW + R)\(a)f - V_[19qw]
= Ry)V-[f]  72aw + Ry [f- (h=1)] - m2aViw € L*(I-)
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Definition 8.21 (Bump coefficients My ;)
As before let us write h = L—iQ € C*(-2,0).

Given f € C3°(—3,—13) we define the coeficients My, [f] € Cg°(—3, —3) iteratively by
Moy, = f-doy
Myy1y = Vo[Myg] + M1 - (h—1)

Proposition 8.22 (No poles arising from V_)
Given f € C§°(—3,-%) and w € W(}f(O, 1) one has Ry(q)f - T2qw € W% (—1,0) with
k
Vf [R,\(a)f . Tgaw] = Z R)\(a)Mk,l [f] . TQaV_,'l_’LU fOT‘ k= 0, N
1=0

Proof. Every element w € WSf(O, 1) can be represented by a tuple (w, Viw, ...., Vi'w) € L*(0,1)®n+L,
Let us define

k
Vg = ZR)\(a)Mk,l[.ﬂ . Tganrw < LQ(—I,O)
1=0
For k=0,....,n — 1 we claim that (vg,vg41) € W‘l/’_Q(—l,O):
Indeed, for | <k <n—1 we have Viw € W‘l/f(O, 1) and My,[f] € C& (-3, —13),
so Lemma 8.20 implies vy, € le/’?(—l, 0) with

V_ [’Uk] = Z R)\(a)v_ [MkJ] . TzaVJlr’LU + R)\(a) [Mlc,l . (h - 1)] Tgav_il_-’_lw

l
= ZRMa) [Vo[Mg] + Myy—1 - (h—1)] 72,Viw E—
! My41,1
O
Recall from the introduction that our initial motivation to consider the vector field V_ = -x0,.

was that V_ commutes with the rescaling map. According to Proposition 8.22, this now man-
ifests in the absence of poles in V* [Rl ol 'Tgau] . Poles of this type, if there were some, would
destroy sc’-continuity of the retraction at a = 0. The pole from Proposition 8.19, on the
other hand, can be compensated by a *weight difference’ as we shall see in Proposition 8.27.
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8.2 A simple criterion for sc-smoothness

It seems intuitively clear that to prove sc-smoothness of a fibre-linear map, we only need to
care about derivatives in the base direction, while keeping all arguments coming from the
fibre fixed. We will rigorously justify this idea in Proposition 8.25, thereby providing a clean
and efficient way to verify sc-smoothness in our case at hand.

In this section, let E = (Ep)n>0, F' = (Fn)n>0, G = (Grn)n>0 be sc-Banach spaces
and take B C R to be an open subset.

As a preparation, let us talk about sc!-differentiability:

Lemma 8.23 (Sc! fibre-linear maps)
Assume we are given sc’-maps o : B&G — F (linear in G-direction) and 3 : BOG! — F
such that for every fized e € Gy

b— ap(e) € Fy is differentiable with derivative b — By(e) € Fy .

Then o is sct.

Proof. At fixed (b,e) € B @& G the assignment
(6b,0e) — Da(b, e, b, 0e) = 0b - By(e) + ap(de) defines a map in L(B & Gy, Fp)

(a', Da)
Themap To:BaGloBaG— FlaoF s sd.

It remains to interpret Da as the differential of a|y : B® Gy — Fj.
Indeed, restricting to e, de € G we find

1
IS — —0b- _
561+ oe]l [ atp+6p(e + de) — ap(e) Byle) — ap(de) ||,
1 de de
< — _ _ . _oe |
o lewsn(e) = awle) = ob ﬁb(e)HFol+ %+5b{llaeul] a”[éeuj

F
1

—0 as 6b—0 by assumption < sup ||ab+6bv . avaF
- 0

veEK

—G
The embedding G < G being compact means that K := BlG 1(0) *is a compact subset
of G, so by Auxiliary Lemma 8.24 we obtain

sup ||apsspv — opvll, — 0 as db — 0
veK !

Auxiliary Lemma 8.24 (Continuity w.r.t. compact-open topology turns uniform)
Let a: B® Gy — Fy be a continuous map between normed vector spaces and assume that
K C Gy is a compact subset. Then a: B— Cp . (K, Fp) is continuous.

Proof. Given b € B, € > 0 cover {b} x K by open subsets Bs, (b) x U; such that
a(z) —a(y)ll, <e forall z,y € Bs,(b) x U;

Since K is compact, a finite cover will be enough and we can set § := mind; > 0
Then however we observe that

6b] <6 = |aprepv — v, <€ forallve K
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The following criterion shows that sc-smoothness of a fibre-linear map boils down to pointwise
differentiability in the base direction together with sc-continuity of all derivatives:

Proposition 8.25 (Bootstrapped criterion for the sc-smoothness of fibre-linear maps)
Assume we are given a sequence of sc®-maps O"mw: B® E® — F, n >0 such that

1) my(e) = (8°),(e) is linear in e € Ey

2) For fized e € Eyy1 the map b— (8"+17r)b(e) e Iy
is the derivative of b+— (8"7r)b(e) € Fy
Thenn=0%:B&®E — F is sc™®

Proof. Since b— (0"17),(e) € Fy is the derivative of b +— (9"n),(e) € Fp,
we see that by induction (8"W)b(e) is linear in e € E,, for alln > 0.
Thus, Lemma 8.23 applied to ”a” = 9"r, 737 = 0"+x shows

P(1) d"m:B®E" — Fis sc' for alln >0

Note that the sc®-map D(anw) BaE""'¢aB®E" —— F
(b,e,6b,6e) —— 6b- (8"“7r)be + (8”7r)b56

proj. "t @id It.
is the sum of B@E”“@B@E"TB@E"H@B#F@B%F
proj. m
and B@En+1@B@En%—w>B@En o'n F

Let us assume by induction that at some k& > 1 it holds that
P(k) O"r:B®E" — Fissct foralln>0

Then by the scf—chain rule (iterate [HWZ21] Thm 1.3.1) the combination of
0" and 0"t'1 being sc* implies that

D(0"n) :B&E"" @ Ba&E" — F is sc’.
On the other hand, [HWZ21] Prop 1.2.2 guarantees that
(O"m)!: B® E" — F s scb.
Taking the last two results together, we conclude that

n n+1 n [(8”7r)1’ D(@"ﬂ'ﬂ 1 : k
TO"r): B&E"" ®BaF F'&F issc

which is nothing else but the definition of 9”7 being sc**+1.

Therefore we have shown the implication P(k) = P(k + 1) and our claim follows by
induction. O
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As is apparent in our formulation of Propositions 7.5 and 7.6, the topology transition at
vanishing gluing parameter manifests in a singularity of the retraction. This singularity will
be removed by the following extension to our sc>-criterion from Proposition 8.25.

Theorem 8.26 (Sc-smoothness of fibre-linear maps with removable singularity)
Assume that for B = (—e¢,€) \ {0} we are given a family 0"m: B&E" — F, n>0
satisfying the requirements of Proposition 8.25

Assume in addition that

3) At every fized e € E,, ) the limits ;{% (0"7),e, z%l}% (0"m), e € Fy exist and agree

b
4) For all n,k >0 there exist constants K, enx >0 such that

H (anw)b(')Hg(EM,Fk) < Kok Vbe B, (0)\{0}

Then the requirements of Proposition 8.25 are fulfilled for B = (—¢,¢)

so the extended 7 : (—€,€) @ E — F is sc™°.

Proof. On e € E,; we define (9"n),(e) := %1{1(1) (0"7),(e) = %1}% (0"7),(e) € F.

This definition is compatible with all lower levels FE | (x_1), ..., En+o containing the given e
and immediately shows that

° (8”77)0(En+k) C Fy

o (9"7),(e) is linear in e € Ey

To see that 9" : (—€,€) ® E™ — F is sc¥ it remains to work locally around the point (0, €)
with e € E, 1 and variations de € Fy, 4 :

19" (e + de) — " mo(e)l, < 10" m(e) — 0" mole)lly, + 10" Mollye . 5, 19l

—0 as b—0 <Kn.k

As a last step, we have to show that condition 2) of Proposition 8.25 also holds at b = 0.
Since condition 2) is already assumed for b # 0, we see that at fixed e € F,, 1 one has
[b — anwb(e)] € C’l((—e, €) \ {0}, Fo)
with derivative  [b— 9" 1m(e)] € CV((—¢,€), Fy)

Hence, the Fundamental Theorem of Calculus yields

b
Omy(€) — O, () = / v’ 9" Ly ()
bo

For b > by > 0 we take the limit by — 0 whereas for 0 > b > by we take the limit b6 — 0.
This is possible because by assumption 3) we have continuously extended 9" 17 (e) to b = 0.
In the situation b > 0 for instance we obtain

‘ 0"my(e) — 0"mo(e)

; — 9"y (e)

b
<3 / ' [0 my (e) — 0" mo(e)|,, — 0
F 0
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8.3 Application to our case

Finally, let us combine the formulae obtained in section 8.1 to show that our retraction has
a removable singularity in the sense of Theorem 8.26. As advertised in the introduction, this
involves compensating the pole divergence from Proposition 8.19 by a ’weight difference’
between different levels of regularity.

Setup
As already indicated in Section 7.2 we will use the following sc-Banach spaces:
n+1,2 _ 1prntl2 _ 1
F,=W," s (_1,0) E, = WV+;p” (()71) where p = > 1
With n > 0, we consider the sequence of maps

0"m:(0,¢) ® B, — F
1 n
0"mg(u) := s Z Ry(a)Xn,i[T+107] -TgaV_f_u e Fy= W‘l/’f(—l, 0)
=0

Proposition 8.27 (Verifying the conditions of Theorem 8.26)

At fized u € E, 1 the map a— 0" rqu € Fy is the derivative of a — 0"m,u € Fy.
Moreover, for all pairs n,k > 0 we observe the following:

o u € E, i implies 0"mq(u) € Fy,
o There exists K, > 0 independent of a such that for all a € (0,00):

Han”a( ‘)HL(EHk,,Fk) < Kok

e For every fized u € E,  we have liII(l) O"mou =0 in Fy,
a—

e The map 0"w: (0,€) ® Epir — F is continuous

Proof. Given a fixed u € E,11 C W3j2’2(0, 1), Proposition 8.19 shows that the

map a — Ry, 74107 - Toqu belongs to C™1 ((0, €), W&,’_Z(—l, O)) with derivatives

8 n
<%) Ry(@)Tr1ay - Toqu = 0" Tmqu

8 n+1
%Gnﬂau = (%) R()T1007 - ToqU = "

Now let us work at fixed a > 0. Assuming u € E,, 1 for some k > 0 ensures that one has

Viue W(Zrl’Q(O, 1) forall<mn

so Proposition 8.22 implies 0"mu = a% Y10 Bag@)Xn,t - m.Viu € W(ﬁjm(—l, 0).
More precisely, the V_-derivatives of order m =0, ...,k + 1 are given by

n+m

V[0 mau] = ain Z Ry L™ - 12aViu € L*(—1,0)
s=0

with L= 3 M [xud] € G (-53)

We claim that these belong not only to L*(—1,0) but in fact to L*(—1,0), thus showing
that O"m,u € Fj, = W‘];ilﬁ(—l,O).
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Indeed, with L € C§° (%%) and w € L*(0,1) jn+x we calculate

2
‘ :/ dx
I_
:/ dx
I_+2a

2

/(—1,0)dx Hpk *Ry(o)L - T2aw

L
7'2aPk ’ R)\(a) [(h—l)k} * T2aW

2

L

k

R AR
— ]

o1 3
& (53)
k L ?
= dx |[p"" 2| - Rygay|T-2 ] W
/(0,1) O
where for the first equality we have used that with
_ 2 (- L w2 e
h = " € C®((-2,0),Rsy) = —1-—— €C ((—2,0), R>o)
one has 1 1 z+42a 1
p:_gz_x+2a T = TP o) [hl] ECOO(_%L’O).

Our calculation shows that

1
’n Ry(a)L T2qw H < 2" .sup
a L*(-1,0)

L
m . HX(O,Qa) - w HLQ(O,I)anrk (85)
=0.
L*(-1,0)
Since as remarked above all V_-derivatives of 0"m,u are built from terms of the form

"Ry(q)L - 2aw”, we conclude that at any fixed u € Ejx one has lir% O"mgu = 0 in Fy.
a—r

1
By invoking dominated convergence, this inequality implies lin% HnR)‘(a)L ToqW
a— a

On the other hand, (8.5) also implies

< Kn,k :
L*(=1,0) 4

1
H aTLR)\(a)Lﬁaw Hw”LQ(OJ)ka

where the constant K, ;, > 0 depends on n, k and L but not on a. Thus, after collecting all
summands, we can find uniform bounds
Ha"wa

('>HL(EH+;C,F;C) < Kok

Given a fixed u € E, ), Lemma 8.28 ensures that the map a € (0,¢) — 9"m,u € Fy, is
continuous. Hence, by

10" atsa(u + 9u) = 0"mau]| < [[0"Tarsan = 0"maull + 110" arsalloqr, i 100, ,
L

S’Cn,k

we conclude that 0"7 : (0,¢) @ E, 4+ —> F} is continuous as well. ]

In the last step, we have used the following result:

Lemma 8.28 (The weight does not destroy continuity of our map)
Given f € C§° (—g—%) and v € L*(0,1) the map a € (0, €) — Ry(q)f T2av € L2n(—1,0) is continuous.

Proof. Working with a € (ag + Aa) ensures that R, f is supported in the ”comoving interval” I_=1I_(ao).

On I one has [jw||;2 (1) < Ct HwHL2(I ) where Cj_ := sup p(z) < oo.
p” —_ - —_ 1‘617
More explicitly, with p = % and I_ = [—r-ap,—s-ag] one observes C] ~ ain
- 0

Using |la - w”L?(I_) < HaHC&un[ied(R@) HwHLQ(I_) the claim is a combination of Lemmas 8.11 and 8.1.
O
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Appendix A

Transition between real and
complex sc-Hilbert spaces

A.1 Complexification of real Hilbert scales

Note that there are two a priori unrelated approaches to complexification, depending on
whether we are dealing with a Hilbert space or only a Banach space:

e Hilbert space complexification:

Given a real Hilbert space H, we equip its complexification H® := H ®r C with the
hermitean product (z ® A,y @ )& = Au(z,y)y € C.
Setting v = w makes the imaginary part of

(vo + 101, wo + iw1)f = [(vo, wo)m + (v1,w1)m] +i[(vo, w1)m — (v1,wo) ]

vanish, whereas from the real part we read off that the norm induced by (-,-)% is

equivalent to HUO + z'leH@H = HUQHH + HU1HH and therefore complete itself.

Note that HHH@H is a real but not a complex norm, by failure of H)\UH = |\l - H’UH for
general A € C. This does not prevent it from being equivalent to the complex norm
C

induced by (-, ).

e Banach space complexification:

Given a real Banach space W, its complexification W€ = W ®g C can be understood
as a complex Banach space by defining

(A1)

ol = mac eos(ts —sine el = max | e o]

By inserting ¢t = 0 and ¢t = § we obtain

1
ool + llon ) < e

whereas |cos(t)], [sin(¢)| < 1 guarantees that

C
W

el < Hoolly + loally

Thus, ‘Hﬁ is equivalent to HHW oW and therefore complete itself. However, unlike
H-HW ey it succeeds in being a complex norm since by writing A = || e’ we observe
that

C
Al H”HW

HMH% = |)‘|'I{1€6}1§<HRG [ O] [l =

As mentioned in [MST], the choice (A.1) is known as the ” Taylor complexification” of W.
Let H D W1 D ... be a filtration of real vector spaces. Complexification amounts to
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considering the filtration of real vector spaces given by H ® H > W7 @ W; D ... and
regarding H® = H @ H as a complex vector space with i € C acting by
—idy
I =
]
Since all higher levels are preserved by I in the sense that I(Wy @& Wy) C Wy @ Wy, we
can regard the W€ = W, @ W}, as complex subspaces of HC, leaving us with a filtration of

complex vector spaces
HSWES ... oWE o ...

Now assume that our original H D Wj; D ... was a filtration of real Banach spaces with
bounded inclusions, the norm HH y arising from an inner product (-,-)p.

Then H gets complexified as a Hilbert space, whereas the higher levels W,f,:,k: > 1 are
equipped with their Taylor norms (A.1). In any case, H-H(;,k is equivalent to the real norm

H(vowl)HWk@Wk: HUOHWk—i— Hvl‘ . SO the filtration HC D WL > ... has bounded inclusions
as well.

The following simple observation will be used in section 5.1 Proposition 5.8:

Lemma A.1 (Complexification preserves Density and Compactness)

Given H D W1 D ... a filtration of Banach spaces with bounded inclusions such that HHH
arises from an inner product, let us consider the filtration HC > W{C D ... described above.
Then Uwka>o
most/honest sc-Banach space.

is an almost/honest sc-Banach space if and only if (Wy)k>0 was an al-

Proof. Density: Note that

(Woo = (YWe@Wi) = [ W [ We = (Weo)©
k>0 k>0 k>0

are two descriptions of the same set. Since the norm on W,(cC is equivalent to H'HWk sy We
have an equivalence between Wy, being dense in W}, and (Wyo)® = Wy @ W being dense
in WS =W & W.

Compactness: A subsequence argument shows that if Wy,q — Wy is compact, then so is

Wit1 @ Wig1 — Wy & Wi. The reverse implication can be seen by considering sequences
(vp,0) with constant second entry. O

A.2 Symmetrisation of complex Hilbert scales

As a reverse operation to the complexification process of the previous section, some situations
will make it necessary to forget the complex structure and regard a given complex sc-Hilbert
space H D Wi D ... as a real sc-Hilbert space HR¢ > Wke o ...

In this case, all sets and norms stay the same, the only material change being that instead
of a hermitean form (-,-) g the space H®® = H now carries the symmetric inner product

(v,w)g + (w,v) g
2

<v,w>}}e := Re(v,w)yg =

Still, {-,-) 3¢ and (-,-) & induce the same norm on H, so the transition from (H, (-,-)p) to
(H s (- ')Ee) will not affect questions of density or compactness.
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