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1 Summary

On the way through literature the author stumbled across Lerman’s paper Contact cuts
[Ler01], originally just to understand the broader context in some other work. However,
besides the motivation of merely comprehending the general concept, he realized that the
proofs presented by Lerman are quite tricky and leave out many necessary information.
Thus, the idea arose to ‘round off’ Lerman’s arguments in [Ler01] and check his proofs in
detail. As a consequence, many but not all of his theorems can be found in this thesis,
sometimes slightly modified or even corrected. Unfortunately, this also means that there is
a motley assortment of propositions, not all of them are interconnected in a way the au-
thour wished for in the first place, especially since there will be no final application of the
cut construction: This was initially not intended and, additionally, the author simply lacks
the knowledge in contact geometry to understand the last section in Contact cuts. Instead,
the style below will be considerably technical with little to no examples or motivation and
it is strongly recommended to at least take a look at Lerman’s paper while reading the the-
sis. Nonetheless, the author hopes to still make a small contribution by reviewing Lerman’s
cut construction and correcting details if necessary, and at best help the reader to better
understand the subject matter of Contact cuts.

Here is a brief outline of what we will consider in the separate chapters:

Chapter 2 has two main purposes: To introduce the reader to smooth group actions on
manifolds, supplying him or her with the fundamental theorems in this field that the ad-
vanced reader may already know, and establishing the basic results on slices. This concept
and the derived propositions will be essential for exactly one theorem, 4.3.3, which tells us
that under certain conditions we always can choose an invariant contact form (under the
group action) for a given contact distribution. This is significant because, when we consider
contact reduction in Section 4.3, the invariance of the contact form becomes the essential
condition. But, since Theorem 4.3.3 holds, we can always choose an appropriate contact
form.

In Chapter 3 we turn to our main source [Ler01] and present the construction of topological
cuts, note that the concrete definition of the smooth structure is only given in the proof
of Proposition 3.2.1, so it is inevitable to read that one too. Afterwards, we generalize by
cutting along the boundary of a manifold with boundary.

We will turn away briefly from the cut construction in Chapter 4 to study symplectic and
contact reduction. In particular, we are going to give complete proofs of the famous Marsden-
Weinstein-Meyer Theorem and an analog contact version by Geiges.

When we have studied reduction, we can finally define a canonical symplectic respectively
contact form on the cut in Chapter 5 and obtain Lerman’s symplectic respectively contact
cut. The goal of the last section 5.3 is, to develop two helpful propositions which combine
symplectic and contact cuts. They can also be found in [Ler01] but, as we will point out
later, one of them most probably is not entirely correct in Lerman’s paper.
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Chapter 1

Some propositions of Chapters 2 and 3 have been outsourced into the appendix if they have
appeared to be too off-topic or are interesting results by themselves but cannot be included
coherently into the main content.
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2 Fundamental Results on Group
Actions on Manifolds

In this chapter we will recapitulate basic definitions and theorems regarding group actions
on topological spaces in general but also prove further, crucial results that we will use later
in Chapter 4.

Therefore, most of the first section in this chapter, containing the more general definitions,
should be well-known and, hence, the familiar reader may skim over it. However, since the
introduced terminology is highly dependent on the author, with the aim of avoiding un-
necessary misunderstandings, perhaps it is still useful to look at the definitions at least. In
addition, in Section 2.1 we will introduce notation recurring later on. It is declared intention
to keep the naming conventions very close to Introduction to Smooth Manifolds [Lee13], the
standard work by Lee, which also happens to be the origin of nearly all important results
in the first section.

In Section 2.3 we introduce the concept of slices for group actions. Our main source will
be Palais [Pal61]. It is in this section that we will prove our main, relative to the rest of
the chapter lesser-known, propositions and lemmata from topological group theory, which
will (only) be important for one preliminary theorem in Chapter 4 and of course for the
Quotient Manifold Theorem in this chapter.

As already indicated, the fourth section contains a rigid proof of the Quotient Manifold
Theorem, which the reader probably already knows. Nonetheless, for completeness, the
outstanding significance of the theorem in this work and in general and, because major
parts of the proof have been elaborated in the preceding section anyway, we will still present
it.

2.1 Group Actions on Manifolds

2.1.1 Topological Groups

A topological group G is a group endowed with a topology such that both m : G×G→
G , (g1, g2) 7→ g1g2 and i : G→ G , g 7→ g−1 are continuous. If in addition G is a topological
manifold and carries a smooth structure such that above maps are even smooth, it is called
a Lie group. We will often denote the neutral element in a topological group by e.

Let us first prove some basic results on topological groups.

Lemma 2.1.1 (see [Dik11]). Let G be a topological group and V ⊆ G be a neighborhood of
e ∈ G. Then there exists an open neighborhood U of e in G with:

(i) U ⊆ U · U ⊆ V and
(ii) U−1 ⊆ V

3



Chapter 2 2.1. GROUP ACTIONS ON MANIFOLDS

Proof. We first show that for any given open neighborhood V of e in G there exist U1 and
U2, open neighborhoods of e respectively, with U1 ⊆ U1 · U1 ⊆ V and U−1

2 ⊆ V .
This is indeed the case: The preimage m−1(V ) is open in G×G and since the products of
open sets form a base of the product topology of G × G, we can choose open sets Ũ1, Ũ2

satisfying (e, e) ∈ Ũ1×Ũ2 ⊆ m−1(V ). Now define U1 := Ũ1∩Ũ2. Clearly U1 is open and, since
it contains e, U1 ⊆ U1 ·U1 also holds. Furthermore, U1 ·U1 = m(U1×U1) ⊆ m(Ũ1×Ũ2) ⊆ V .
Let U2 be i−1(V ). This proves our first statement.
Now let V be an arbitrary neighborhood of e. By considering the interior of V , me may
assume that V is open. Choose an open set U1 fulfilling e ∈ U1 ⊆ U1 · U1 ⊆ V . Now let U2

be an open neighborhood of e with U−1
2 ⊆ U1. Define U to be U1 ∩ U2. Then U is an open

neighborhood of e and satisfies (i) and (ii).

Corollary 2.1.2. For every neighborhood V ⊂ G of e ∈ G in a topological group G there
exists an open neighborhood U of e with UU ∪ UU−1 ⊆ V . In particular, U ⊆ V and
U−1 ⊆ V .

Proof. By the preceding lemma we can choose an open e ∈ V ′ ⊆ G with V ′V ′ ⊆ V and
V ′−1 ⊆ V . Again, using the same lemma, there exists an open neighborhood U of e with
UU ⊆ V ′ ∩ V ′−1 , U−1 ⊆ V ′ ∩ V ′−1. Then clearly UU ∪ UU−1 ⊆ V holds.

Lemma 2.1.3. For an open subset U in a topological group G and any subset V ⊂ G the
sets V U and UV are open.

Proof. For each v ∈ V the set vU (respectively Uv) is open because it is the image of the
open set U under the homeomorphism G→ G , g 7→ vg (respectively g 7→ gv). Thus,

V U =
⋃
v∈V

vU and
⋃
v∈V

Uv

are open in G.

Lemma 2.1.4 (see [Dik11]). Let G be a topological group and K ⊆ G a compact subset.

(a) If C ⊆ G is a closed subset, then CK and KC are both closed.

(b) If C ⊆ G is compact in G, then CK and KC are both compact.

(c) If V is an open neighborhood of K (i.e. V open and K ⊆ V ), then there exists an
open neighborhood U of e satisfying UK ⊆ V .

Proof.
(a) We only show that CK is closed, the other case works analogously. For that, it

suffices to prove that, if (xα)α∈A is a net contained in CK and x ∈ CK is a limit point of
(xα)α∈A , then x ∈ CK. For every α ∈ A choose cα ∈ C and kα ∈ K such that xα = cαkα.
Since K is compact, there exists a convergent subnet (kαβ )β∈B with a limit point k ∈ K.
Hence, (xαβ , kαβ ) → (x, k) in G × G (It is trivial that, if X is an arbitrary topological
space, Y ⊆ X is equipped with the subspace topology, (yi)i∈I is a net in X, contained in
Y , and y ∈ Y , then yi → y in X iff yi → y in Y . Thus, kαβ → k in K implies kαβ → k
in G. Then use the fact that convergence in a product space is equivalent to pointwise
convergence.) and, since m and i are continuous, also cαβ = xαβk

−1
αβ
→ xk−1 in G. Since C

is closed and (cαβ )β∈B = (xαβk
−1
αβ

)β∈B is a net in C, it follows that xk−1 ∈ C and therefore

x = (xk−1) k ∈ CK.
(b) Products of compact sets are compact, so C ×K is compact. Since m is continuous,

CK = m(C × K) is compact. Observe, that this argument holds because the product
topology and the subspace topology on C ×K coincide, which is a general topological fact.

(c) V C = G \V is disjoint with K, therefore e /∈ V CK−1. Since i(K) = K−1 is compact
and V C is closed, V CK−1 is closed by (a). Set U := (V CK−1)C . Then U is an open
neighborhood of e. Now assume UK 6⊆ V . Then there exists x = uk ∈ UK ∩ V C , u ∈
U , k ∈ K. Thus, u = xk−1 ∈ V CK−1 ∩ U , which is a contradiction.
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Chapter 2 2.1. GROUP ACTIONS ON MANIFOLDS

2.1.2 Group Actions

Let G be a topological group, operating on a topological space X via the (algebraic) group
action θ : G × X −→ X. If θ is continuous, then we call θ a continuous action and X
a G-space. If additionally G is a Lie group, X a smooth manifold (from now on the term
‘manifold’ without further qualification means a smooth manifold) and θ is a smooth map,
then θ is a smooth action and X is a smooth G-space. To keep the notation brief, we
use the convention that, whenever we speak of an action and the corresponding group G
is a topological one, respectively a Lie group, and the space on which the group acts is a
topological space, respectively a manifold, it is a continuous action, respectively a smooth
action. Furthermore, if the action is apparent from the context, then we will often abbrevi-
ate: g · x := θ(g, x) , g ∈ G, x ∈ X.

Let θ : G×X −→ X be a continuous action of G on X. For any g ∈ G we denote by

θg : X −→ X , x 7→ θ(g, x)

the action of g on X. Then we have the natural embedding{
continuous

G-actions on X

}
↪−→

{
group homomorphisms

G→ Homeo(X)

}

θ 7−→
{
G→ Homeo(X)
g 7→ θg

(respectively even ‘Diffeo(X)’ in the smooth case).
For x ∈ X let

θ(x) : G −→ X , g 7→ θ(g, x)

and the orbit of x will be denoted by

G · x :=
{
θ(g, x)

∣∣ g ∈ G} = θ(x)(G) .

Finally, the notation for the stabilizer , respectively the isotropy group , of x is

Gx :=
{
g ∈ G

∣∣ θ(g, x) = x
}

=
(
θ(x)

)−1
(x). (2.1)

Clearly, θg and θ(x) are both continuous (respectively smooth if θ is a smooth action). There-
fore, if X is a T1-space, then {x} is closed in X and, thus, by equation (2.1) the stabilizer of
x is closed in G. It follows that, if X is a smooth G-space, then Gx is a closed subgroup of
G and, by the closed subgroup theorem ([Lee13, Corollary 20.13]), Gx is a Lie supgroup of
G (‘submanifold’ and ‘Lie subgroup’ mean that these structures are endowed with a smooth
structure such that the inclusion map is an embedding, i.e. a smooth immersion that is also
a topological embedding; note, that these definitions are not compatible with [Lee13, Corol-
lary 20.13] where ‘submanifold’ respectively ‘Lie subgroup’ without any further qualification
denote what we will refer to as ‘immersed submanifold’ respectively ‘immersed Lie group’,
i.e. a subspace endowed with a topology and smooth structure such that the inclusion map
is a smooth immersion).

Let
X/G :=

{
G · x

∣∣ x ∈ X}
be the orbit space of the action. It is the quotient set of X by the equivalence relation ∼,
where x ∼ y :⇔ x ∈ G ·y. We equip X/G with the quotient topology, given by the canonical
projection ΠX : X → X/G.

Lemma 2.1.5. Let θ be a continuous action of G on X. Then the quotient map ΠX : X →
X/G is an open map.
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Chapter 2 2.1. GROUP ACTIONS ON MANIFOLDS

Proof. Let U be an arbitrary open subset of X. Then

Π−1
X (ΠX(U)) = G · U =

{
g · x | g ∈ G, x ∈ U

}
=
⋃
g∈G

g · U

and g · U = θg(U). Since θg is a homeomorphism for any g ∈ G, every set g · U is open and
therefore so is its union Π−1

X (ΠX(U)). Thus, by definition of the quotient topology, ΠX(U)
is open in X/G.

If X is a smooth G-space, the natural question arises, whether the orbit space carries a
canonical smooth structure such that the projection ΠX is smooth. However, in the general
case X/G does not even have to be Hausdorff and is therefore definitely not a topological
manifold in these cases.

Example 2.1.6 (see [Lee13, Example 21.2 (d)]).
Let G := GL(n,R) act on X := Rn via (A, x) 7→ Ax. The orbit through 0 ∈ Rn is
{0}. Let x, y 6= 0 be arbitrary. Then there are ordered bases B = (x, b2, . . . , bn) and
C = (y, c2, . . . , cn), containing x respectively y and a linear isomorphism mapping B onto C.
The transformation matrix A of this isomorphism is regular and Ax = y. Hence, y ∈ G · x.
In summary, we have shown that X/G = { {0} , Rn\{0} } and thus the quotient topology
is given by τX/G = { ∅ , X/G , {Rn\{0}} }. The only open neighborhood of {0} in X/G is
X/G and therefore X/G is not Hausdorff.

Due to this complication we would like to introduce a concept, such that we get at least a
sufficient condition for the Hausdorff property of the orbit space.
Recall that a map F : X → Y between two topological spaces is said to be proper if the
preimage of any compact subset K ⊆ Y is compact in X.

Definition 2.1.7. Let G be a Hausdorff topological group acting on the Hausdorff space
X via the continuous action θ. Then θ is called a proper action if the map G × X →
X ×X , (g, x) 7→ (g · x, x) = (θ(g, x), x) is proper.

Proposition 2.1.8. Let θ : G×X → X be a continuous action and G and X be Hausdorff.
If θ is a proper map, then it is a proper action.

Proof. Since products of Hausdorff spaces are itself Hausdorff, G×X and X ×X are Haus-
dorff. Let K ⊆ X ×X be an arbitrary compact subset. Then it is closed in X ×X (because
compact subsets in Hausdorff spaces are closed). By the universal property of product
spaces, the map Θ : G×X → X×X , (g, x) 7→ (g ·x, x) is continuous and therefore Θ−1(K)
is closed in G × X. Clearly, Θ−1(K) ⊆ θ−1(pr1(K)), where pr1 : X × X → X is the pro-
jection onto the first factor. Since continuous images of compact sets are compact and by
assumption θ is proper as map, θ−1(pr1(K)) is compact. Closed subsets of compact spaces
are compact, so Θ−1(K) is compact.

Proposition 2.1.9. Suppose the Lie group G acts continuously on the manifold M via
θ : G×M →M . If θ is a proper action, then the orbit space M/G is Hausdorff.

Proof. Again, let Θ denote the proper map (g, p) 7→ (g · p, p) , g ∈ G , p ∈ M , and ΠM the
orbit map. We define the relation R ⊆M ×M by

R = Θ(G×M) .

Then (p, q) ∈ R ⇔ ΠM (p) = ΠM (q) , for all (p, q) ∈ M ×M . Θ is closed as a proper map
between G×M and the topological manifold M ×M (cf. Lemma A.1.2). Hence, R is closed
in M ×M . The proposition follows from A.1.1 (note that ΠM is an open quotient map by
Lemma 2.1.5).

Proposition 2.1.10. Let θ be a continuous action of a Lie group G on the manifold M .
Then the following are equivalent:
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Chapter 2 2.1. GROUP ACTIONS ON MANIFOLDS

(i) θ is a proper action.
(ii) For all nets (gi)i∈I in G and (pi)i∈I in M the following holds:

(pi)i∈I and (gi · pi)i∈I both converge
=⇒ a subnet of (gi)i∈I converges

(iii) For all sequences (gn)n∈N in G and (pn)n∈N in M the following holds:
(pn)n∈N and (gn · pn)n∈N both converge
=⇒ a subsequence of (gn)n∈N converges

(iv) For every compact subset K ⊆M the set
GK := ((K,K)) := {g ∈ G | (g ·K) ∩K 6= ∅} is compact.

Proof. As before, put Θ : G ×M → M ×M , (g, p) 7→ (g · p, p), so that (i) is equivalent to
Θ being a proper map. We will show (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).

(i)⇒ (ii): Suppose pi → p and gi ·pi → q in M . Choose compact neighborhoods Kp , Kq

of p respectively q. Then there is some i0 ∈ I such that pi ∈ Kp , gi · pi ∈ Kq ∀ i � i0
(where � denotes the relation belonging to the directed set I). Define J := {i ∈ I | i � i0},
then (pi)i∈J and (gi · pi)i∈J are subnets that lie in Kp , Kq respectively. Hence, (gi, pi) ∈
Θ−1(Kq × Kp) for i ∈ J . By assumption Θ−1(Kq × Kp) is compact, thus there exists a
subnet ((giα , piα))α∈A of ((gi, pi))i∈J , which converges in G×M . In particular (giα)α∈A is
a convergent subnet of (gi)i∈I .

(ii) ⇒ (iii): If a sequence, contained in a manifold, has a convergent subnet, then it
also has a convergent subsequence (cf. Lemma A.1.3).

(iii) ⇒ (iv): Any subset of a manifold is second countable Hausdorff, so compactness
and sequential compactness are equivalent for such a subset. Therefore, it suffices to show
that each sequence (gn)n∈N in GK has a convergent subsequence with limit in GK : By
definition of GK , we can choose a sequence (pn)n∈N with pn ∈ (gn ·K) ∩K, thus pn ∈ K
and g−1

n ·pn ∈ K. Since K is compact, we can assume that (pn) and (g−1
n ·pn) converge in K

(first take a convergent subsequence of (pn), say (pnk), then take a converging subsequence
of (g−1

nk
· pnk), say (g−1

nkm
· pnkm ); then we find a convergent subsequence of (gnkm ), which

is also a convergent subsequence of (gn)). By (iii) we can choose a convergent subsequence
(g−1
nk

). Thus, (gnk) is the requested subsequence. Let gnk → g , pnk → p ∈ K. Then
g−1
nk
· pnk → g−1 · p ∈ K and hence g ∈ GK .
(iv)⇒ (i): Let L ⊆M×M be an arbitrary compact subset. Let pr1 , pr2 : M×M →M

denote the natural projections on the first respectively second factor. Then K := pr1(L) ∪
pr2(L) is compact as a finite union of compact sets. Clearly, L ⊆ K ×K holds. If (g, p) ∈
Θ−1(K ×K) , then g · p ∈ (g ·K) ∩K 6= ∅, so (g, p) ∈ GK ×K. Hence,

Θ−1(L) ⊆ Θ−1(K ×K) ⊆ GK ×K.

By (iv), GK × K is compact and therefore Θ−1(L) is compact as closed set (it is the
continuous preimage of the compact, and thus closed, set L) in a compact one.

Corollary 2.1.11. Suppose θ is a continuous action of a compact Lie group G on the
manifold M . Then θ is a proper action.

Proof. Since G is compact, every sequence in G has a convergent subsequence, so condition
(iii) in Proposition 2.1.10 holds.
(Alternatively, this statement follows directly from Lemma A.1.4 with Proposition 2.1.10
(iv).)

Proposition 2.1.12. Let θ : G×M →M be a smooth and proper action of a Lie group G
on the manifold M and p ∈M be an arbitrary point. Then the following hold:

(a) The orbit map θ(p) : G→M is a proper map.

(b) The orbit G · p is closed in M .

(c) The isotropy group Gp is compact.

7



Chapter 2 2.1. GROUP ACTIONS ON MANIFOLDS

(d) If Gp = {e}, then θ(p) is a smooth embedding and G · p is a submanifold with proper
inclusion map ι : G·p ↪→M (i.e. the orbit is a properly/closed embedded submanifold).

Proof.
(a) Let K ⊆M be an arbitrary compact subset. K is closed in M , thus (θ(p))−1(K) is

closed in G. If g ·p ∈ K, then g ·p ∈ (g ·(K∪{p}))∩(K∪{p}) 6= ∅, so (θ(p))−1(K) ⊆ GK∪{p}.
By Proposition 2.1.10 (iv), GK∪{p} is compact, hence (θ(p))−1(K) is compact too.

(b) Follows directly from (a) and Lemma A.1.2.
(c) Set K := {p}. Then the isotropy group Gp coincides with GK = ((K,K)), which is

compact by Proposition 2.1.10 (iv).
(d) If θ(p)(g1) = θ(p)(g2), then g−1

2 g1 · p = p and thus g−1
2 g1 ∈ Gp = {e}. Hence, g1 = g2

and so θ(p) is injective. Consider the transitive G-action on G through left multiplication.
Clearly, θ(p) is G-equivariant with this action. By the Equivariant Rank Theorem (cf.
Lemma A.1.5 for the theorem and the definition of ‘equivariance’), θ(p) has constant rank.
Since it is also injective, it is an immersion by the Global Rank Theorem (cf. [Lee13,
Theorem 4.14]). By Lemma A.1.2, it is closed, so in total it is indeed a smooth embedding.
Therefore, G · p = θ(p)(G) is an (embedded) submanifold of M . For any compact subset
K ⊆ M we have ι−1(K) = K ∩ (G · p) = θ(p)((θ(p))−1(K)) and, because θ(p) is proper, it
follows that ι−1(K) is compact.

Even if the action is neither proper nor free, there is a natural smooth structure on the
orbit through p. This case will be covered by the next proposition. However, the argument
strongly depends on the Quotient Manifold Theorem 2.4.4, although the required version
is slightly weaker than the one we will prove later in this chapter. For a more detailed
explanation we refer to the preface of Section 2.4 and the appendix A.1.
In addition, we need the well-known fact that a subgroup H of a Lie group G is a Lie
subgroup (i.e. a subgroup, endowed with a Lie group structure, such that the inclusion map
is an embedding) if and only if it is closed in G. Therefore, using the Quotient Manifold
Theorem for the right action of H on G, if H is closed in G, there is a unique smooth
structure on the quotient group G/H for which the canonical projection Π : G→ G/H is a
smooth submersion.
With the natural transitive G-action on G/H, given by

g1 · (g2H) := (g1g2)H , g1, g2 ∈ G , (2.2)

G/H becomes a smooth G-space.
In particular, since the stabilizer Gp of p ∈M is a closed subgroup in G, the quotient group
G/Gp is a homogeneous G-space (i.e. the action, operating on the manifold, is smooth and
transitive) in a natural way.

Proposition 2.1.13. Given a smooth action θ of the Lie group G on the manifold M and
a point p in M . Then there is a unique topological respectively smooth structure on the
orbit G · p through p, such that G · p is homeomorphic respectively diffeomorphic to G/Gp
via the canonical bijection (see equation (2.3)). With these structures G · p is an immersed
submanifold of M . If in addition θ is a proper action, then G · p is a (properly embedded)
submanifold of M .

Proof. We have the canonical bijection

F : G/Gp−̃→G · p
g Gp 7−→ g · p

(2.3)

Clearly, there is a unique topology respectively unique smooth structure on G · p, such that
F becomes a homeomorphism respectively a diffeomorphism (simply the quotient topology
induced by F and, if A := {(Ui, ϕi)}i∈I is a smooth atlas of G/Gp, the smooth structure
on G · p is induced by the atlas {(F (Ui), ϕ ◦ F−1)}i∈I ). To show that G · p is an immersed
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Chapter 2 2.2. THIN AND SMALL SETS

submanifold of M , it suffices to prove that the map G/Gp ↪→M , g Gp 7→ g · p is a smooth
immersion. By the universal property of submersions this map is smooth if and only if
the map G → M , g 7→ g · p is smooth, which is obviously the case. By the Equivariant
Rank Theorem A.1.5 the map G/Gp ↪→M has constant rank and, since it is injective, is an
immersion by the Global Rank Theorem.
Now suppose that θ is a proper action. The map θ(p)|G·p : G→ G ·p , g 7→ g ·p is continuous
(with respect to the topology of the manifold G · p) if and only if the map G→ G/Gp , g 7→
g Gp is continuous, which indeed is true. We have the following commutative diagram of
continuous functions:

G M

G · p

θ(p)

θ(p)|G·p ι

where ι : G · p ↪→ M is the inclusion map. For any compact set K ⊆ M we have ι−1(K) =
θ(p)|G·p((θ(p))−1(K)), which is compact because θ(p) is a proper map by Proposition 2.1.12.
Thus, the inclusion map is proper and by A.1.2 also closed, hence a proper embedding.

Remark 2.1.14. Consider the situation of Proposition 2.1.13 with θ a proper action and
Gp = {e}. Then the smooth structures on G · p of Propositions 2.1.12 and 2.1.13 coincide
since for every submanifold S ⊆ M there is exactly one topological and smooth structure
on S such that S endowed with these structures is a submanifold of M .

2.2 Thin and Small Sets

A topological space X is called locally compact if every point x ∈ X has a compact neigh-
borhood. Recall that if X is Hausdorff, X is locally compact if and only if for every point
x ∈ X and every neighborhood U of x there exists a compact neighborhood K ⊆ U of x.
We call a topological group G a locally compact group if it is a locally compact Hausdorff
space. Note that every Lie group is a locally compact group.

For the rest of the section let G denote a locally compact group, acting continuously on the
completely regular Hausdorff space (this is also called a Tychonoff space)X. Admittedly, this
might seem like a needless generalization, since we only tend to use the results of this section
in the restricted case of a Lie group acting on a smooth manifold. However, by premising
weaker conditions, the applied techniques of the following proofs will be straightforward
and, more importantly, compatible with the proofs in [Pal61].

Definition 2.2.1. Let the locally compact group G act continuously on the completely
regular Hausdorff space X.

(a) For every pair of subsets Y, Z ⊆ X we define:

((Y,Z)) :=
{
g ∈ G | (g · Y ) ∩ Z 6= ∅

}
(b) Y ⊆ X is thin relative to Z ⊆ X if ((Y,Z)) is precompact in G (i.e. ((Y,Z)) is

compact in G).

(c) Y ⊆ X is thin if Y is thin relative to Y .

(d) X is a Cartan G-space if every point of X has a thin neighborhood.

Lemma 2.2.2. Suppose the locally compact group G acts continuously on the completely
regular Hausdorff space X.

9



Chapter 2 2.2. THIN AND SMALL SETS

(a) For any two subsets Y, Z ⊆ X:

Y thin relative to Z ⇐⇒ Z thin relative to Y

Therefore, we will often just say that Y and Z are relatively thin.

(b) If Y is thin relative to Z, then g1 · Y is thin relative to g2 · Z for all g1, g2 ∈ G.

(c) All subsets Y ′ ⊆ Y and Z ′ ⊆ Z of relatively thin sets Y, Z are relatively thin. Hence,
a subset of a thin set is thin itself.

(d) If Yi is thin relative to Zi , i = 1, . . . n, then
⋃
i Yi is thin relative to

⋂
i Zi .

(e) For compact, relatively thin sets K1,K2, the set ((K1,K2)) is compact.

(f) If G is compact, then any two subsets of X are thin relative to each other. In particular,
every subset is thin.

Proof.

(a) Follows directly from ((Y, Z)) = ((Z, Y ))−1. Due to symmetry, it suffices to show ‘⊆’.
Suppose (g · Y ) ∩ Z 6= ∅, say g · y ∈ Z , y ∈ Y . Then y ∈ (g−1 · Z) ∩ Y 6= ∅ and thus
g−1 ∈ ((Z, Y )).

(b) (gg1 · Y ) ∩ (g2 · Z) = g2 · [ (g−1
2 gg1) · Y ∩ Z ]. Hence,

g ∈ ((g1 · Y , g2 · Z)) ⇐⇒ g−1
2 gg1 ∈ ((Y,Z)) ⇐⇒ g ∈ g2 · ((Y,Z)) · g−1

1 .

We conclude ((g1 · Y, g2 · Z)) = g2 · ((Y, Z)) · g−1
1 , which has compact closure because

g 7→ g2gg
−1
1 is a homeomorphism.

(c)
((Y ′, Z ′)) ⊆ ((Y, Z)) ⊆ ((Y,Z)) =⇒ ((Y ′, Z ′)) ⊆ ((Y, Z)) ,

and closed subsets of compact sets are compact, so ((Y ′, Z ′)) is compact.

(d) If (g ·
⋃
i Yi) ∩

⋂
i Zi 6= ∅, then clearly (g · Yi) ∩ Zi 6= ∅ for some i = 1, . . . , n .

Therefore ((
⋃
i Yi ,

⋂
i Zi)) ⊆

⋃
i((Yi, Zi)). Because

⋃
i ((Yi, Zi)) is compact as finite

union of compact sets, the closure of ((
⋃
i Yi ,

⋂
i Zi)) is compact.

(e) Follows directly from Lemma A.1.4.

(f) Trivial.

Lemma 2.2.3. In a Cartan G-space X every orbit is closed. Thus, X/G is a T1-space. In
addition, the isotropy group of x ∈ X is compact.

Proof. Let x ∈ X be arbitrary. Choose a thin neighborhood V of x. Then we have Gx ⊆
((V, V )) and, since Gx is closed and ((V, V )) is precompact, Gx is compact. Now suppose an
arbitrarily given net gi · x in G · x converges to y ∈ X. Choose a thin neighborhood U of y.
There exists some i0 with gi ·x ∈ U for i � i0. Since U 3 gi ·x = (gig

−1
i0

)·(gi0 ·x) ∈ (gig
−1
i0

)·U ,

we can conclude gig
−1
i0
∈ ((U,U)). Because U is thin, we can choose a converging subnet

(gijg
−1
i0

)j with limit, say, gg−1
i0

. Thus gij → g and gij ·x→ g ·x and, since limits in Hausdorff
spaces are unique, it follows that y = g · x ∈ G · x. So, every orbit is closed in X.
In particular, every singleton {G · x} ⊆ X/G is closed in X/G because Π−1

X ({G · x}) = G · x
is closed in X. This however is equivalent to X/G being a T1-space.

Lemma 2.2.4. Let X be a Cartan G-space, x ∈ X and the orbit through x endowed with
the subspace topology. Then the map G→ G · x , g 7→ g · x is an open continuous map.

10
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Proof. Clearly, above map is continuous as a restriction. We will show that, given any open
subset W containing e, the set W · x is a neighborhood of x in G · x.
Now let U be an arbitrary open subset in G. If for every g ∈ U the set U ·x is a neighborhood
of g ·x with respect to the subspace topology on G·x, then U ·x is open in G·x. For g ∈ U let
W := g−1U . Clearly, W is an open neighborhood of e and thus W ·x is a neighborhood of x.
As restrictions, the maps θg|G·xG·x and θg−1 |G·xG·x are continuous and therefore θg|G·xG·x : G·x→ G·x
is a homeomorphism. So, θg|G·xG·x(W · x) = g · (W · x) = (gW ) · x = U · x is a neighborhood
of g · x in G · x.
It remains to show that for any open neighborhood W of e the set W ·x is a neighborhood of
x. Assume, W ·x is no neighborhood of x. Then there exists a net (gi ·x)i∈I with gi ·x /∈W ·x
but gi · x→ x (e.g. let I be the collection of all open neighborhoods of x in G · x; this is a
directed set with the inclusion relation).

Thus gi /∈WGx ∀ i ∈ I. (∗)

Choose a thin neighborhood V of x. Then gi ∈ ((V, V )) ⊆ ((V, V )) for i large enough,
so there exists some subnet (gij ) that converges in G, say gij → g ∈ G. Thus g · x =
limj(gij · x) = x and therefore g ∈ Gx. Since W is open and contains e, the set WGx is an
open neighborhood of g ∈ Gx ⊆ WGx . Hence, gij0 ∈ WGx for some j0, which contradicts
(∗).

Proposition 2.2.5. Let X be a Cartan G-space and x ∈ X. Then the natural bijection

F : G/Gx → G · x , gGx 7→ g · x ,

(cf. equation (2.3)) is a homeomorphism if we endow G · x with the subspace topology.

Proof. The map θ(x)|G·x : G→ G · x , g 7→ g · x is continuous. By the universal property of
the quotient topology, the natural bijection F is continuous. Clearly,

θ(x)|G·x = F ◦ΠG/Gx ,

where ΠG/Gx : G � G/Gx is the natural projection. If U ⊆ G/Gx is open, the preimage

Π−1
G/Gx

(U) is open and therefore F (U) = θ(x)|G·x(Π−1
G/Gx

(U)) is open by Lemma 2.2.4. Hence,

F is a bijective, open, continuous map, so F is a homeomorphism.

Lemma 2.2.6. Let X be a Cartan G-space and x ∈ X. Then for every neighborhood U of
Gx in G there is an open neighborhood V of x in X satisfying Gx ⊆ ((V, V )) ⊆ U .

Proof. By Lemma 2.2.3 the isotropy group Gx is compact and clearly {e} · Gx = Gx ⊆
Int(U). By Lemma A.1.10 we can choose an open neighborhood Ũ of e in G with U ′ :=
ŨGx ⊆ Int(U) ⊆ U . The set U ′ is an open neighborhood of Gx by Lemma 2.1.3 and
by definition a union of left Gx cosets. Π−1

G/Gx
(ΠG/Gx(G\U ′)) = G\U ′ because G\U ′ is a

union of left Gx cosets. Hence ΠG/Gx(G\U ′) is closed in G/Gx and by Proposition 2.2.5
F ◦ΠG/Gx(G\U ′) = (G\U ′) · x is closed in G · x. Since G · x is closed in X by Lemma 2.2.3,
(G\U ′) · x is closed in X. Since Gx ⊆ U ′, we have x /∈ (G\U ′) · x.

We claim that there exists a closed, thin neighborhood W of x, disjoint with (G\U ′) · x:
By assumption, X is a completely regular space, in particular, it is a regular space. So, for
every closed subset A in X and every y /∈ A, there exists a closed neighborhood B of y,
disjoint with A.
Since (G\U ′) · x is a closed set in X, not containing x, there exists a closed neighborhood
W1 of x such that W1 ∩ (G\U ′) · x = ∅.

Now choose an open neighborhood W̃ of x, which is thin. Then there exists a closed neigh-
borhood W2 ⊆ W̃ of x because X is regular.
Define W := W1 ∩W2. Clearly, W is a closed neighborhood of x, disjoint with (G\U ′) · x.

11



Chapter 2 2.3. SLICES

Since W is contained in W̃ , it follows that W is thin (by Lemma 2.2.2 (c)).

We put
K := G\U ′ ∩ ((W,W )) ⊆ G .

The set K is closed and contained in ((W,W )), so it is compact and, since U ′ is open, K
is contained in G\U ′. If k ∈ K then k · x ∈ (G\U ′) · x ⊆ X\W . Since W is closed, for
every k ∈ K we can choose open neighborhoods Lk ⊆ G of k and Vk ⊆ X of x such that
k · x ∈ Lk · Vk ⊆ X\W . Since K is compact, we can choose Lk1 , . . . , Lkn , covering K. Set
V := (

⋂n
i=1 Vki)∩Int(W ) ⊆W . Clearly, V is an open neighborhood of x, thus Gx ⊆ ((V, V )).

Let us prove ((V, V )) ⊆ U ′ by contradiction:
Assume, there is some g ∈ ((V, V ))∩(G\U ′). Then g ·V ∩ V 6= ∅, so a fortiori g ·W ∩W 6= ∅
and thus g ∈ ((W,W )) ∩ (G\U ′) ⊆ K. So, there is some i ∈ {1, . . . , n} with g ∈ Lki , hence

g · V ⊆ Lki · V ⊆ Lki · Vki ⊆ X\W ⊆ X\V ,

which contradicts g · V ∩ V 6= ∅.

The lemma follows because U ′ ⊆ U .

Corollary 2.2.7. Let θ be a proper, continuous action of the Lie group G on the manifold
M . Then M is a Cartan G-space.

Proof. Let p ∈M be arbitrary. Since M is a manifold, we can choose a compact neighbor-
hood K of p. By Proposition 2.1.10 (iv) the set ((K,K)) is compact and closed (since G is
Hausdorff) in G. So, K is a thin neighborhood of p.

2.3 Slices

In this chapter G will be a Lie group, acting smoothly on the manifold M via the group
action θ : G×M →M . When nothing else stated, let H be a closed subgroup of G. Thus,
H is a Lie subgroup of G and G/H carries a canonical smooth structure such that it is a
homogeneous G-space.

Definition 2.3.1. A subset ∅ 6= S ⊆ M is an H-kernel if there is a continuous G-
equivariant map f : G · S → G/H with f−1({H}) = S. If additionally G · S is open in M ,
S is called an H-slice. For p ∈M , we call S a slice at p if p lies in S and S is a Gp-slice.

We also write f−1(H) instead of f−1({H}).
First, let us show that, if such a function f exists, then it is unique.

Lemma 2.3.2. For an H-kernel S there exists a unique equivariant map f : G · S → G/H
with f−1(H) = S.

Proof. Let f1, f2 : G · S → G/H be G-equivariant with f−1
1 (H) = S = f−1

2 (H). For an
arbirary p ∈ G · S we can choose g ∈ G , s ∈ S with p = g · s. Then:

f1(p) = f1(g · s)
= g · f1(s) (f1 is G-equivariant)

= g ·H (s ∈ f−1
1 (H))

= gH (equation (2.2))

= f2(p) (analogously for f2)

12
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For an H-kernel S we will denote the corresponding unique map by fS : G ·S → G/H. The
calculation in the proof above shows

fS(g · s) = gH ∀ g ∈ G , s ∈ S (2.4)

Remark 2.3.3. Let S be an H-kernel in M . Then, by equation (2.4), fS(h · s) = hH = H
for any h ∈ H , s ∈ S, so S is H-invariant and therefore an H-space. If in addition S is a
submanifold of M , then we have the following commutative diagram

H × S G×M M

S

ιH×ιS

θ|SH×S

θ

ιS

where ιH : H ↪→ G and ιS : S ↪→M denote the inclusion maps of H respectively S. Clearly,
θ ◦ (ιH × ιS) is smooth and, since ιS is an embedding, θ|SH×S is smooth too. Hence, S is a
smooth H-space.

Remark 2.3.4. Suppose S is an H-kernel in M and consider S as an H-space. For s ∈ S,
obviously, Hs = Gs ∩H ⊆ Gs holds. If g ∈ Gs, then

gH
eqn. (2.4)
======= fS(g · s) = fS(s) = H.

Thus g ∈ H and therefore g ∈ Gs ∩H = Hs.
In total, we have shown that Gs = Hs for every s ∈ S.

Before we formulate the next important result, let us prove the following lemma, which will
be relevant in the proof of (d) in Theorem 2.3.6.

Lemma 2.3.5. Let G be a locally compact group with compact subgroup H. Then there
exist open sets U, V ⊆ G with H ⊆ U ⊆ UU ∪ UU−1 ⊆ V and V precompact.

Proof. Since G is locally compact and H is compact, we can cover H with finitely many
open, precompact sets. Then their union V is an open, precompact neighborhood of H. Let
m : G×G→ G denote the multiplication map. Since H×H ⊆ m−1(H) ⊆ m−1(V ) , Lemma
A.1.7 gives us open sets W1,W2 with H ×H ⊆W1 ×W2 ⊆ m−1(V ) . Let W := W1 ∩ W2 ,
then H ×H ⊆W ×W ⊆ m−1(V ). Now put U := W ∩ W−1 .

Theorem 2.3.6. Let M be a smooth G-space and H a closed subgroup of G.
If S is an H-kernel in M , then:

(a) S is closed in G · S.

(b) S is H-invariant and an H-space by restricting the action on M .

(c) ((S, S)) = H, in particular:
∀g ∈ G : (g · S) ∩ S 6= ∅ =⇒ g ∈ H

If in addition H is compact, then:

(d) S has a thin, open neighborhood in G · S.

Conversely, suppose (a) – (d) hold: Then S is an H-kernel and H is compact.

Proof. Suppose first, S is an H-kernel:

(a) S = (fS)−1(H) , fS is continuous and {H} is closed in G/H.
(b) see Remark 2.3.3.
(c) “⊇”: For h ∈ H we have (h · S) ∩ S = S ∩ S 6= ∅.

“⊆”: Suppose (g · S) ∩ S 6= ∅. Then there is s ∈ S with g · s ∈ S and
therefore gH = fS(g · s) = H and so g ∈ H.

13
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(d) As Lie group, G is a locally compact group. By Lemma 2.3.5 we can choose V
open, precompact and V ′ open in G such that H ⊆ V ′ ⊆ V ′V ′ ∪ V ′V ′−1 ⊆ V . By
assumption H is compact, so by Lemma 2.1.4 (c) there exists an open neighborhood U ′

of e with U := U ′H ⊆ V ′. By Lemma 2.1.3 and, because we have e ∈ U ′ ∩ H , U is an
open neighborhood of e in G. Thus, Ũ := ΠG/H(U) is an open neighborhood of H in G/H
(notice that G/H is the orbit space of the smooth H-action H ×G→ G , (h, g) 7→ gh−1 on
G, so ΠG/H is the projection map onto the H-orbit and thus open by Lemma 2.1.5). By

definition, U is a union of left H-cosets, so Π−1
G/H(Ũ) = U . Then W := (fS)−1(Ũ) is an open

neighborhood of S in G · S because fS is continuous. Furthermore, if (g ·W ) ∩ W 6= ∅,
then there is some w ∈W such that g · w ∈W . Choose a ĝ ∈ G with fS(w) = ĝH. Then

ΠG/H(ĝ) = ĝH = fS(w) ∈ Ũ

and similarly

ΠG/H(gĝ) = gĝH = g · ĝH = g · fS(w) = fS(g · w) ∈ Ũ .

Therefore, we get ĝ, gĝ ∈ Π−1
G/H(Ũ) = U ⊆ V ′ and thus g = (gĝ)ĝ−1 ∈ V ′V ′−1 ⊆ V . In

conclusion, we have shown that ((W,W )) ⊆ V and, since V is precompact, that W is thin.
This shows (d).

Now suppose, (a) – (d) hold:
By (c) and (d) we get H = ((S, S)) ⊆ ((W,W )) for some thin neighborhood W of S. Since
H is closed, we conclude that H is indeed compact.
Now we want to prove that S is an H-kernel. We define the following function:

f : G · S −→G/H

g · s 7−→ gH

This is indeed a well-defined map: Suppose g1 · s1 = g2 · s2. Then g−1
2 g1 · s1 = s2 ∈

(g−1
2 g1 · S) ∩ S, so g−1

2 g1 ∈ H by (c) and hence g1H = g2H.
Clearly, f is G-equivariant and S ⊆ f−1(H). On the other hand, if gH = H then g ∈ H
and by (b) g · s ∈ S, so S = f−1(H).
It remains to show the continuity of f :
Suppose the net (gi · si)i∈I ∈ G · S converges to g · s ∈ G · S. We have to show that
giH = f(gi · si) → f(g · s) = gH in G/H. Without loss of generality we may assume that
g = e (because we have both g−1gi · si → s and g−1giH → H =⇒ giH = g · (g−1giH) →
g · H = gH). We will show giH → H by contradiction: Assume giH 9 H. Thus, there
exists an open neighborhood U of H ∈ G/H such that for every i0 ∈ I there exists an i � i0
with giH /∈ U . With I ′ := {i ∈ I | giH /∈ U} we have constructed the subnet (gi)i∈I′ with
giH /∈ U ∀i ∈ I ′. The preimage U ′ of U under ΠG/H is an open neighborhood of H such
that gi /∈ U ′ for all i ∈ I ′.

A fortiori, no subnet of (gi)i∈I′ converges to a point in H. (∗)

Because of condition (d) we can choose a thin neighborhood V of S in GS. Since gi · si →
s ∈ S ⊆ V , we have gi · si ∈ V for i large enough and hence gi ∈ ((V, V )). Since V is thin,
we can choose a converging subnet (gij ) of (gi)i∈I′ with limit g ∈ G. Then

sij = g−1
ij
· (gij · sij )→ g−1 · s.

Because of assumption (a) we also know g−1 · s ∈ S, and by (c) therefore g−1 ∈ H. Since
H is a group, it follows that g ∈ H and therefore there exists a subnet of (gi)i∈I′ with limit
point in H. This contradicts (∗).

Definition 2.3.7. A local cross section in G/H is a smooth map χ : U → G, where
U ⊆ G/H is an open neighborhood of H ∈ G/H, such that χ(H) = e and χ(γ) ∈ γ ∀ γ ∈ U .
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Observe that local cross sections are smooth local sections of the natural projection. Since
every submersion admits a smooth local section through a fixed point, in particular the
projection G � G/H does so too. Thus, a local cross sections exists for an arbitrary Lie
group G with respect to any closed subgroup H ≤ G.

Definition 2.3.8. We shall say that a subset S∗ ⊆M of the smooth G-space M is a near
slice at p ∈M if p ∈ S∗, S∗ is Gp-invariant and there is a local cross section χ : U → G in
G/Gp with the property that (u, s) 7→ χ(u) · s is a homeomorphism of U × S∗ onto an open
neighborhood of p in M .

Lemma 2.3.9. If M is a Cartan G-space and S∗ is a near slice at p, then there exists
S ⊆ S∗ ⊆M which is a slice at p and open in S∗.

Proof. Choose a local cross section χ : U → G in G/Gp such that (u, s) 7→ χ(u) · s is a
homeomorphism of U × S∗ onto an open neighborhood of p. Let U ′ be the preimage of U
under ΠG/Gp . By Lemma 2.2.6 there is some open neighborhood V of p with ((V, V )) ⊆ U ′
(because ΠG/Gp(Gp) = {Gp} ⊆ U holds, U ′ is indeed an open neighborhood of Gp). Gp
is compact by Lemma 2.2.3, thus there exists an open neighborhood V ′ of p with V ′′ :=
Gp · V ′ ⊆ V (see Lemma A.1.10). Since we have

V ′′ =
⋃
g∈Gp

g · V ′,

V ′′ is an open neighborhood of p, that is Gp-invariant. Additionally ((V ′′, V ′′)) ⊆ ((V, V )) ⊆
U ′, so without loss of generality, instead of considering V ′′, we may just assume that V is
Gp -invariant.
Now, let S := S∗ ∩ V . Then S is open in S∗, contains p and is Gp-invariant (because S∗

and V are Gp-invariant). We also have the identity:

U ′ · S = {χ(u) · s | u ∈ U, s ∈ S} (2.5)

“⊇”: χ(u) ∈ u ⊆ U ′ = Π−1
G/Gp

(U) because χ is a local cross section in G/Gp .

“⊆”: Suppose u′ ∈ U ′ , s′ ∈ S. Let u := ΠG/Gp(u′) ∈ U . Since χ is a local cross section in
G/Gp, we have u′Gp = u = χ(u)Gp, so χ(u)−1u′ ∈ Gp and, because S is Gp-invariant,
it follows that s := χ(u)−1u′ · s′ is in S and hence u′ · s′ = χ(u) · s ∈ {χ(ũ) · s̃ | ũ ∈
U, s̃ ∈ S}.

Since S is open in S∗ and (u, s) 7→ χ(u)·s is a homeomorphism of U×S∗ onto an open neigh-
borhood of p, the set U ′ ·S is open in M by equation (2.5). Therefore, also G ·S = G ·(U ′ ·S)
is open in M .

So, to finish the proof we just have to show that S is a Gp-kernel:
Suppose that (g ·S)∩S 6= ∅. A fortiori, (g ·V )∩V 6= ∅ and therefore g ∈ ((V, V )) ⊆ U ′ and
gGp ∈ U . Choose s1 ∈ S , h ∈ Gp with s2 := g · s1 ∈ S and χ(gGp) = gh. By rearranging
the equations we get

χ(gGp) · (h−1 · s1) = χ(gGp)h
−1 · s1 = g · s1 = s2 = χ(Gp) · s2

and, because (u, s) 7→ χ(u) · s is a homeomorphism of U × S∗ onto its image and h−1 · s1 ∈
S ⊆ S∗ (since S is Gp-invariant), we obtain gGp = Gp and thus g ∈ Gp.
We conclude that ((S, S)) = Gp (the other inclusion is trivial). Therefore the map f :
G · S → G/Gp , g · s 7→ gGp is well-defined. As in Theorem 2.3.6 we easily see that f is
G-equivariant and f−1(Gp) = S and it remains to prove the continuity of f . Given any
converging net gi · si → g · s we have to show giGp → gGp. With the same argument as in
the preceding Theorem 2.3.6 we may assume g = e. Since V is a neighborhood of S, we may
additionally assume that gi · si ∈ V ∀i and therefore gi ∈ ((V, V )) ⊆ U ′ and giGp ∈ U . For
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each i choose hi ∈ Gp with gi = χ(giGp)hi and, since S is Gp-invariant, we have hi · si ∈ S.
Since χ(giGp) · (hi · si) = gi · si → s = χ(Gp) · s, using again that (ũ, s̃) 7→ χ(ũ) · s̃ is a
homeomorphism on U × S∗ onto its open image, we conclude that (giGp, hi · si)→ (Gp, s).
Therefore giGp → Gp holds, which we wanted to prove.

Recall from Proposition 2.1.13 that for every smooth group action on a manifold M the orbit
G · p through p is an immersed submanifold in a natural way. Dependent on the context,
when we write Tq(G · p) with q ∈ G · p, we often mean the image of this tangent space under
the inclusion map ι : G · p ↪→M , so dqι(Tq(G · p)).

Lemma 2.3.10. Let M be a smooth G-space, p ∈ M a point with compact isotropy group
Gp and N a Gp-invariant submanifold of M , containing p. Assume that N and G · p are
transverse at p, i.e. TpN ⊕ Tp(G · p) = TpM . Then there exists a local cross section
χ : U → G in G/Gp and a Gp-invariant open submanifold S∗ of N containing p, such that
(u, s) 7→ χ(u)·s is a diffeomorphism of U×S∗ onto an open neighborhood of p. In particular,
S∗ is a near slice at p.

Proof. Let χ∗ : U∗ → G be a local cross section in G/Gp. Define the function

F : U∗ ×N →M , (u, s) 7→ χ∗(u) · s.

By definition of a local cross section χ∗ is smooth, so F is smooth. We claim that the
differential of F at (Gp, p) ∈ U∗ × N is invertible. If we accept this for the moment,
by the inverse function theorem there exist open neighborhoods around (Gp, p) respec-
tively F (Gp, p) such that the restriction of F to these neighborhoods is a diffeomorphism.
Therefore, by taking even smaller open neighborhoos if necessary, there exist open subsets
Gp ∈ U ⊆ U∗, p ∈ N ′ ⊆ N, such that F |U×N ′ : U ×N ′ → F (U ×N ′) is a diffeomorphism.
Since the isotropy group Gp is compact, by Lemma A.1.10 we can choose an open neighbor-
hood N ′′ of p with S∗ := Gp ·N ′′ ⊆ N ′. Then S∗ is an open submanifold of N containing
p, which is invariant under Gp and the map (u, s) 7→ χ∗(u) · s is a diffeomorphism of U ×S∗
onto the open neighborhood F (U×S∗) of p. Then the Lemma follows by putting χ := χ∗|U .

It remains to show that d(Gp,p)F : T(Gp,p)(U
∗ ×N)→ TpM is invertible:

The dimension of the vector space T(Gp,p)(U
∗ ×N) ∼= TGpU

∗ ⊕ TpN is

dim(T(Gp,p)(U
∗ ×N)) = dim(U∗) + dim(N)

= dim(G/Gp) + (dim(M)− dim(G · p)) (2.6)

= dim(G/Gp) + (dim(M)− dim(G/Gp))

= dim(M)

= dim(TpM)

where we used the transversality of N and G · p in equation (2.6). Thus, it suffices to show
that the differential of F at (Gp, p) is surjective. Since F (Gp, s) = s ∀s ∈ N , we clearly
have TpN ⊆ d(Gp,p)F (T(Gp,p)({Gp} × N) ). The surjectivity of d(Gp,p)F follows from the
assumption TpN ⊕ Tp(G · p) = TpM togeter with the following statement:

Tp(G · p) ⊆ d(G·p,p)F (T(Gp,p)(U
∗ × {p}) ) (2.7)

To prove equation (2.7), let us assume that v = γ̇(0) ∈ Tp(G · p) is arbitrary, where γ :
Iγ → G · p is a smooth path with γ(0) = p. Let Φ : G/Gp → G · p denote the canonical
diffeomorphism, given by equation (2.3). By continuity, we can assume that (Φ−1 ◦γ)(Iγ) ⊆
U∗. Then the path

δ : Iγ → U∗ ×N , δ(t) := (Φ−1 ◦ γ(t), p)

is a smooth path in U∗ × {p}. For t ∈ Iγ choose gt ∈ G, such that γ(t) = gt · p. Since χ∗ is
a local cross section, for each t we can choose ĝt ∈ Gp with χ∗(gtGp) = gtĝt. Thus,
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F ◦ δ(t) = χ∗(Φ−1 ◦ γ(t)) · p

= χ∗(gtGp) · p = gtĝt · p

= gt · (ĝt · p) = gt · p

= γ(t)

and therefore we have F ◦ δ = γ. By differentiating v = d(Gp,p)F ( δ̇(0) ), which proves
equation (2.7).

Proposition 2.3.11. Let θ : G ×M → M be a smooth G-action on M and H ≤ G be
a compact subgroup. Then there exists an H-invariant Riemannian metric γ for M , i.e.
θ∗hγ = γ for all h ∈ H.

Proof. Recall that for any manifold there is a Riemannian metric and that any compact
topological group admits, up to a positive multiplicative constant, an unique nontrivial,
regular, bi-invariant Borel measure, the so called Haar measure. Choose a Riemannian
metric γ̃ on M . Let µ denote the unique Haar measure on H with

∫
H

dµ = 1 Define the
metric γ on M by

γp(v, w) :=

∫
H

((θg)
∗γ̃)p(v, w) dµ(g) p ∈M , v,w ∈ TpM, (2.8)

where ‘ (θg)
∗γ̃ ’ denotes the pullback of γ̃ with respect to θg. Since H is compact, the integral

above is indeed finite, so γ is well-defined. Clearly, γp is bilinear and symmetric. Since θg is
bijective for all g, we see that γp is also positive-definite. Thus, γp is an inner product for
all p ∈M .

Additionally, γ : M → T ∗M ⊗ T ∗M is smooth:
Given arbitrary vector fields X,Y ∈ X(M) := Γ(TM), we have to prove that M → R , p 7→
γp(Xp, Yp) is smooth. Let p0 ∈ M be arbitrary. Choose a chart (W,ϕ) around p0. Let
U ⊆W be a precompact, open neighborhood of p0 with U ⊆W . We prove the smoothness
of F : ϕ(U)→ R , q 7→ γϕ−1(q)(Xϕ−1(q), Yϕ−1(q)) via induction.
In a first step we will prove that the function

F̃ : H ×W → R , (g, p) 7→ ((θg)
∗γ̃)p(Xp, Yp)

is smooth. When we make use of the identification T(g,p)(H ×W ) ∼= TgH ⊕ TpW , we have

dpθg ·Xp = d(g,p)θ · ((0TG)g, Xp),

where 0TG ∈ Γ(TG) denotes the zero section of TG (i.e. the trivial vector field). Thus, we
get

((θg)
∗γ̃)p(Xp, Yp) = γ̃g·p(dpθg ·Xp , dpθg · Yp)

= γ̃θ(g,p)( d(g,p)θ · ((0TG)g, Xp) , d(g,p)θ · ((0TG)g, Yp) )

= (θ∗γ̃)( (0TG, X) , (0TG, Y ) )(g,p)

The pullback θ∗γ̃ is a covariant tensor field and (0TG, X) respectively (0TG, Y ) are (smooth)
vector fields, so θ∗γ̃( (0TG, X) , (0TG, Y ) ) is a smooth function. Together with the previous
computation, we have proven that F̃ is indeed a smooth map.
Since U is compact and contained in W , the restriction of F̃ to H×U is smooth and bounded
and, therefore, so is the map F̃ ◦ (idH × ϕ−1)|H×ϕ(U) : H × ϕ(U)→ R. Because we have

F (q) =

∫
H

(F̃ ◦ (idH × ϕ−1))(g, q) dµ(g) ,
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it follows that F is continuous. This was the base case n = 0.

Now, let n ∈ N be arbitrary and suppose F ∈ Cn(ϕ(U)) and that we have

∂

∂xi1
. . .

∂

∂xin
F (q) =

∫
H

∂

∂xi1
. . .

∂

∂xin

(
F̃ ◦ (idH × ϕ−1)(g, · )

)
(q) dµ(g)

for all q ∈ ϕ(U) and all i1, . . . in ∈ {1, . . . ,dim(M)} .

Let j, i1, . . . , in ∈ {1, . . . ,dim(M)} be arbitrary. Since H and U ⊆ W are compact, their
product H × U is so too and thus the map

H × ϕ(U) −→ R

(g, q) 7−→ ∂

∂xj
∂

∂xi1
. . .

∂

∂xin

(
F̃ ◦ (idH × ϕ−1)(g, · )

)
(q)

is smooth and bounded. By the Leibniz integral rule (for measure spaces) it follows ∂i1 . . . ∂inF ∈
C1(ϕ(U)) and for every q ∈ ϕ(U) we have

∂

∂xj
∂

∂xi1
. . .

∂

∂xin
F (q)

=
∂

∂xj

∣∣∣∣
q̃=q

(∫
H

∂

∂xi1
. . .

∂

∂xin

(
F̃ ◦ (idH × ϕ−1)(g, · )

)
(q̃) dµ(g)

)
=

∫
H

∂

∂xj
∂

∂xi1
. . .

∂

∂xin

(
F̃ ◦ (idH × ϕ−1)(g, · )

)
(q) dµ(g)

This was the induction step.
In conclusion, F ∈ Cn(ϕ(U)) for all n ∈ N, so F is smooth. Because p0 was arbitrary, we
have shown that γ(X,Y ) is smooth, which in turn proves that γ is smooth.

In total, we now know that γ is in fact a Riemannian metric on M . It remains to show the
H-invariance of γ.
Let h ∈ H , p ∈M , v,w ∈ TpM be arbitrary. Then

(θ∗hγ)p(v, w) = γh·p(dpθh · v, dpθh · w)

=

∫
H

(θ∗g γ̃)h·p(dpθh · v, dpθh · w) dµ(g)

=

∫
H

(θ∗h(θ∗g γ̃))p(v, w) dµ(g)

=

∫
H

((θg ◦ θh)∗γ̃)p(v, w) dµ(g)

(∗)
=

∫
H

(θ∗ghγ̃)p(v, w) dµ(g)

(∗∗)
=

∫
H

(θ∗g γ̃)p(v, w) dµ(g)

= γp(v, w)

where we used the identity θg ◦ θh = θgh (since θ is a group action) for (∗) and the bi-
invariance of µ for (∗∗). This shows the H-invariance of γ, as desired.

Remark 2.3.12. Instead of the circuitous equation (2.8) we will often just write

γ =

∫
H

g∗γ̃ dµ(g). (2.9)
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Remark 2.3.13. In the above prove we have shown that for any Riemannian metric γ̃ the
map γ, defined as in equation (2.9), is smooth. Completely analogously one can show the
following, more general, version:
Let M smooth G-space, H ≤ G a compact subgroup, k ∈ N0 and

σ̃ ∈ Γ(T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
k-times

) = Γ((T ∗M)⊗k)

be a smooth section of the vector bundle (T ∗M)⊗k �M . Then the section

σ =

∫
H

h∗σ̃ dµ(h)

of (T ∗M)⊗k �M is smooth and H-invariant.

Lemma 2.3.14. Let θ : G ×M → M be a smooth G-action on M and p ∈ M a point
with compact isotropy group Gp. Then there exists some Gp-invariant submanifold N in M ,
which contains p and is transverse to G · p at p.

Proof. By Proposition 2.3.11 we can choose a Gp-invariant Riemannian metric γ for M .

Choose Riemannian normal coordinates (Ṽ , ϕ̃) at p with ϕ̃(Ṽ ) = Br̃(0) the open ball of
radius r̃ > 0 at the origin and ϕ̃(p) = 0. Since Gp · {p} = {p} ⊆ Ṽ and Gp is compact,

we can choose an open neighborhood Õ of p with Ũ := Gp · Õ ⊆ Ṽ due to Lemma A.1.10.

Clearly, Ũ is an open neighborhood of p, which is Gp-invariant. Let W̃ = ϕ̃(Ũ).

Choose an open neighborhood V ⊆ Ũ of p with ϕ̃(V ) = Br(0) for some 0 < r < r̃. Again,
by using A.1.10, there exists an open neighborhood O of p with U := Gp · O ⊆ V and U is
a Gp-invariant open neighborhood of p. Define ϕ := ϕ̃|U : U → ϕ̃(U) =: W ⊆ Rm, where

m := dim(M). Thus, we have the inclusions 0 ∈ W ⊆ Br(0) ⊆ W̃ ⊆ Br̃(0) ⊆ Rm of open
sets.

For the rest of the proof we interpret tangent spaces of submanifolds of Rm as subsets of Rm,
i.e. if we write TRm

q S for some (immersed) submanifold S of Rm and a point q ∈ S, we mean

the image of the tangent space TqS under the canonical isomorphism αidRm ,q : TqRm
∼→ Rm

(the coordinates for TqRm induced by the trivial chart (Rm, idRm)).
We put

L := ϕ(U ∩ G · p) ⊆W ⊆ Rm

N := ϕ−1( W ∩ (TRm
0 L)⊥ ) ⊆ U ⊆M ,

where ‘⊥’ indicates the orthogonal complement in Rm with respect to the Euclidean inner
product. Notice that this definition does indeed make sense since U ∩G · p is an immersed
submanifold of M by Proposition 2.1.13, so the tangent space of the immersed submanifold
L is well-defined.

The intersection of the open set W with the linear subspace (TRm
0 L)⊥ is a submanifold of

Rm for obvious reasons. Thus, N is a submanifold of M , containing p.

Our next goal is to prove that N and G · p are transverse at p:
Denote by ι : U∩G·p ↪→ U , ιL : L ↪→W the inclusion maps. They are injective immersions.
By definition of the smooth structure on L, the map

ϕ|U∩G·p : U ∩G · p ∼→ ϕ(U ∩G · p) = L

is a diffeomorphism. Clearly, we have:
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Tp (U ∩G · p) T0 L

TpU T0W ∼= T0Rm

'
dp(ϕ|U∩G·p)

dpι d0ιL

'
dpϕ

(2.10)

It follows

dpϕ (Tp (G · p)) = dpϕ ( dpι (Tp (G · p) ) ) (notation convention)

= d0ιL ◦ dp(ϕ|U∩G·p) (Tp (G · p)) (follows from 2.10)

= d0ιL (T0L)

= T0L (notation convention)

So, we have
αidRm ,0 ◦ dpϕ (Tp (G · p)) = TRm

0 L . (2.11)

The tangent space of an open subset of a linear subspace of Rm is the linear subspace itself,
so we get:

αidRm ,0 ◦ dpϕ (TpN) = αidRm ,0 ( T0 ( W ∩ (TRm
0 L)⊥ ) )

= (TRm
0 L)⊥ (2.12)

As orthogonal complements, clearly the following statement holds:

TRm
0 L⊕ (TRm

0 L)⊥ = Rm.

Since the composition αidRm ,0 ◦ dpϕ is a linear isomorphism, we can derive from equations
(2.11) and (2.12) that

TpN ⊕ Tp (G · p) = TpM

holds. Hence, N and G · p are transverse at p.

It remains to show the Gp-invariance of N :

Since Ũ is Gp-invariant by construction, we can define the (natural) smooth Gp-action

θR
m

: Gp × W̃ −→ W̃

(g, q) 7−→ θR
m

(g, q) := ϕ̃( θ(g, ϕ̃−1(q)) )

on W̃ = ϕ̃(Ũ). Obviously, with this new definition, ϕ̃−1, and therefore also ϕ̃, become
Gp-equivariant diffeomorphisms between the Gp-spaces Ũ and W̃ . Hence, to prove the Gp-
invariance of N , it suffices to show that ϕ(N) = ϕ̃(N) is Gp-invariant (with respect to the
action θR

m

). We will abbreviate the operation of g on q by g · q too, the meaning of this
expression will be apparent from the context.

Denote by γnormal the pullback of the metric γ by ϕ̃−1 onto ϕ̃(Ṽ ) = Br̃(0) ⊆ Rm, so

γnormal := (ϕ̃−1)∗(γ|Ṽ ).

Because ϕ̃ are Riemannian normal coordinates, we have (γnormal)0 = 〈 ·, · 〉euc , the Euclidean
inner product, and that the geodesics through the origin 0 are exactly the straight lines
through it, lying in the open ball Br̃(0) = ϕ̃(Ṽ ). The following computation shows that
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γnormal|W̃ is Gp-invariant with respect to the action θR
m

. Let g ∈ Gp be arbitrary:

(θR
m

g )∗(γnormal|W̃ ) = ( ϕ̃−1|Ũ
W̃
◦ θR

m

g )∗ γ|Ũ
(∗)
= ( θg|ŨŨ ◦ ϕ̃

−1|Ũ
W̃

)∗γ|Ũ
= (ϕ̃−1|Ũ

W̃
)∗( (θg|ŨŨ )∗γ|Ũ )

(∗∗)
= (ϕ̃−1|Ũ

W̃
)∗ γ|Ũ

= γnormal|W̃

We have used the Gp-equivariance of ϕ̃−1 for (∗) and the Gp-invariance of γ for (∗∗).

We now want to show the Gp-invariance of ϕ(N) = W ∩ (TRm
0 L)⊥ :

Let g ∈ Gp , q ∈W ∩ (TRm
0 L)⊥ be arbitrary. Since U is Gp-invariant, W = ϕ(U) is so too,

and thus g · q ∈ W . We have to show that g · q ⊥ TRm
0 L. The case q = 0 is trivial because

g · q = g · 0 = 0 holds (since g ∈ Gp and ϕ̃(p) = 0), so let us assume q 6= 0. Let v̄ ∈ TRm
0 L

be arbitrary and define v ∈ T0L by v̄ = αidRm ,0(v). Choose v′ ∈ T0L with v = d0ιL · v′. We
claim the following:

d0θ
Rm
h · v ∈ T0L ∀h ∈ Gp. (2.13)

To prove (2.13) it suffices to show that for h ∈ Gp the map θR
m

h |LL : L → L is smooth with
respect to the smooth structures of the immersed submanifolds, then we have

d0θ
Rm
h · v = d0(θR

m

h ◦ ιL) · v′ = d0(ιL ◦ θR
m

h |LL) · v′ ∈ T0L.

By the universal property of injective immersions, if we show that θR
m

h |LL is continuous, then
its smoothness is a direct consequence. We have{

G/Gp → G/Gp
g̃Gp 7→ h · (g̃Gp)

is continuous

⇐⇒
{
G · p → G · p
g̃ · p 7→ h · (g̃ · p) is continuous

=⇒
{
U ∩G · p → U ∩G · p
g̃ · p 7→ h · (g̃ · p) is continuous

⇐⇒ θR
m

h |LL is continuous

Clearly, the above map G/Gp → G/Gp is indeed continuous, so θR
m

h |LL is smooth, and there-
fore we have proven (2.13).

Let

δ : I = (−ε, ε)→ Br(0) ⊆ W̃ ⊆ Rm

t 7→ tq

be the geodesic with velocity α−1
idRm ,0

(q) at t = 0, where ε is maximal, i.e. ε > 0 with
ε|q|euc = r. Notice that ε > 1 because q ∈W ⊆ Br(0). Since γnormal|W̃ is Gp-invariant, the

map θR
m

g : W̃
∼→ W̃ is a Riemannian isometry. Thus, the composition θR

m

g ◦ δ : I → W̃ is a

geodesic through the origin 0 with starting velocity d0θ
Rm
g · α−1

idRm ,0
(q).

Since we use normal coordinates, the unique maximal geodesic (with respect to (Br̃(0), γnormal))
through the origin with starting velocity d0θ

Rm
g · α−1

idRm ,0
(q) is the straight line

(−ε̃, ε̃)→ Br̃(0) , t 7→ t · αidRm ,0 ( d0θ
Rm
g · α−1

idRm ,0
(q) )
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(again, let ε̃ be maximal, see above).
Because θR

m

g ◦δ is a geodesic (with respect to (Br̃(0), γnormal)) with the same starting velocity,
it follows that

θR
m

g ◦ δ(t) = t · αidRm ,0 ( d0θ
Rm
g · α−1

idRm ,0
(q) ) ∀ t ∈ I ⊆ (−ε̃, ε̃)

In particular, we have

g · q = θR
m

g ◦ δ(1) = αidRm ,0 ( d0θ
Rm
g · α−1

idRm ,0
(q) ). (2.14)

Thus, we can finally compute the value of the inner product of g · q and v̄:

〈g · q, v̄〉euc = (γnormal)0 (α−1
idRm ,0

(g · q) , α−1
idRm ,0

(v̄) )

(∗)
= (γnormal)0 ( d0θ

Rm
g · α−1

idRm ,0
(q) , v )

= ((θR
m

g )∗ γnormal |W̃ )0 (α−1
idRm ,0

(q) , d0θ
Rm
g−1 · v )

(∗∗)
= (γnormal)0 (α−1

idRm ,0
(q) , d0θ

Rm
g−1 · v )

= 〈 q , αidRm ,0 ( d0θ
Rm
g−1 · v ) 〉euc

(∗∗∗)
= 0

We have used equation (2.14) for (∗) and the Gp-invariance of γnormal |W̃ for (∗∗). The
last equation (∗ ∗ ∗) holds because q ∈ (TRm

0 L)⊥ and because by equation (2.13) we have
d0θ

Rm
g−1 · v ∈ T0L and thus αidRm ,0 ( d0θ

Rm
g−1 · v ) ∈ TRm

0 L .

In conclusion g · q ⊥ v̄ and, because v̄ was arbitrary, we have indeed shown g · q ⊥ TRm
0 L.

Thus ϕ(N), and therefore N , is Gp-invariant.

Theorem 2.3.15 (Existence of slices). Let M be a smooth Cartan G-space and p ∈ M .
Then there exists a slice S at p, which is a submanifold of M , and a local cross section
χ : U → G in G/Gp, such that the following statements hold:

(i) For all g0 ∈ G the map

Fg0 : (g0 · U)× S → G · S , (u, s) 7→ g0χ(g−1
0 · u) · s

is a diffemorphism onto an open neighborhood of g0 · S in M .

(ii) The map fS : G · S → G/Gp is smooth.

Proof. The isotropy group Gp is compact by Lemma 2.2.3. By the preceding Lemma 2.3.14
there exists some Gp-invariant submanifold p ∈ N ⊆M such that N is transverse to G ·p at
p. By Lemma 2.3.10 there is an open subset S∗ of N , which is a near slice at p and a local
cross section χ : U → G, such that U × S∗ → (u, s) 7→ χ(u) · s is a diffeomorphism onto an
open neighborhood of p. Applying Lemma 2.3.9, there is an open subset S in S∗ that is a
slice at p. Since N is a submanifold and S is open in N , clearly S is a submanifold of M .
Also, it follows immediately that Fe : U × S → G · S is a diffeomorphism onto an open
neighborhood of S. As a consequence, statement (i) already follows from homogeneity.
Denoty by Φ : G/Gp

∼→ G · p the canonical diffeomorphism (cf. equation (2.3)). Since S
is a Gp-slice, the map fS is continuous and hence so is Φ ◦ fS . By Proposition 2.1.13 the
map Φ ◦ fS is smooth if the composition ι ◦Φ ◦ fS with the inclusion map ι : G · p ↪→M is
smooth. By equation (2.4) we have Φ ◦ fS(g · s) = g · p. Therefore, to prove the smoothness
of fS , it suffices to show that the map ι ◦ Φ ◦ fS : G · S →M , g · s 7→ g · p is smooth.
Let q0 = g0 · s0 be arbitrary. Using statement (i), ι ◦ Φ ◦ fS is smooth on Fg0((g0 · U)× S)
if and only if the map ι ◦ Φ ◦ fS ◦ Fg0 : (g0 · U)× S →M is smooth.
The map θ(p) : G → M , g 7→ g · p is smooth and, by the universal property of surjective
submersions, η : G/Gp →M , g Gp 7→ g ·p is so too. Since χ is a local cross section, we have
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ι ◦ Φ ◦ fS ◦ Fg0(u, s) = η ( g0χ(g−1
0 · u) Gp ) = η (u), and therefore the map ι ◦ Φ ◦ fS ◦ Fg0

is indeed smooth.
Because q0 was arbitrary in G · S, we have proven (ii).

Corollary 2.3.16. If S is a slice at p as in the above Theorem 2.3.15, then for any open
subset W in S the set G ·W is open in M .

Proof. By statement (i) the set Fe(U ×W ) is open in G · S and, since G · S is open in M ,
it is open in M . Thus, G · Fe(U ×W ) = G ·W is open in M .

Remark 2.3.17. If S is a slice at p as in the above theorem, then by statement (i) the
dimension of S (as manifold) is

dim(S) = dim(G · S)− dim(U) = dim(M)− dim(G) + dim(Gp) . (2.15)

Proposition 2.3.18 (G-invariant partition of unity). Let θ : G ×M → M be a smooth
and proper action of G on M . Then there exists a partition of unity for M of G-invariant
functions, i.e. there is a countable family (fn)n∈N , N ⊆ N , of smooth functions fn : M →
R and a collection (Sn)n∈N of submanifolds of M such that:

(i) 0 ≤ fn ≤ 1 for all n ∈ N . For every n ∈ N there is some p ∈M with fn(p) > 0.

(ii) For every n ∈ N there is a p(n) ∈M such that Sn is a slice at p(n).

(iii) The support supp(fn) := {p ∈M | fn(p) 6= 0} of fn is contained in G · Sn and the
collection (supp(fn))n∈N is a locally finite covering of M .

(iv)
∑
n∈N fn(p) = 1 for all p ∈M

(v) θ∗gfn = fn ◦ θg = fn for all n ∈ N and g ∈ G

Proof. We begin by showing that M/G is a paracompact space:
The following statement is a general topological fact, for a proof see [aut21b] :
If X is a second-countable Hausdorff topological space, which is locally compact, then it is
paracompact.
As manifold M is locally compact and by Lemma 2.1.5 the projection ΠM : M � M/G is
an open map. So, M/G is locally compact too. By Proposition 2.1.9 M/G is Hausdorff.
Since ΠM is open and M is second-countable, M/G is second-countable too. Thus M/G is
paracompact.

For every open cover of a paracompact Hausdorff space X there is a subordinate partition
of unity. In particular, for every open cover (Ui)i∈I of X there is an open cover (Vi)i∈I of
X such that (Vi)i∈I is locally finite and Vi ⊆ Ui for all i ∈ I. As shown above, these two
properties hold particularly for M/G.

In the next step we will prove the following statement:

(∗) Given a collection (Un)n∈N , N ⊆ N , such that Un ⊆ Sn is open in Sn, where Sn
is a slice at p(n) ∈ M as in Theorem 2.3.15. Suppose, Un is Gp(n)-invariant and
(G · Un)n∈N covers M . Then there exists an open cover (Ωn)n∈N of M/G such that
Ωn ⊆ ΠM (Un), (Ωn)n∈N is locally finite and, if we put Vn := Π−1

M (Ωn) ∩ Sn, then Vn

is open in Sn and Gp(n)-invariant, (G · Vn)n∈N is an open cover of M , Vn
Sn ⊆ Un for

n ∈ N (where · Sn denotes the closure in Sn) and (G · Vn
Sn

)n∈N is locally finite.

Proof of (∗). Since M/G is a paracompact Hausdorff space and (ΠM (Un))n∈N = (ΠM (G ·
Un))n∈N is an open cover of M/G (using Corollary 2.3.16 and the openness of ΠM ), we
can choose an open covering (Ωn)n∈N of M/G such that (Ωn)n∈N is locally finite and
Ωn ⊆ ΠM (Un). Put Vn := Π−1

M (Ωn)∩ Sn. Then Vn is open in Sn and Gp(n)-invariant (since
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Π−1
M (Ωn) is G-invariant and Sn is a slice at p(n), so Sn is Gp(n)-invariant).

Given an arbitrary p ∈ M . Then there is some n ∈ N with ΠM (p) ∈ Ωn ⊆ ΠM (Un). So
there exist g ∈ G , u ∈ Un ⊆ Sn with p = g ·u. We have ΠM (u) = G ·(g−1 ·p) = ΠM (p) ∈ Ωn
and therefore u ∈ Vn. This shows that

⋃
n(G · Vn) = M . By Corollary 2.3.16 the set G · Vn

is open in M , so (G · Vn)n∈N is an open cover of M .

Now, let p ∈ Vn
Sn

be arbitrary. We have

Vn
Sn ⊆ Π−1

M (Ωn) ∩ Sn ⊆ Π−1
M (ΠM (Un)) ∩ Sn = G · Un ∩ Sn.

Choose g ∈ G , u ∈ Un with p = g · u. Applying Theorem 2.3.6 (c), we get g ∈ Gp(n). Since
Un is Gp(n)-invariant, we conclude p ∈ Un.

Since (Ωn)n∈N is locally finite, the collection (Π−1
M (Ωn))n∈N is so too. Because we have

G · Vn
Sn ⊆ G ·Π−1

M (Ωn) = Π−1
M (Ωn), the cover (G · Vn

Sn
)n∈N is locally finite.

# (Proof of (∗))

By Corollary 2.2.7, M is a smooth Cartan G-space. For every p in M choose a slice Sp at
p as in Theorem 2.3.15. Now, choose an open neighborhood p ∈ Up ⊆ Sp of p in Sp such
that Up is precompact in Sp (this is possible because Sp is a submanifold). Gp is compact
by Lemma 2.2.3, hence we can assume that Up is Gp-invariant (use Corollary A.1.10). By
Corollary 2.3.16 the set G·Up is open in M . Since M is second countable, there is a countable
subcover (G · Un)n∈N , N ⊆ N , of (G · Up)p∈M .
By (∗) we can find Ωn ⊆M/G , n ∈ n , such that (Ωn)n∈N is locally finite, Vn := Π−1

M (Ωn)∩
Sn is open in Sn and Gp(n)-invariant, (G · Vn)n∈N is an open cover of M , Vn

Sn ⊆ Un and

(G · Vn
Sn

)n∈N is locally finite. Using (∗) again, there are Wn , n ∈ N , such that Wn ⊆ Sn

is open in Sn and Gp(n)-invariant, Wn
Sn ⊆ Vn and (G ·Wn)n∈N covers M . We have

Wn ⊆Wn
Sn ⊆ Vn ⊆ Vn

Sn ⊆ Un ⊆ Un
Sn ⊆ Sn,

and, since Un is precompact in Sn, the subsets Wn , Vn , are precompat in Sn too. Assume
Wn 6= ∅ for all n ∈ N (otherwise consider Ñ := {n ∈ N | Wn 6= ∅}).
Now put

Kn := Wn
Sn 6= ∅ , Ln := Vn

Sn

Then Kn and Ln are compact subsets of M , (G ·Kn)n covers M and (G · Ln)n is a locally
finite covering of M . By [Lee13, Proposition 2.25], for each n ∈ N there is a smooth bump
function ρn : Sn → R such that 0 ≤ ρn ≤ 1 , ρn ≡ 1 on Kn and supp(ρn) ⊆ Vn ⊆ Ln.
Let ρ̂n : Sn → R be the function defined by

ρ̂n :=

∫
Gp(n)

g∗ρn dµ(g) =

∫
Gp(n)

ρn ◦ θg dµ(g)

(cf. Remark 2.3.12). By Remark 2.3.13, ρ̂n is smooth. Since µ is bi-invariant, ρ̂n is Gp(n)-
invariant. Clearly ρ̂n ≥ 0. Because ρn ◦ θe(p) = 1 ∀ p ∈ Kn, the function ρ̂n is strictly
positive on Kn (by continuity). In addition, the support of ρ̂n is contained in Ln (because
supp(ρn) ⊆ Vn and Vn is Gp(n)-invariat), so it is compact.
Now define

τn : M → R , p 7→

{
ρ̂n(s) , if p = g · s , g ∈ G , s ∈ Sn
0 , if p /∈ G · Sn

This is well-defined because, if p = g · s = g̃ · s̃, then g̃−1g · s = s̃. Since Sn is a slice at
p(n) (hence ((S, S)) = Gp(n) by Theorem 2.3.6 (c)) and ρ̂n is Gp(n)-invariant, it follows that
ρ̂n(s̃) = ρ̂n(g̃−1g · s) = ρ̂n(s) .
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The function τn is smooth on G ·Sn: Given p = g0 · s0 ∈ G ·Sn. Then by Theorem 2.3.15 (i)
the map τn is smooth in a neighborhood of p if and only if the function τn ◦Fn,g0 is smooth.
By definition we have

τn ◦ Fn,g0(u, s) = τn(g0 χn(g−1
0 · u) · s) = ρ̂n(s)

and ρ̂n is smooth. So, τn|G·Sn is smooth.
Now, given an arbitrary boundary point p ∈ ∂(G · Sn) of G · Sn. We will show that there is
an open neighborhood U(p) of p such that τn ≡ 0 on U(p). This proves the smoothness of
τn on all of M .
Assume by contradiction that for every open neihborhood U of p there is a point q ∈ U such
that τn(q) 6= 0. Choose a series (qm)m∈N with qm → p and τn(qm) 6= 0 ∀m ∈ N. Put
qm =: gm · sm , gm ∈ G , sm ∈ Sn. Then sm ∈ supp(ρ̂n) ⊆ Ln. Since Ln is compact, by
passing to a subsequence we can assume that sm → s ∈ Ln ⊆ Sn. By Proposition 2.1.10
(iii) there is a subsequence (gmk)k of (gm)m and a g ∈ G such that gmk → g. Therefore,
g ·s = lim

k
gmk ·smk = lim

k
qmk = p. Thus, p ∈ G·Sn ∩ ∂(G·Sn) 6= ∅, which is a contradiction

because G · Sn is open in M .

By definition τn is obviously G-invariant: τn(g · p) = τn(p) ∀ p ∈M , g ∈ G.

If τn(p) 6= 0 , p ∈M , then p = g · s for some g ∈ G , s ∈ Sn. Thus,

0 6= τn(p) = ρ̂n(s) =

∫
Gp(n)

ρ(h · s) dµ(h)

and there exists an h ∈ Gp(n) such that ρn(h · s) 6= 0. It follows h · s ∈ supp(ρn) ⊆ Vn , so,
since Vn is Gp(n)-invariant,

s = h−1︸︷︷︸
∈Gp(n)

· (h · s)︸ ︷︷ ︸
∈Vn

∈ Vn .

Hence p = g · s ∈ G · Vn ⊆ G · Π−1
M (Ωn) = Π−1

M (Ωn) ⊆ Π−1
M ( Ωn ). This however shows

supp(τn) ⊆ Π−1
M ( Ωn ) . Since (Ωn)n is locally finite, it follows that (Π−1

M ( Ωn ))n and thus
(supp(τn))n are locally finite too. Also, {p ∈ M | τn(p) 6= 0} ⊆ G · Vn ⊆ G · Sn. As we
already have shown above, for each boundary point p ∈ ∂(G · Sn) there is a neighborhood
U(p) of p such that τn ≡ 0 on U(p). Therefore, the support of τn is contained in G · Sn.

Since ρ̂n is strictly positive on Kn and the collection (G ·Kn)n is a covering of M , the sum∑
n∈N

τn > 0

is strictly positive on M and a smooth function.

Then define the searched functions fn , n ∈ N , as

fn :=
( ∑
m∈N

τm
)−1

τn , n ∈ N .

2.4 Quotient Manifold Theorem

In this section we will give a brief proof of a strong version of the Quotient Manifold Theorem.
To avoid confusion, some preliminary remarks should be made:
There are various ways to prove the Quotient Manifold Theorem, differing strongly in the
applied techniques, though they all require elaborate preparation. A version, which is based
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only on the theory of distributions and integral manifolds, is given in [Lee13, Theorem
21.10] and is completely independent from this thesis. It is however slightly weaker than
the version we will present, in the sense that it does not make any statements about G-
principality of the canonical projection. The proof in [Lee13] cannot easily be adapted, so
that it would cover our, stronger version. As pointed out in the previous sections, we have
already used the quotient manifold theorem in the examination of slices and their existence
plenty of times: We have applied, that for any closed subgroup H ≤ G the factor group
G/H carries a natural smooth structure such that the canonical projection G � G/H is a
smooth submersion.
This is in fact the dilemma we face: The proof of the strong version of the Quotient Manifold
Theorem, which we will give below, maybe seems like an enormous circular argument since
it requires a version of it for Lie groups.
Therefore, it may be best to just take the strong version of the Quotient Manifold Theorem
for granted and accept that it has been proven numerously already. Then we have provided
a strict argumentation for the existence of slices and G-invariant partitions of unity, the
second one will become significant later.
Another possible point of view is, to assume the weak version of the Quotient Manifold
Theorem (with a proof that uses different techniques than we do, e.g. as in [Lee13]). In this
case, we have added a strong global statement about quotient manifolds, namely that they
are principal bundles.
The third way of interpreting this long chain of arguments is minimalistic: There are several
proofs, specified on Lie groups only, that tell us that G� G/H is a submersion in a unique
way for H ≤ G closed. With this point of view the current chapter additionally contains a
complete proof of the Quotient Manifold Theorem for arbitrary manifolds.
In either way, the content of the following section is surely not necessary for the the rest
of the thesis, provided that the Quotient Manifold Theorem is already familiar. We rather
present the proof of the Quotient Manifold Theorem because we already have developed
strong techniques with the purpose of showing the existence of a G-invariant partition of
unity, so it would be a waste of effort not to present the proof, which uses exactly these
techniques, here.

Definition 2.4.1. We say that the continuous G-action θ : G×X → X on X is free if the
stabilizer Gx of x is trivial for every x ∈ X.

Definition 2.4.2. Let B be a topological space and X a G-space. Let π : X → B be a
continuous G-invariant map (i.e. π is G-equivariant if we consider the trivial action on B).
We shall say that (X,π) is a G-principal bundle if B has a covering {Ui}i∈I by open sets
such that for every i there is a G-equivariant homeomorphism φi : π−1(Ui)→ G× Ui with
the property that the following diagram commutes:

π−1(Ui) G× Ui

Ui

π

φi

pr2

Here pr2 denotes the projection onto the second factor and G × Ui is endowed with the
natural G-action g1 · (g2, u) := (g1g2, u) (i.e. G × Ui carries the product action of the G-
spaces G and Ui ).
If B and X are smooth manifolds, π is smooth and φi is a diffeomorphism for i ∈ I, then
we call (X,π) a smooth G-principal bundle.

Remark 2.4.3. By definition every G-principal bundle (X,π) is a fiber bundle with fiber
G, so π is an open quotient map. Furthermore, G has to act freely on X and transitively
on each fiber. π factors uniquely through the orbit space via π̄ : X/G → B and π̄ is
a homeomorphism (respectively diffeomorphism in the smooth case). This implies that
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we can generally omit the base space B and consider X/G instead. Informally spoken, a
(smooth) G-space X is a (smooth) G-principal bundle if and only if it is locally the product
of an open subset of X/G with G itself (in the category of (smooth) G-spaces).

Theorem 2.4.4 (Quotient Manifold Theorem). Let θ : G ×M → M be a smooth, free
and proper action of the Lie group G on the manifold M . Then the orbit space M/G is a
topological manifold of dimension dim(M/G) = dim(M)−dim(G) and has a unique smooth
structure such that the canonical projection ΠM : M �M/G is a smooth submersion.
Furthermore, with this smooth structure (M,ΠM ) is a smooth G-principal bundle.

Proof. Put m := dim(M) , k := dim(G) and n := m− k.
Let us first show the uniqueness of the smooth structure on the orbit space. Assume A1,A2

are two smooth structures on M/G such that ΠM is a surjective submersion with respect to
(M/G,A1) respectively (M/G,A2). Then

ΠM = idM/G ◦ΠM : M → (M/G,A1)→ (M/G,A2)

is smooth and by the characteristic property of surjective submersions the map idM/G :
(M/G,A1) → (M/G,A2) is smooth. This argument is symmetric; thus the identity map
idM/G is a diffeomorphism from (M/G,A1) to (M/G,A2). Therefore, the smooth structures
coincide: A1 = A2.

Now, let us show that M/G is indeed a topological manifold:
By Proposition 2.1.9 the orbit space M/G is Hausdorff. It is also second-countable because
M is second-countable and ΠM is an open map by Lemma 2.1.5. To show that the quotient
space is locally Euclidean of dimension n, we construct appropriate charts. Let x ∈ M/G
be arbitrary. Choose p ∈ M with ΠM (p) = G · p = x. Choose a slice S at p as in Theorem
2.3.15 (the action is proper, so by Corollary 2.2.7 M is a Cartan G-space).
Put V := ΠM (S) = ΠM (G · S), then V is an open neighborhood of x. Consider the map

η : S → V (2.16)

s 7→ ΠM (s)

Clearly, η is continuous and surjective. Suppose η(s1) = η(s2), then there is some g ∈ G
such that g · s1 = s2 ∈ (g · S) ∩ S. By Theorem 2.3.6 (c) it follows that g ∈ Gp = {e} , so
s1 = s2. Thus η is injective and therefore bijective.
Now let W ⊆ S be an arbitrary open subset in S. By Corollary 2.3.16 the set G ·W is open
in M . Hence, η(W ) = ΠM (W ) = ΠM (G ·W ) is open in M/G. This shows the openness of
η. Overall, we have proven that η is in fact a homeomorphism.
By our choice, S is a submanifold of M (because S is a slice as in Theorem 2.3.15) of di-
mension dim(S) = m− k + 0 = n (see Remark 2.3.17). Now choose a smooth chart (W,ϕ)
for S, containing p. Then the composition ϕ ◦ η−1 : η(W )→ ϕ(W ) ⊆ Rn is a chart of M/G
around x. Since x ∈M/G was arbitrary, M/G is a topological manifold of dimension n.

Now let p ∈ M be an arbitrary point and S a slice at p as in Theorem 2.3.15. We claim
that the multiplication map

F : G× S → G · S (2.17)

(g, s) 7→ g · s

is a diffeomorphism. For obvious reasons, F is smooth and surjective. If g · s = g̃ · s̃, then
by Theorem 2.3.6 we obtain g̃−1g ∈ Gp . Since the action is free, it follows that g = g̃, and
thus s = s̃. So F is a bijection. It remains to show that for any given point g0 · s0 ∈ G · S
there is an open neighborhood on which F−1 is smooth. Reusing Theorem 2.3.15, there is a
local cross section χ : U → G in G/Gp such that the map Fg0 : U × S → U(g0 · S), defined
by Fg0(u, s) = g0χ(g−1

0 · u) · s, is a diffeomorphism onto an open neighborhood U(g0 · S)
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of g0 · S. By assumption the action is free, so Gp = {e}. Hence, the natural projection
pr : G → G/Gp = G/{e} is bijective. Since it is a submersion, it has constant rank, thus

by the Global Rank Theorem it is a diffeomorphism. Let Ũ be the preimage of U ⊆ G/{e}
under the canonical projection pr : G → G/{e}. Using the fact that χ is a local cross
section, we obtain χ({g}) = g for all g ∈ Ũ . Thus, Fg0({g}, s) = g · s and the restriction
F |Ũ×S = Fg0 ◦ (pr|Ũ×idS) is a diffeomorphism onto the open neighborhood U(g0·S) of g0·s0.

Now let us deal with the existence of a smooth structure on M/G. We just have to show
that any two charts as constructed above are smoothly compatible.
Given arbitrary points p1, p2 ∈ M , let S1 , S2 be slices at p1 respectively p2 as in Theorem
2.3.15 and put Vi := ΠM (Si) , i = 1, 2. For i = 1, 2 , let ηi := ΠM |ViSi and ϕi be smooth
charts for Si, containing pi. Assume V1 ∩ V2 6= ∅. We need to show the smoothness of the
transition map ϕ2 ◦ η−1

2 ◦ η1 ◦ ϕ−1
1 : (ϕ1 ◦η−1

1 )(V1∩V2)→ (ϕ2 ◦η−1
2 )(V1∩V2). It obviously

suffices to show that

η−1
2 ◦ η1 :

η−1
1 (V1 ∩ V2) = G · S1 ∩G · S2 ∩ S1 → η−1

2 (V1 ∩ V2) = G · S1 ∩G · S2 ∩ S2

is smooth. For s1 ∈ S1 the image η−1
2 ◦ η1(s1) is the only element s2 ∈ S2 such that

∃ g ∈ G : s1 = g · s2. Let Fi : G × Si → G · Si , i = 1, 2 , denote the multiplication map
(defined in equation (2.17)), it is a diffeomorphism as we have proven above. Then we obtain

η−1
2 ◦ η1 (s1) = pr2 ◦ F−1

2 ◦ F1 (e, s1) ,

where pr2 : G × S2 → S2 is the projection onto the second factor. Thus, the map η−1
2 ◦ η1

is smooth and we have proven that the defined atlas on M/G is a smooth one.

Clearly, if (M,ΠM ) is a G-principal bundle, then the projection ΠM is a smooth submersion.
Thus, it only remains to show that M is indeed a G-principal bundle.
M is covered by sets G · S for a slice S at (some) p ∈ M . For such a slice S the map η :=
ΠM |VS , where V := ΠM (S), is a diffeomorphism by definition. In addition the multiplication
map F : G × S → G · S (see equation (2.17)) is a diffeomorphism. Thus, the composition
φ := ( idG × η ) ◦ F−1 is a diffeomorphism and, because both F and ( idG × η ) are G-
equivariant (where G·S carries the natural G-action, S , V carry the trivial one and products
are endowed with the product action), φ is G-equivariant. For g · s ∈ G · S = Π−1

M (V ) with
g ∈ G and s ∈ S we have

pr2 (φ(g · s)) = pr2 ( g, η(s) ) = ΠM (s) = ΠM (g · s) ,

where pr2 : G × V � V denotes the projection onto the second factor. Thus, the defining
diagram commutes: ΠM |G·S = pr2 ◦ φ. This shows that M/G is a G-principal bundle and
finishes the proof.
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3 Topological Cuts

3.1 Motivation

In this chapter we will introduce the concept of topological cuts. Contrary to what one
might think, this does not mean that we will only study certain topological spaces without
any further structures. In fact, the basic construction is a cut along a certain level set of
a manifold M , endowed with a smooth S1-action, so we are not working in the category
of topological spaces but of smooth manifolds. Instead, the name refers to the first step of
the construction: Given a fixed level set f−1(a) of an S1-invariant function f : M → R we
want to consider the open subset f−1( (a,∞) ) ‘above’ f−1(a) and leave it as it is and the
level set f−1(a) itself and identify points in the same S1-orbit, thus collapsing orbits in the
level set of a. In other words, we consider the quotient space X := f−1( [a,∞) ) /∼ with
an equivalence relation ∼ so that two distinct points are in relation if and only if they are
in f−1(a) and in the same S1-orbit. We call this quotient space X the cut with respect
to f . The natural topology on X is of course the quotient topology. However, it is rather
non-intuitive how to endow X with a smooth structure and, even, why we should do so. This
is the reason we speak of ‘topological cuts’ and suppress the smoothness, at least in the name.

As an example one might consider M = R3 \ (R · (0, 0, 1)) with the smooth function

f(x, y, z) := γ · (x2 + y2)− z

for some parameter γ > 0 and a = 0 . Let S1 act on M by λ · (w, z) := (λ · w, z) for
λ ∈ S1 , w ∈ C\{0} , z ∈ R . Figure 3.1 pictures the hypersurface f−1(a). Each plotted
orbit will collapse to one point in X.

The key observation in Lerman’s paper Symplectic Cuts [Ler95] is the close connection of
cutting to (symplectic) blow-ups. This justifies giving X a smooth structure that is natural
if one is interested in blow-ups in the symplectic category. It turns out that symplectic cuts
are a useful general tool in symplectic geometry to achieve a variety of interesting results.
Consequently, in the subsequent paper [Ler01], the main source for this thesis, Lerman in-
troduces contact cuts, the analog in the contact category.

However, our focus is not the application of this construction but to give detailed and
rigorous proofs of the basic propositions in [Ler01] since these are not presented at full
length in the original paper.

3.2 The Basic Construction

Recall from Chapter 2 that any continuous action of a compact Lie group G on some man-
ifold M is proper (see Corollary 2.1.11). In particular every continuous action of the circle
S1 on a manifold M is proper. By the quotient manifold theorem (cf. Theorem 2.4.4), the
quotient space M/S1 carries a canonical smooth structure if the action is smooth and free.
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Figure 3.1: The above example with parameter γ = 0.01 visualized with the help of GeoGe-
bra.

But before we deal with the main proposition of this chapter, we should come to an agree-
ment regarding notation, which we will also use beyond this chapter:

Given a chart (U,ϕ) of the smooth manifold M (of dimension dim(M) =: m) at p, we
denote by αϕ,p : TpM → Rm the coordinates of the tangent space at p, induced by ϕ, i.e. if
v = γ̇(0) ∈ TpM , where γ : I →M is a smooth path through p, then

αϕ,p(v) =
d

dt

∣∣∣∣
t=0

ϕ ◦ γ (t) = dpϕ · v .

αϕ,p is a linear isomorphism.
Let F : M → N be a smooth chart between two smooth manifolds, we denote by dpF :
TpM → TF (p)N the differential of F at p ∈M .
We will write Jf (p) for the Jacobian matrix of a differentiable function f : Rm ⊇

open
U → Rn

at p ∈ U :

Jf (p) =

(
∂fi
∂xj

(p)

)
i=1,...,n
j=1,...,m

∈ Rn×m

The (real) differential of f ap p is denoted by Dpf : Rm → Rn. For a linear map L : Rm →
Rn we write Mat(L) ∈ Rn×m for the matrix associated with L (with respect to the standard

bases of Rm and Rn). Thus Mat(Dpf) = Jf (p).

Let F : M → N be a smooth map between two manifolds, m := dim(M) , n := dim(N) , p ∈
M and (U,ϕ) and (W,ψ) charts around p respectively F (p). Then it should be known that

the following diagram commutes:

TpM TF (p)N

Rm Rn

dpF

αϕ,p

∼ αψ,F (p)

∼

Dϕ(p)(ψ◦F◦ϕ−1)

(3.1)
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Proposition 3.2.1. Let S1 act smoothly on the manifold M via θ : S1×M →M , (λ,m) 7→
λ ·m. Suppose a ∈ R is a regular value of the smooth and S1-invariant function f : M → R.
Assume that the restricted smooth action of S1 to the submanifold f−1(a) is free. Define an
equivalence relation ∼ on the preimage f−1( [a,∞) ) by:
∀ m 6= m′ : m ∼ m′ if and only if:

(i) m,m′ ∈ f−1(a) and

(ii) ∃λ ∈ S1 : m = λ ·m′

Then the quotient space
M[a,∞) := f−1( [a,∞) ) / ∼ ,

endowed with the quotient topology, is a topological manifold of dimension dim(M) and car-
ries a canonical smooth structure.
Let Π : f−1( [a,∞) ) � M[a,∞) denote the projection. Then the set Π( f−1( (a,∞) ) )
is open and dense in M[a,∞) and diffeomorphic to f−1( (a,∞) ) via Π. The difference
M[a,∞) \ Π( f−1( (a,∞) ) ) is a submanifold of M[a,∞) and diffeomorphic to f−1(a) / S1.

Proof. First note that, since a is a regular value, the level set f−1(a) is a submanifold of
codimension 1. Because f is S1-invariant, the action restricts to level sets of f . Using
the characteristic property of embeddings, we conclude that the restriction θ|S1×f−1(a) :
S1 × f−1(a) → f−1(a) is a smooth action too. By assumption the action is free, so by the
Quotient Manifold Theorem 2.4.4 the orbit space f−1(a)/S1 is a smooth manifold.

Consider the action of S1 on the product manifold M × C ,

Θ : S1 × (M × C) −→ (M × C) (3.2)

(λ, (m, z) ) 7−→ λ · (m, z) := (λ ·m,λ−1z)

The action is smooth since prM ◦ Θ and prC ◦ Θ are smooth, where prM : M × C → M
and prC : M × C→ C are the projection maps. Define the function

Ψ : M × C −→ R (3.3)

(m, z) 7−→ f(m)− |z|2

Since f is smooth and S1-invariant, Ψ is smooth (compose Ψ with product charts of M ×C)
and S1-invariant too: Ψ(λ · (m, z)) = f(λ ·m) − |λ−1z|2 = f(m) − |z|2 , λ ∈ S1, (m, z) ∈
M × C .
Put

N1 :=
{

(m, z) ∈M × C | f(m) > a , |z| =
√
f(m)− a

}
N2 :=

{
(m, 0) ∈M × C | f(m) = a

}
.

Clearly, we have the disjoint decomposition Ψ−1(a) = N1 t N2. Because we have N2 =
f−1(a)×{0}, the subset N2 is a closed submanifold of M ×C (cf. Appendix Lemma A.2.1)
of codimension 3. Thus, N1 = Ψ−1(a) \N2 is open in Ψ−1(a).
We argue that every point in Ψ−1(a) is a regular point with respect to Ψ ; hence a is a
regular value of Ψ and the level set Ψ−1(a) is a submanifold of M × C of codimension 1.
Let (m0, z0) ∈ Ψ−1(a) be arbitrary. Choose a chart ϕM around m0. Then ϕM × idC is
a chart containing (m0, z0). By diagram (3.1) it suffices to show that the Jacobian matrix
JΨ◦(ϕ−1

M ×idC)(ϕM (m0) , z0) is not the zero matrix (then it has full rank). Let z0 =: x0 +i y0 ∈
C . We compute:

JΨ◦(ϕ−1
M ×idC)(ϕM (m0) , z0) =

(
∇ϕM (m0)( f ◦ ϕ−1

M (·)− |z0|2 )T ,−2x0 , −2y0

)
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If (m0, z0) ∈ N1 , then z0 6= 0 and the Jacobian matrix does not vanish. Now assume
(m0, z0) ∈ N2 , so z0 = 0 and m0 ∈ f−1(a). Now, again applying diagram (3.1), we obtain:

∇ϕM (m0)( f ◦ ϕ−1
M (·)− |z0|2 )T = ∇ϕM (m0)( f ◦ ϕ−1

M )T

= Mat
(
αidR,f(m0) ◦ dm0f ◦ (αϕM ,m0)−1

)
By assumption, a is a regular value of f , so the differential dm0f has full rank. Hence, the
above matrix does not vanish, and therefore

JΨ◦(ϕ−1
M ×idC)(ϕM (m0) , z0) 6= 0 .

This proves that a is a regular value of Ψ.

Since Ψ−1(a) is a submanifold and Ψ is S1-invariant, the action Θ restricts smoothly to
Ψ−1(a) (argue as above). Additionally, if λ · (m, z) = (m, z) , then λ−1z = z and λ ·m = m.
If z 6= 0, then λ = 1. Assume z = 0 , then m ∈ f−1(a) and by assumption (the restricted
action on f−1(a) is free) we obtain λ = 1. In summary, the action on Ψ−1(a) is free, so
the orbit space Ψ−1(a)/S1 is a manifold (of dimension dim(M)) by the Quotient Manifold
Theorem.

Now consider the map

σ : f−1( [a,∞) )→ Ψ−1(a) , σ(m) :=
(
m,

√
f(m)− a

)
(3.4)

It is continuous because it is the restriction of the map f−1( [a,∞) )→M ×C, which itself
is continuous by the universal property of the product topology.
Note that, if m 6= m′ ∈ f−1( [a,∞) ) and m ∼ m′, then f(m) = f(m′) = a and there is a
λ ∈ S1 such that m = λ·m′. Thus, λ·σ(m′) = λ·(m′, 0) = (m, 0) = σ(m). This implies that,
if π : Ψ−1(a) � Ψ−1(a)/S1 is the orbit projection, the composition π ◦ σ factors through
σ̄ : M[a,∞) → Ψ−1(a)/S1 :

f−1( [a,∞) ) Ψ−1(a)

M[a,∞) Ψ−1(a)/S1

σ

Π π

σ̄

(3.5)

Since M[a,∞) carries the quotient topology and the composition π ◦σ is continuous, the map
σ̄ is continuous. Now let us prove that in addition it is a homeomorphism: We shall write
[m] := Π(m) for the equivalence class of m ∈ f−1( [a,∞) ).
Consider the map

τ : Ψ−1(a)/S1 →M[a,∞) (3.6)

S1 · (m, z) 7→

{
[eiArg(z) ·m] = [ z|z| ·m] , if z 6= 0

[m] , if z = 0

We have to show that this definition is independent of choice of representatives. Sup-
pose (m, z) = λ · (m′, z′) for some λ ∈ S1. Then z = λ−1z′, so |z| = |z′|, in particular
z = 0 ⇔ z′ = 0.

Case 1: z 6= 0
We have z = λ−1z′, so |z| = |z′| > 0, and λ ·m′ = m. Thus,

z

|z|
·m =

λ−1z′

|z′|
· (λ ·m′) = (

z′

|z′|
λ−1 λ) ·m′ =

z′

|z′|
·m′.

In particular [ z
|z| ·m ] = [ z′

|z′| ·m
′ ].
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Case 2: z = 0
Because z = z′ = 0 and (m, z) , (m′, z′) ∈ Ψ−1(a), we have m,m′ ∈ f−1(a). Because we
also have λ ·m′ = m, by definition of the equivalence relation ∼ we obtain [m] = [m′].

Thus, the map τ is well-defined. We state that τ = σ̄−1.

(i) τ ◦ σ̄ = idM[a,∞)

Given an arbitrary element x = [m] ∈M[a,∞).
Case 1: m ∈ f−1(a)
In this case we have

σ̄([m]) = S1 · σ(m) = S1 · (m,
√
f(m)− a) = S1 · (m, 0) ,

and thus τ(σ̄(x)) = τ(S1 · (m, 0)) = [m] = x.
Case 2: m /∈ f−1(a)

τ( σ̄(x) ) = τ
(
S1 ·

(
m,

√
f(m)− a︸ ︷︷ ︸
6=0

) )
=
[ √f(m)− a∣∣√f(m)− a

∣∣ ·m] = [m] = x

(ii) σ̄ ◦ τ = idΨ−1(a)/S1

Let y = S1 · (m, z) ∈ Ψ−1(a)/S1 be arbitrary.
Case 1: z = 0

σ̄( τ(y) ) = σ̄([m]) = S1 ·
(
m,
√
f(m)− a

)
= S1 · (m, 0) = S1 · (m, z) = y

Case 2: z 6= 0

σ̄( τ(y) ) = σ̄
([ z
|z|
·m
])

= S1 · σ
( z
|z|
·m
)

= S1 ·
( z

|z|
·m,

√
f
( z
|z|
·m
)
− a

)
(∗)
= S1 ·

( z

|z|
·m,

√
f(m)− a

)
= S1 ·

(( z
|z|

)−1

·
( z

|z|
·m,

√
f(m)− a

))
= S1 ·

(
m,

z

|z|
√
f(m)− a

)
(∗∗)
= S1 · (m, z) = y

We have used the S1-invariance of f for (∗). Equation (∗∗) follows from |z| =
√
f(m)− a

(because (m, z) ∈ Ψ−1(a)).
Hence, we have proven that σ̄ is bijective with inverse function τ . To show that σ̄ is, in
fact, a homeomorphism, it remains to give a proof of the continuity of τ . By the universal
property of quotient spaces, τ is continuous if and only if τ ◦ π is so. Consider the map

H : S1 × f−1( [a,∞) )� Ψ−1(a)

(λ,m) 7→
(
m, λ

√
f(m)− a

)
Clearly, H is well-defined (i.e. its image is contained in Ψ−1(a)), continuous (it is the restric-
tion of the map S1×f−1( [a,∞) )→M×C, which is continuous by the universal property of
product spaces) and surjective. In addition, H(1,m) = σ(m) ∀m ∈ f−1( [a,∞) ). Define
the continuous map F : S1 × f−1( [a,∞) )→M[a,∞) by F := Π ◦ θ, i.e. F (λ,m) := [λ ·m].
Then we obtain

σ̄ ◦ F (λ,m) = π(σ(λ ·m))
(∗)
= π

(
λ ·m,

√
f(m)− a

)
= π

(
λ−1 ·

(
λ ·m,

√
f(m)− a

))
= π ◦H (λ,m) ,
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where we used the S1-invariance of f for (∗). Thus, the following diagram commutes

S1 × f−1([a,∞)) Ψ−1(a)

M[a,∞) Ψ−1(a)/S1

H

F
τ◦π

π

σ̄

τ = σ̄−1

(3.7)

The restriction of H to the open subset S1×f−1( (a,∞) ) onto the open subset Ψ−1(a)\{z =
0} = N1 of Ψ−1(a) is a homoemorphism with (continuous) inverse function

(H|S1×f−1((a,∞)))
−1 : N1 → S1 × f−1( (a,∞) )

(m, z) 7→
( z
|z|

, m
)

Our goal is to prove that H is a quotient map (for the definition of quotient map see A.1).
Then τ ◦ π is continuous because (τ ◦ π) ◦ H = F is continuous. By Lemma A.2.3, if for
any open subset U ⊆ S1 × f−1( [a,∞) ) with H−1(H(U)) = U (such a subset is called
saturated) the image H(U) is open in Ψ−1(a), then H is indeed a quotient map. So, let
U ⊆ S1 × f−1( [a,∞) ) be an arbitrary saturated open subset. Obviously, it suffices to
show that, given (λ,m) ∈ U , there exists an open neighborhood (λ,m) ∈ W ⊆ U such
that H(W ) is open in Ψ−1(a). If (λ,m) ∈ S1 × f−1( (a,∞) ), then there clearly exists such
a neighborhood W (since the restriction of H is a homeomorphism from the open subset
S1 × f−1( (a,∞) ) onto the open subset N1). So we may assume that (λ,m) ∈ S1 × f−1(a).
For any µ ∈ S1 we have H(µ,m) = (m, 0) = H(λ,m). Since U is saturated, we obtain
S1 × {m} ⊆ U . Now, let us assume the following proposition, which we will prove further
below:

Proposition: There exists an open neighborhood Ŵ ⊆M of m in M such that

S1 ×
(
Ŵ ∩ f−1([a,∞))

)
⊆ U .

Then put

W :=
(
S1 × f−1([a,∞))

)
∩
(
S1 × Ŵ

)
= S1 ×

(
Ŵ ∩ f−1([a,∞))

)
⊆ U ,

clearly, W is open in S1 × f−1([a,∞)) and contains (λ,m). We have

H(W ) = Ψ−1(a) ∩ (Ŵ × C) .

“⊆”: trivial

“⊇”: Let (m′, z′) ∈ Ψ−1(a) ∩ (Ŵ × C) be arbitrary. If z′ 6= 0, then

(H|S1×f−1((a,∞)))
−1((m′, z′)) =

(
z′

|z′| ,m
′ ) ∈W .

If z′ = 0, then H(1,m′) = σ(m′) = (m′, 0) = (m′, z′) and (1,m′) ∈W .

So, H(W ) is open in Ψ−1(a).

Proof of the Proposition: Assume by contradiction that the (above) Proposition is false.
Then there is an open neighborhood basis (Wn)n∈N , Wn+1 ⊆ Wn ⊆ M , of m in M and
a sequence (µn,mn)n in S1 × f−1( [a,∞) ) with mn ∈ Wn , (µn,mn) /∈ U , for all n. Thus
mn → m and, because S1 is compact, by passing to a subsequence, we can assume that
µn → µ for some µ ∈ S1 . Therefore (µn,mn) → (µ,m) in S1 × f−1( [a,∞) ). Since U is
open in S1 × f−1( [a,∞) ) and (µ,m) ∈ S1 × {m} ⊆ U , there exists an n0 ∈ N such that
(µn,mn) ∈ U for n ≥ n0. This contradicts (µn,mn) /∈ U for all n ∈ N.

# (Proof of the Proposition)
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In total we have shown that H(U) is open in Ψ−1(a). Thus, by above argumentation, H is
a quotient map and τ ◦ π and τ = σ̄−1 are continuous. So, σ̄ is a homeomorphism.

Because Ψ−1(a)/S1 is a manifold of dimension dim(M) and homeomorphic to M[a,∞), the
latter is a topological manifold of dimension dim(M) too. The canonical smooth structure
on M[a,∞) is the unique one induced by σ̄, that is, σ̄ is a diffeomorphism with respect to
this smooth structure and the one on Ψ−1(a)/S1.

By definition of the quotient topology, the set Π( f−1((a,∞)) ) is open (because f−1((a,∞))
is saturated and open).
The restriction Π|f−1((a,∞)) : f−1((a,∞)) → Π( f−1((a,∞)) ) is a bijection between open
subsets. In addition, clearly σ|f−1((a,∞)) : f−1((a,∞) → N1 and π|N1

: N1 → π(N1) are
smooth maps between the open subsets f−1((a,∞)) and N1 respectivele N1 and π(N1).
Thus, the restriction

Π|f−1((a,∞)) = σ̄−1|π(N1) ◦ π|N1
◦ σ|f−1((a,∞))

(cf. diagram (3.5)) is smooth as composition of smooth maps. To show, that Π|f−1((a,∞))

is even a diffeomorphism, it suffices to prove that (π|N1
◦ σ|f−1((a,∞)) )−1 is smooth. This

follows from the universal property of surjecive submersions and the fact that

(π|N1
◦ σ|f−1((a,∞)) )−1 ◦ π|N1

: N1 → f−1((a,∞))

(m, z) 7→ z

|z|
·m

is smooth for obvious reasons (compare the calculation for σ̄ ◦ τ = id, case 2, to understand,
why (π|N1

◦ σ|f−1((a,∞)) )−1 ◦ π|N1
(m, z) = z

|z| · m holds). Hence, we have proven that

Π|f−1((a,∞)) : f−1((a,∞)) → Π( f−1((a,∞)) ) is in fact a diffeomorphism between open
subsets.

We now want to show that M[a,∞)\Π( f−1((a,∞)) ) is a submanifold of M[a,∞) , diffeo-
morphic to f−1(a)/S1. As we pointed out earlier, N2 = f−1(a) × {0} is a closed and
S1-invariant submanifold of Ψ−1(a) (see also Lemma A.2.2). By Proposition A.2.7, this
implies that (f−1(a) × {0})/S1, endowed with the quotient topology and the canonical
smooth structure by the Quotient Manifold Theorem, is a submanifold of Ψ−1(a)/S1.
Since σ̄(M[a,∞)\Π( f−1((a,∞)) ) ) = ( f−1(a) × {0} )/S1, this means that the difference
M[a,∞)\Π( f−1((a,∞)) ) is homeomorphic to ( f−1×{0} )/S1 via σ̄, and thus carries a unique
smooth structure such that the restriction of σ̄ becomes a diffeomorpism. Clearly, then it
follows that M[a,∞)\Π( f−1((a,∞)) ) is a submanifold of M[a,∞) of dimension dim(M)− 2.
Because f−1(a) × {0} is diffeomorphic to f−1(a), using the characteristic property of sur-
jective submersions, the quotient manifold ( f−1(a)×{0} )/S1 is diffeomorphic to f−1(a)/S1.

Because M[a,∞)\Π( f−1((a,∞)) ) is a submanifold of M[a,∞) of codimension ≥ 1, its com-
plement Π( f−1((a,∞)) ) is dense in M[a,∞).

Remark 3.2.2. We call M[a,∞) the cut of M with respect to the ray [a,∞). From
now on, justified by the preceding Proposition, we will also write f−1((a,∞)) instead of
Π( f−1((a,∞)) ) and f−1(a)/S1 instead of M[a∞)\Π( f−1((a,∞)) ) .
Completely analogously it is possible to introduce the cut of M with respect to the ray
(−∞, a]: M(−∞,a] := f−1((−∞, a])/ v , where for m 6= m′:

m v m′ ⇐⇒ m,m′ ∈ f−1(a) and S1 ·m = S1 ·m′ .

Example 3.2.3. As it turns out, even the most basic example is not at all trivial:
Let S1 act on M = C via multiplication. Let a > 0 be arbitrary and f(z) = |z|2 for
z ∈ C. We claim that M[a,∞)

∼= C . Let Ψ : C × C → R be the map from (3.3), so
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Ψ(w, z) = |w|2−|z|2 . We have to show Ψ−1(a)/S1 ∼= C . Note that S1 · (w, z) = S1 · (w′, z′)
if and only if wz = w′z′ . Set r(w) := −a2 +

√
a2

4 + |w|2 for w ∈ C , so that r(w) = 0 if and

only if w = 0 . Now consider the maps

Ψ−1(a)/S1 −→ C , S1 · (α, β) 7−→ αβ

and

C −→ Ψ−1(a)/S1 , w 7−→ S1 · (α, β)

α =
√
a+ r(w)

β =

{
w
|w|

√
r(w) , if w 6= 0

0 , if w = 0 .

Clearly, both maps are well-defined and inverse and Ψ−1(a)/S1 → C is smooth. The smooth-
ness of C → Ψ−1(a)/S1 follows because α : C → R and β : C → R are smooth, although
the author has to admit that he has not checked this precisely for β (so this example could
actually be false).

Proposition 3.2.4 (cf. [Ler01, Remark 2.2]). The S1-action on M defines a natural smooth
S1-action on the cut M[a,∞) and the restriction f |f−1([a∞)) descends to an S1-invariant
smooth function f̄ : M[a,∞) → R .
More generally, if a Lie group G acts smoothly on M via (g,m) 7→ g ·G m, preserving f and
commuting with the given S1-action on M , then the G-action defined by g ·̄G [m] := [g ·G m]
is a smooth G-action on M[a,∞), preserving f̄ and commuting with the S1-action on the cut.

Proof. Let us start by showing that the action induced by an arbitrary Lie group G is well-
defined. If f(m) ≥ a, then f(g ·G m) ≥ a. If [m] = [m′] and m 6= m′, then m,m′ ∈ f−1(a),
so f(g ·G m) = f(m) = a = f(m′) = f(g ·G m′). In addition, there is a λ ∈ S1 such that
m = λ ·m′, and thus g ·G m = g ·G (λ ·m′) = λ ·(g ·G m′), applying that the actions commute.
This shows [g ·G m] = [g ·G m′].
Obviously, the defined map is a group action. Now let us continue with proving the smooth-
ness of this action:
By definition of the smooth structure on the cut, the action of G on M[a,∞) is smooth if and
only if the map

G×Ψ−1(a)/S1 → Ψ−1(a)/S1

(g , S1 · (m, z)) 7→

{
S1 · σ

(
g ·G

(
z
|z| ·m

))
, if z 6= 0

S1 · σ(g ·G m) , if z = 0

is smooth (here we are using the definition of τ = σ̄−1, see equation (3.6)). This, on the
other hand, is equivalent to the smoothness of the map

H : G×Ψ−1(a)→ Ψ−1(a)/S1

(g, (m, z)) 7→

{
S1 · σ

(
g ·G

(
z
|z| ·m

))
, if z 6= 0

S1 · σ(g ·G m) , if z = 0

(using that idG × π is a surjective submersion). Let g ∈ G , (m, z) ∈ Ψ−1(a) be arbitrary.
Assume z = 0. Then H(g , (m, z)) = S1 · (g ·G m, 0) = S1 · (g ·G m, z). Now suppose z 6= 0.
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Then

H(g, (m, z)) = S1 · σ
(
g ·G

( z
|z|
·m
) )

= S1 ·
(
g ·G

( z
|z|
·m
)
,
√
f(m)− a

)
= S1 · z

|z|
·
(
g ·G m,

z

|z|
√
f(m)− a

)
= S1 ·

(
g ·G m,

z

|z|
√
f(m)− a

)
= S1 · (g ·G m, z)

Thus, if we define the smooth map H̃ : G×Ψ−1(a)→ Ψ−1(a) by H̃(g, (m, z)) := (g·Gm, z),
we obviously have H = π ◦ H̃, so H is smooth. In conclusion, the map (g, m̄) 7→ g ·̄G m̄ is
a smooth group action of G on the cut M[a,∞).

In particular, since S1 is an abelian Lie group, we obtain the natural smooth S1-action ·̄S1

on the cut.
Clearly, the function f̄ defined by f̄([m]) := f(m) is unambiguous. We have

f̄ ◦ σ̄−1 (S1 · (m, z)) =

f̄
( [

z
|z| ·m

] )
, if z 6= 0

f̄([m]) , if z = 0

 = f(m)

Thus, the composition f̄ ◦ σ̄−1 ◦π is smooth and, therefore, f̄ ◦ σ̄−1 is smooth as well, which
proves the smoothness of f̄ . The rest of the proposition is trivial.

3.3 Cutting Manifolds with Boundary

Before we generalize the first proposition of this chapter, we should recapitulate some preva-
lent notation:
Let X and Y be topological spaces and A ⊆ X,B ⊆ Y subsets of X respectively Y . Given
a bijection f : A

∼→ B , we can define the equivalence relation ∼ on the disjoint union
X t Y = {(x, 0) |x ∈ X} ∪ {(y, 1) | y ∈ Y } by:

(x, 0) ∼ (y, 1) ⇔ (y, 1) ∼ (x, 0) ⇔ x ∈ A , y ∈ B and f(x) = y

for x ∈ X and y ∈ Y .
(x, 0) ∼ (x′, 0) if and only if x = x′ , for x, x′ ∈ X. (y, 1) ∼ (y′, 1) if and only if y = y′ ,
for y, y′ ∈ Y .
The quotient space X ∪f Y := (X t Y )/∼ is endowed with the quotient topology.
We will often just write x instead of (x, 0) and y instead off (y, 1) if it is clear from context
that we mean an element of XtY . Furthermore, we will also informally denote the elements
of X ∪f Y with x respectively y when we mean the equivalence classes of x respectively y.
Let us now prove a useful lemma:

Lemma 3.3.1. Let X,Y, Z be topological spaces, π : X → Y a quotient map, U ⊆ Z , W ⊆
X open subsets and ρ : U

∼→ W a homeomorphism. Suppose further that π|W : W
∼→ π(W )

is bijective and W is saturated (i.e. π−1(π(W )) = W ). Let ρ̂ := π|W ◦ ρ : U
∼→ π(W ).

Then π̂ : Z ∪ρ X � Z ∪ρ̂ Y defined by π̂(z) = z for z ∈ Z and π̂(x) = π(x) for x ∈ X is a
well-defined quotient map.

Proof. By Lemma A.2.4, π|W : W → π(W ) is a quotient map. Because it is bijective by
assumption, we conclude that π|W is a homeomorphism onto the open subset π(W ) ⊆ Y .
Thus, ρ̂ is a homeomorphism too.
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Suppose z ∈ U , x ∈W and x = ρ(z). Then ρ̂(z) = π(ρ(z)) = π(x), so π̂ is well-defined.
By the universal property of the coproduct, the map Z tX → Z t Y , z 7→ z , x 7→ π(x) is
continuous, thus the composition ZtX → ZtY → (ZtY )/ ∼Y is continuous as well, where
∼X , ∼Y are the equivalence relations on Z tX respectively Z t Y . Since π̂ is well-defined,
the above map factors through the continuous map π̂ : (Z t X)/ ∼X −→ (Z t Y )/ ∼Y .
Because Z tX → Z t Y → (Z t Y )/ ∼Y is surjective, π̂ is also surjective.

Let V ⊆ Z ∪ρ X = (Z tX)/∼X be an arbitrary open subset, saturated with respect to π̂.
We need to show that its image π̂(V ) is open. Then by Lemma A.2.3 we can conclude that
π̂ is a quotient map. Let

ιZ,X : Z ↪→ Z tX ιZ,Y : Z ↪→ Z t Y
ιX : X ↪→ Z tX ιY : Y ↪→ Z t Y

denote the inclusion maps and

πX : Z tX � (Z tX)/∼X
πY : Z t Y � (Z t Y )/∼Y

the projections. Then, by applying the definitions of the corresponding topologies, we get:

π̂(V ) is open ⇐⇒ π−1
Y (π̂(V )) is open

⇐⇒ ι−1
Z,Y (π−1

Y (π̂(V ))) is open and

ι−1
Y (π−1

Y (π̂(V ))) is open

We state that
ι−1
Z,Y (π−1

Y (π̂(V ))) = ι−1
Z,X(π−1

X (V )) . (3.8)

To show this, suppose z ∈ Z is arbitrary. Then we clearly have

z ∈ ι−1
Z,Y (π−1

Y (π̂(V )))⇐⇒ πY (z, 0) ∈ π̂(V ) ⇐⇒ π̂(πX(z, 0)) ∈ π̂(V )

⇐⇒ πX(z, 0) ∈ π̂−1(π̂(V )) = V ⇐⇒ z ∈ ι−1
Z,X(π−1

X (V ))

This shows equation (3.8), and thus ι−1
Z,Y (π−1

Y (π̂(V ))) is open. Next we claim

ι−1
Y (π−1

Y (π̂(V ))) = π(ι−1
X (π−1

X (V ))) . (3.9)

First suppose that y ∈ ι−1
Y (π−1

Y (π̂(V ))) is arbitrary. Thus πY (y, 1) ∈ π̂(V ), say πY (y, 1) =
π̂(v) for v ∈ V .
Assume that v /∈ πX(ιX(X)). Then v ∈ πX(ιZ,X(Z)), say v = πX ◦ ιZ,X(z) for z ∈ Z.
Thus πY (z, 0) = π̂(v) = πY (y, 1) and y = ρ̂(z) = π(ρ(z)) , z ∈ U . Hence v = πX(z, 0) =
πX(ρ(z), 1) ∈ πX(ιX(X)), which is a contradiction. Thus v ∈ πX(ιX(X)), say v = πX(x, 1)
for x ∈ X. We conclude that πY (y, 1) = π̂(v) = π̂(πX(x, 1)) = πY (π(x), 1). This implies
y = π(x) ∈ π(ι−1

X (π−1
X (V ))).

To prove the converse inclusion, let y ∈ π(ι−1
X (π−1

X (V ))) be arbitrary. Choose x ∈ X with
y = π(x) and πX(x, 1) ∈ V . Thus πY (y, 1) = πY (π(x), 1) = π̂(πX(x, 1)) ∈ π̂(V ). This shows
y ∈ ι−1

Y (π−1
Y (π̂(V ))) and therefore equation (3.9).

Since V is open, so is ι−1
X (π−1

X (V )). If ι−1
X (π−1

X (V )) is also saturated, its image under π
is open because π is a quotient map. So, assume π(x) ∈ π(ι−1

X (π−1
X (V ))) ; we have to

show that x ∈ ι−1
X (π−1

X (V )). Let π(x) = π(x′), where πX(x′, 1) ∈ V . Then π̂(πX(x, 1)) =
π̂(πX(x′, 1)) ∈ π̂(V ). Because V is saturated with respect to π̂ by assumption, this implies
πX(x, 1) ∈ V .
Thus, ι−1

Y (π−1
Y (π̂(V ))) = π(ι−1

X (π−1
X (V ))) is open in Y , which finishes the proof.
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Remark 3.3.2. Given two manifolds M and N with open subsets U ⊆ M , V ⊆ N and a
diffeomorphism F : U → V , the topological space M ∪F N is a topological manifold of
dimension dim(M) = dim(N) and carries a unique smooth structure such that the inclusion
maps ιM : M ↪→M ∪F N and ιN : N ↪→M ∪F N are smooth embeddings. If AM = (Ui, ϕi)i
and AN = (Vj , ψj)j are atlases for M respectively N , then an atlas for M ∪F N is given

by AM∪FN := (Ũi, ϕ̃i)i ∪ (Ṽj , ψ̃j)j , where Ũi = ιM (Ui) and ϕ̃i ◦ ιM |Ui = ϕi and (Ṽj , ψ̃j) is
defined analogously (it is easy to see that this is indeed an atlas and that the equivalence
class of AM∪FN does not depend on the choice of representatives AM and AN ).
This construction obviously still works if M and N are manifolds with boundary such that
U ∩ ∂M = ∅ = V ∩ ∂N (then M ∪F N is a smooth manifold with boundary).

Proposition 3.3.3. Let M be a manifold with boundary. Suppose the boundary P := ∂M is
endowed with a smooth and free S1-action. Put X := M/∼ , with ∼ the equivalence relation
on M such that for all m 6= m′ : m ∼ m′ if and only if the following hold:

(i) m,m′ ∈ P

(ii) m = λ ·m′ for some λ ∈ S1 .

Then X is a topological manifold of dimension dim(M) and we can endow X with a smooth
structure, depending on a choice, so that P/S1 is a submanifold of X and M\P is diffeo-
morphic to X\(P/S1) via the projection Π : M � X.

Proof. By the Collar Neighborhood Theorem there exists a diffeomorphism Φ : U(P )
∼→

P × [0,∞), where U(P ) is an open neighborhood of the boundary P , such that Φ(q) =
(q, 0) ∀q ∈ P . The same theorem also states that the canonical map id : M

∼→M\P ∪Φ|U(P )\P

(P × [0,∞)) is a diffeomorphism.
Consider the projection onto the second factor f : P × R → R . It is S1-invariant with
respect to the trivial action on R and the product action on P × R. Furthermore, 0 is a
regular value since d0f : TpP × T0R → T0R is the projection onto the second factor, thus
6= 0, for an arbitrary p ∈ P . By assumption the restricted S1-action on f−1(0) = P × {0}
is free. We endow Y := (P ×R)[0,∞) with the smooth structure given by Proposition 3.2.1.
Again, applying Proposition 3.2.1, we obtain that U(P )\P is diffeomorphic to P × (0,∞) =
f−1((0,∞)) ⊆ Y (the notation refers to Remark 3.2.2) via F := π|P×(0,∞)◦Φ|U(P )\P , where
π : P × [0,∞) = f−1([0,∞))� Y is the projection. Therefore, using the preceding Remark
3.3.2, N := M\P ∪F Y is a smooth manifold. By Lemma 3.3.1 the induced map

π̂ : M\P ∪Φ|U(P )\P (P × [0,∞)) −→ N = M\P ∪F (P × R)[0,∞)

is a quotient map. Since Π and π̂ are quotient maps and id is a homeomorphism, the map
id, defined by the following commuting diagram, is a homeomorphism.

M M\P ∪Φ|U(P )\P (P × [0,∞))

X = M/∼ N = M\P ∪F (P × R)[0,∞)

id

Π π̂

id

The smooth structure on X is the one that turns id into a diffeomorphism. Then the
described properties of X follow simply because Y fulfills these due to Proposition 3.2.1.

Remark 3.3.4. Notice that the only choice we made in the proof above was the collar neigh-
borhood Φ : U(P )→ P × [0,∞).

Remark 3.3.5. For an arbitrary manifold N , on which S1 acts smoothly and freely, the
diffeomorphism N × R ∼→ N × R , (n, t) 7→ (n,−t) induces a natural diffeomorphism (N ×
R)[0,∞)

∼= (N × R)(−∞,0] of the cuts with respect to the projection onte the second factor.
Thus, if we choose a diffeomorphism Φ of a neighborhood of P := ∂M onto P × (−∞, 0]
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that fixes P , we have a natural diffeomorphism Φ′ of this neighborhood onto P × [0,∞) and
X = M/∼ ∼= M\P ∪Φ′ (P × R)[0,∞)

∼= M\P ∪Φ (P × R)(−∞,0] (notice that the notation
‘∪Φ ’ is of course slightly imprecise).

Remark 3.3.6. Now consider a collar neighborhood U ∼= P × [0,∞) of P = ∂M . We can

embed M into the manifold without boundary M̃ := M ∪U\P (P × R). Let Φ : W →
Φ(W ) ⊆ P ×R be an arbitrary diffeomorphism of an open neighborhood W of P in M̃ onto
the open subset Φ(W ) in P ×R such that Φ|P = id. Consider the connected components Pn
of P . They are S1-invariant. For each n choose an open collar neighborhood Un ⊆ U ∩ W
of Pn in M such that the Un are pairwise disjoint. Then Un and Un\Pn are connected and
Φ(Un) ⊆ Pn×R. For all n we have either Φ(Un) ⊆ Pn×[0,∞) open or Φ(Un) ⊆ Pn×(−∞, 0]
open. Let N+ denote the set of the n with Φ(Un) ⊆ Pn × [0,∞) and N− denote the set of
the n with Φ(Un) ⊆ Pn × (−∞, 0]. Then we can define the smooth structure on X through

X = M/∼ (3.10)

∼= M\P ∪n∈N+

(
∪Φ|Un\Pn (Pn × R)[0,∞)

)
∪n∈N−

(
∪Φ|Un\Pn (Pn × R)(−∞,0]

)
with the convention that we glue each (Pn ×R)[0,∞) respectively (Pn ×R)(−∞,0] separately
to M\P . Notice that, strictly speaking, we should write Φ(Un)/∼ for n ∈ N+ (the open
image of Φ(Un) in (Pn × R)[0,∞) ) instead of the entire cut (Pn × R)[0,∞) and similarly for
(Pn × R)(∞,0] .
Let us additionally assume that N− = ∅. Clearly, V =

⊔
n Un ⊆W is a collar neighborhood

of P in M . Then X ∼= M\P ∪Φ|V\P (P × R)[0,∞) (again, to be precise one should write
Φ(V)/∼ instead of the entire cut), so the smooth structures on X defined by equation (3.10)
and the construction in Proposition 3.3.3 coincide. This is a consequence of the fact that we
can cut each connected component of a manifold separately and consider the disjoint union
of these cuts which is exactly the same as cutting the whole manifold at once.

Example 3.3.7. Consider M = T1 × [0, 1] = R/(2πZ) × [0, 1] and the S1-action on ∂M =
T1 × {0, 1} defined by:

λ · (x, j) = (λ+ x, j) , λ, x ∈ R/(2πZ) , j = 0, 1

Then X = S2 for geometric reasons (there is an obvious choice for a homeomorphism).

Example 3.3.8. Analogously to the previous example, we consider the 3-dimensional case:
Let M = T2 × [0, 1] with the smooth and free S1-action on the boundary ∂M = T2 × {0, 1}
defined by

λ · ((x, y) , j) :=

{
((x+ λ, y) , j) , if j = 0

((x, y + λ) , j) , if j = 1

for λ, x, y ∈ T1 = S1. We claim that X = S3.

Let S2
+ := S2 ∩

{
(x1, x2, x3) ∈ R3

∣∣ x1 ≥ 0
}

. Consider the spherical coordinates

sp.coord : S1 × [0, 1] −→ S2
+ ⊆ R3

(ϕ, ϑ) 7−→
(
sin
(π

2
ϑ
)
, cos

(π
2
ϑ
)

cos
(
ϕ
)
, cos

(π
2
ϑ
)

sin
(
ϕ
))

on S2. The map is obviously continuous and surjective. Furthermore, for ϕ ∈ S1 define

Φϕ : R3 ↪→ R4 = C× R2 , Φϕ(x, y, z) := (x · eiϕ, y, z) .

This linear map is a smooth embedding that preserves the distance. Then the map

Ψ : M = T2 × [0, 1] −→ S3

(x, y, t) 7−→ Φx(sp.coord(y, t))
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is continuous and surjective and factors through Ψ : M/∼ = X → S3. Ψ is continuous by the
universal property of the quotient topology and injective by definition. Since M is compact,
so is X = M/∼ . Because S3 is Hausdorff, Ψ is closed and therefore a homeomorphism.
Thus, we can equip X with the smooth structure given in Proposition 3.3.3 as well as with
the smooth structure induced by Ψ. It is a well-known fact that every 3-manifold carries
a unique smooth structure (see [aut21a]). Therefore, these two smooth structures on X
must coincide and Ψ is in fact a diffeomorphism if we endow X with the canonical smooth
structure from Proposition 3.3.3.

For a final result in this chapter let us develop a criterion to decide whether two smooth
structures on X = M/∼ from Proposition 3.3.3, with respect to the choice of two collar
neighborhoods Φj : Uj → ∂M×[0,∞) , j = 1, 2 , are the same. For this we need the following
lemma:

Lemma 3.3.9. Let P be a manifold with a free S1-action and V1, V2 ⊆ P × R be two open
neighborhoods of P × {0}. Let Wi := Vi ∩ (P × [0,∞)) , i = 1, 2 , and G : W1 → W2 a
diffeomorphism of manifolds with boundary. Put f = pr2 : P × R � R the projection onto
the second factor and Π : P × R� (P × R)[0,∞) the projection onto the cut with respect to
f and the S1-action λ · (p , t) := (λ · p , t). Assume the following conditions hold:

(i) G|P×{0} = id

(ii) f ◦G = f near the boundary P × {0} in P × [0,∞).

(iii) G is S1-equivariant near the boundary P × {0}.

Then G : Π(W1)→ Π(W2) , [p, t] 7→ [G(p, t)] is a diffeomorphism too.

Proof. Clearly G is well-defined and bijective. Furthermore, Wi is saturated with respect to
Π, so Π(Wi) is open in (P × R)[0,∞). By symmetry, it suffices to prove that G is smooth.

We only need to show that G is smooth on (P × {0})/∼ .
As in the proof of Proposition 3.2.1 let σ̄ : (P ×R)[0,∞) → Ψ−1(0)/S1 denote the homeomor-

phism σ̄([p, t]) = S1 ·
(
p, t,

√
f(p, t)

)
=
[
p, t,

√
f(p, t)

]
. By definition σ̄ is a diffeomorphism,

so G is smooth iff H := σ̄ ◦G ◦ σ̄−1 is smooth. For [p, t, z] ∈ σ̄(Π(W1)) near f−1(0)/S1 we
have

H([p, t, z]) = σ̄ ◦G ◦ σ̄−1 ( [p, t, z] )

(3.6)
=

{
σ̄ ◦G ( [ z|z|p, t] ) , if z 6= 0

σ̄ ◦G ( [p, t] ) , if z = 0

=

{
σ̄ ( [G( z

|z|p, t) ] ) , if z 6= 0

σ̄ ( [G(p, t) ] ) , if z = 0

=

{[
G( z
|z|p, t) ,

√
f(G( z

|z|p, t))
]

, if z 6= 0[
G(p, t),

√
f(G(p, t))

]
, if z = 0

(ii)
=

{[
G( z
|z|p, t) ,

√
f( z
|z|p, t)

]
, if z 6= 0[

G(p, t) ,
√
f(p, t)

]
, if z = 0

(iii)
=

{[
z
|z| G(p, t) ,

√
f(p, t)

]
, if z 6= 0[

G(p, t) ,
√
f(p, t)

]
, if z = 0

=

{[
G(p, t) , z

|z|

√
f(p, t)

]
, if z 6= 0[

G(p, t) ,
√
f(p, t)

]
, if z = 0

= [G(p, t) , z ]

Notice that we could apply (iii) because ( z
|z|p , t) lies in a neighborhood of P ×{0} as in (iii)

and thus G(p , t) = G(( z
|z| )
−1 z
|z| p , t) = ( z

|z| )
−1G( z

|z| p , t) . Because G is a diffeomorphism
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of manifolds with boundary, we can extend G to a smooth map on an open neighborhood
W ′1 of W1 in P ×R . Then the map (p, t, z) 7→ (G(p, t), z), defined on W ′1×C ⊆ P ×R×C ,
is smooth. Thus, H is smooth near f−1(0)/S1 and G is smooth near (P × {0})/∼ .

Proposition 3.3.10. In the situation of Proposition 3.3.3 let Φi : Ui → P×[0,∞) , i = 1, 2 ,
be two collar neighborhoods of the boundary P = ∂M . If G := Φ2 ◦ Φ−1

1 : W1 := Φ1(U1 ∩
U2) → Φ2(U1 ∩ U2) =: W2 satisfies conditions (ii) and (iii) from Lemma 3.3.9, then the
smooth structures on X = M/∼ , induced by Φ1 and Φ2 , coincide.

Proof. Adopt the notation of the proof of Proposition 3.3.3, i.e. idj : M →M\P ∪Φj (P ×
[0,∞)) , j = 1, 2 , is the induced diffeomorphism by Φj and idj : X → Nj := M\P ∪Φj

(P ×R)[0,∞) is the descended homeomorphism, defining the smooth structure Aj on X with
respect to Φj . Then

A1 = A2 ⇐⇒ The identity idX : (X,A1)→ (X,A2) is a diffeomorphism.

⇐⇒ id2 ◦ id1
−1 : N1 → N2 is a diffeomorphism.

By symmetry, it suffices to show that id2 ◦ id1
−1 is smooth. Notice that id2 ◦ id1

−1 is just
the identity on the open subset M\P ⊆ Nj , j = 1, 2 . On the open subset Π(W1) ⊆ N1 the
map id2 ◦ id1

−1 is just the map G : Π(W1)→ Π(W2) , [p, t] 7→ [G(p, t)], which is smooth by
Lemma 3.3.9. Because M\P and Π(W1) cover N1, the map id2◦id1

−1 is indeed smooth.

42



4 Symplectic and Contact Reduction

4.1 Preliminaries

This section will contain a short recapitulation of some advanced definitions occurring in
the broader context of group actions on manifolds as well as some useful lemmata which we
will apply in the two main proofs of this chapter.
We assume, the reader is familiar with the concepts of Lie algebras, one-parameter subgroups
of Lie groups and exponential maps, otherwise Lee gives a solid introduction in chapters 8
and 20 of [Lee13], which is also recommended for a more detailed approach to the following
definitions regarding Lie groups.

Definition 4.1.1. Given a smooth (left) action θ : G×M →M of the Lie group G on the
manifold M , we define the infinitesimal generator of θ as the map

θ̂ : Lie(G) = g −→ X(M) =
{

vector fields on M
}

X 7−→ X̂ with X̂p defined as

X̂p :=
d

dt

∣∣∣∣
t=0

(exp(tX) · p) = deθ
(p) ·Xe

Facts 4.1.2.

(a) X̂ is smooth, so θ̂ is well-defined.

(b) θ̂ is a Lie algebra antihomomorphism, i.e. it is linear and satisfies θ̂([X,Y ]) =

−[θ̂(X), θ̂(Y )] .

Notation 4.1.3. Let F : G → H be a Lie group homomorphism. Then we denote by
F∗ : Lie(G) = g → Lie(H) = h the induced Lie algebra homomorphism, i.e. F∗(X) = Y is
the unique left invariant vector field with deF ·Xe = Ye.

Definition 4.1.4. Let G be a Lie group with Lie algebra g.

(a) For g ∈ G put Adg := (intg)∗ : g→ g, where intg : G→ G denotes the conjugation by
g : intg(h) := ghg−1 .

(b) The map Ad : G→ Aut(g) , g 7→ Adg is called the adjoint representation of G.

(c) For g ∈ G put Ad∗g : g∗ → g∗ , µ 7→ µ ◦Adg−1 .

(d) The map Ad∗ : G → Aut(g∗) , g 7→ Ad∗g is called the coadjoint representation of
G.

Facts 4.1.5.

(a) Ad is a Lie group representation, i.e. it is a Lie group homomorphism into Aut(V )
for some finite dimensional vector space V , in particular Ad is smooth.

(b) Ad∗ is a Lie group representation.
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(c) It follows from (a) resp. (b) that Ad resp. Ad∗ induces a natural (smooth) group
action of G on the finite-dimensional vector space g resp. g∗ via g ·X := Adg(X) resp.
g · µ := Ad∗g(µ) for g ∈ G , X ∈ g , µ ∈ g∗.

Now let us dedicate ourselves to the announced lemmata.

Lemma 4.1.6. Let the Lie group G act on M , p ∈M . For all v ∈ TpM the following holds:

v ∈ Tp(G · p) ⇐⇒ There is a smooth path γ : I := (−ε, ε)→ G

such that γ(0) = e and v =
d

dt

∣∣∣∣
t=0

(
γ(t) · p

)
.

Proof. Assume v ∈ Tp(G ·p). Choose a smooth path δ : I → G ·p ⊆M with δ(0) = p, δ̇(0) =
v. By Proposition 2.1.13 the canonical bijection Φ : G ·p→ G/Gp is a diffeomorphism. Now
choose a local cross section χ : U → G of G/Gp such that U contains Φ ◦ δ(I) (if necessary,
make I smaller). Then γ := χ ◦ Φ ◦ δ is smooth, γ(0) = χ(Gp) = e and for t ∈ I we have
δ(t) = g · p for some g ∈ G and χ(g Gp) = gh for some h ∈ Gp. Then

γ(t) · p = gh · p = g · p = δ(t)

For “⇐” note that we have the smooth sequence

I G G/Gp G · pγ pr Φ−1

,

that maps t ∈ I onto γ(t) · p.

Remark 4.1.7. Notice that the condition γ(0) = e is not necessary for “⇐”. It suffices to
demand γ(0) ∈ Gp .

Lemma 4.1.8. Let θ : G×M →M be a smooth G-action. Suppose γ1, γ2 : I = (t0− ε, t0 +
ε)→ G are two paths in G with γ1(t0) = γ2(t0) and γ̇1(t0) = γ̇2(t0). Then

d

dt

∣∣∣
t=t0

(
γ1(t) · p

)
=

d

dt

∣∣∣
t=t0

(
γ2(t) · p

)
.

Proof. Let g = γ1(t0) = γ2(t0). For i = 1, 2 we compute

d

dt

∣∣∣
t=t0

(
γi(t) · p

)
=

d

dt

∣∣∣
t=t0

(
θ(p)(γi(t))

)
= dgθ

(p) · γ̇i(t0) .

Lemma 4.1.9. Suppose θ : G×M →M is a smooth G-action and p ∈M . Let θ̂ : g→ X(M)
be the infinitesimal generator of θ as in Definition 4.1.1 and evp : X(M) → TpM the
evaluation function. Their composition is linear with image

im
(

evp ◦ θ̂
)

= Tp(G · p) .

In particular, for every vector x tangent to the orbit through p there exists an X ∈ g with
x = X̂p.

Proof. evp and θ̂ are both linear, so the composition is so too. The inclusion “⊆” follows

directly from Lemma 4.1.6 and the definition of X̂p. Now consider x ∈ Tp(G · p). Using
Lemma 4.1.6 again, we see that there is a path γ : I → G through e such that d

dt

∣∣
t=0

(γ(t) ·
p) = x. Let X be the unique vector field in g with Xe = γ̇(0). Then γ̇(0) = d

dt

∣∣
t=0

exp(tX)
and the statement follows from Lemma 4.1.8.
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Proposition 4.1.10 (Tangent space of quotient manifold). Given a smooth, free and proper
G-action θ : G×M →M on M . For p ∈M we have the commuting diagram

TpM

TpM /Tp(G · p) TG·pM/G

prp dpπ

∼=
Ψp

(4.1)

where π : M �M/G and prp : TpM � TpM /Tp(G · p) are the natural projections and Ψp ,
defined by

Ψp(x+ Tp(G · p)) := dpπ · x , (4.2)

is a linear isomorphism.

Proof. By the Quotient Manifold Theorem, M/G is indeed a manifold. To show that Ψp is
well-defined it suffices to prove Tp(G ·p) ⊆ ker(dpπ). This follows directly from Lemma 4.1.6
and π(g · p) = π(p) ∀g ∈ G. Ψp is linear and surjective because dpπ is so. By Proposition
2.1.12, G · p is a submanifold of M , diffeomorphic to G, so

dim(TpM /Tp(G · p)) = dim(M)− dim(G) = dim(TG·pM/G) .

Therefore, Ψp is in fact an isomorphism.

Remark 4.1.11. Notice that Ψp could also be defined solely by the commutativity of diagram
(4.1).

Proposition 4.1.12. Let θ : G ×M → M be a smooth, free and proper G-action on the
manifold M . Let π : M →M/G denote the projection. Then

ker dpπ = Tp(G · p) ∀ p ∈M .

Proof. For v ∈ Tp(G · p) there exists a smooth path γ : I → G · p with v = d
dt

∣∣
t=0

(i ◦ γ (t)),

where i : G · p ↪→M is the inclusion. Then dpπ · v = d
dt

∣∣
t=0

(π ◦ i ◦ γ (t)) = d
dt

∣∣
t=0

(π(p)) = 0.
For the other inclusion note that dim ker dpπ = dim(M)− (dim(M)−dim(G)) = dim(G) =
dim Tp(G · p) because G ∼= G · p .

Let us complete this section with the basic definitions of symplectic and contact geometry.

Definition 4.1.13 (Symplectic bilinear form).

(a) Given a linear space V , a 2-linear form ω : V × V → R is called a symplectic
(bilinear) form if ω is nondegenerate.

(b) A symplectic vector space is a pair (V, ω), where ω is a symplectic bilinear form
on V .

(c) The symplectic orthogonal complement of a linear subspace U of a symplectic
vector space V is the linear subspace

Uω :=
{
v ∈ V | ω(v, u) = 0 ∀u ∈ U

}
.

(d) A linear subspace U ⊆ V of a symplectic vector space is called isotropic if U ⊆ Uω .

(e) A linear map F : (V1, ω1) → (V2, ω2) between two symplectic vector spaces is called
symplectic if F ∗ω2 = ω1, where F ∗ denotes the linear pullback with respect to F .

Facts 4.1.14. Let (V, ω) be a symplectic vector space. The following hold:

(a) dim(U) + dim(Uω) = dim(V )
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(b) (Uω)ω = U

(c) V has a basis of the form e1, f1, . . . , en, fn such that

ω = e∗1 ∧ f∗1 + . . .+ e∗n ∧ f∗n ,

where e∗1, f
∗
1 , . . . , e

∗
n, f
∗
n is the dual basis of e1, f1, . . . , en, fn. Such a basis is called

symplectic basis. In particular, any symplectic vector space has even dimension.

(d) A subspace U is isotropic if and only if ω|U := ω|U×U = 0.

Facts 4.1.15. For a vector space V of dimension 2n, endowed with an alternating bilinear
form ω, the following are equivalent:

(i) ω is nondegenerate, i.e. the induced linear map Ω : V → V ∗ , v 7→ ω(v, ·) is an
isomorphism.

(ii) For every 0 6= x ∈ V there exists a y ∈ V such that ω(x, y) 6= 0.

(iii) ω∧n = ω ∧ . . . ∧ ω︸ ︷︷ ︸
n-times

6= 0 .

Definition 4.1.16 (Symplectic manifold).

(a) A symplectic manifold (M,ω) consists of a manifold M and a (differential) 2-form
ω ∈ Ω2(M) such that the following hold:

(i) ωp is a symplectic bilinear form for all p ∈M .

(ii) ω is closed, i.e. dω = 0.

(b) A symplectomorphism is a diffeomorphism F : (M1, ω1) → (M2, ω2) between two
symplectic manifolds with F ∗ω2 = ω1.

Definition 4.1.17 (Contact manifold).

(a) A contact manifold (M, ξ) consists of a manifold M of dimension 2n + 1 together
with a smooth cooriented distribution ker(α) = ξ ⊆ TM for some α ∈ Ω1(M) such
that α∧(dα)∧n 6= 0. Then α is called a contact form and ξ its contact distribution.

(b) By a strict contact manifold we mean a tuple (M,α) of a manifold M together
with a fixed contact form α.

(c) A contactomorphism is a diffeomorphism F : (M1, ξ1)→ (M2, ξ2) with dF (ξ1) = ξ2
(equivalently: F ∗α2 = fα1 for some f ∈ C∞(M,R\{0}) if we write ξi = ker(αi) , i =
1, 2).

Remark 4.1.18.

(a) The condition α∧ (dα)∧n 6= 0 does not depend on the choice of α, so the term ‘contact
manifold’ is indeed well-defined.

(b) With the above Facts 4.1.15 it is easy to see that α ∧ (dα)∧n 6= 0 is equivalent to the
nondegenerecy of dα|ξ at every point if we write ξ = ker(α).

4.2 Symplectic Reduction

Our goal in this section will be, to prove the well-known Marsden-Weinstein-Meyer Theorem,
which gives a natural construction of a symplectic structure on the quotient space obtained
by a free and proper hamiltonian action of a Lie group on a symplectic manifold. The
structure of the proof we will present below is inspired by [Sil08].
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Definition 4.2.1. Let (M,ω) be a symplectic manifold and θ : G ×M → M a smooth
G-action on M . θ is a symplectic action if θg is a symplectomorphism for all g ∈ G.

Now consider the case where (M,ω) is a symplectic manifold, θ : G×M →M a symplectic
G-action and g = Lie(G) the Lie algebra of G with dual vector space g∗.

Definition 4.2.2. A smooth map µ : M → g∗ is called a moment map if the following
two conditions hold:

(i) µ is G-equivariant (with the natural action on g∗ by Ad∗, see Facts 4.1.5).

(ii) For X ∈ g we define

µX : M → R , µX(p) := 〈µ(p), X〉 = µ(p)(X) ,

where 〈·, ·〉 : g∗ × g→ R is the canonical bilinear form. Then

dµX = −ιX̂ω ∀X ∈ g (4.3)

with X̂ = θ̂(X) the induced vector field by X.

Then (M,ω,G, µ) is called a hamiltonian G-space and θ is a hamiltonian action.

Remark 4.2.3.

(a) A simple calculation shows that µ : M → g∗ is smooth if and only if µX is smooth for
all X ∈ g. In particular, ‘dµX ’ is a well-defined expression.

(b) Recall that for any real n-dimensional vector space V there is a natural identification

V −̃→TxV of V with its tangent space at x ∈ V so that for an arbitrary isomorphism

Φ : Rn → V the following diagram commutes:

Rn V

TΦ−1(x)Rn TxV

Φ

can

dΦ−1(x)Φ

Now let F : M → V ∗ be a smooth function, where M is a manifold containing p and
V a finite-dimensional vector space. Under the above identification V ∗ ∼= TF (p)V

∗ and
R ∼= TFX(p)R, we obtain

〈dpF · v , X〉 = dpF
X · v ∀ v ∈ TpM , X ∈ V

by a basic computation.

(c) Import special cases are G = R and G = S1. Note that, since G is abelian, Ad∗

is trivial, so condition (i) is equivalent to the G-invariance of µ, and, since G has
dimension 1, condition (ii) is equivalent to dµ∂t = −ι∂̂tω for the standard vector field
∂t on G. Therefore, one often speaks of a moment map µ : M → R, referring to
µ∂t . Notice that the integral curve of ∂̂t through p is exp(t ∂t) · p = t · p, so ∂̂t is the
vector field generated by the G-action. This means we search for a (hamiltonian) map

µ : M → R such that dµ = −ιY ω, where Y := ∂̂t is the vector field generated by the
action. This hopefully explains why we call such an action hamiltonian. If we have
dµ = −ιY ω, then the action is already symplectic because

LY ω
Cartan
===== d(ιY ω) = −d(dµ) = 0 ,

thus ρ∗tω = ω, where ρt = θt is the flow of Y = ∂̂t (if θ denotes the action). Fur-
thermore, µ is even G-invariant because d

dt (µ(t · p)) = dµ · Y = 0. Thus µ induces a
moment map µ̃ with µ̃∂t = µ.
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Theorem 4.2.4 (Marsden-Weinstein-Meyer). Let (M,ω,G, µ) be a hamiltonian G-space
and i : N := µ−1(0) ↪→M denote the inclusion.

(a) If G acts freely on N , then 0 is a regular value of µ and N is a closed submanifold of
M .

(b) If in addition the restricted action of G on N is proper, then the quotient manifold
Mred := N/G carries a unique 2-form ωred such that π∗ωred = i∗ω, where π : N �
Mred is the projection. ωred is a symplectic form on Mred.

Remark 4.2.5.

(a1) G acts on µ−1(0) since µ(g · p) = Ad∗g(µ(p)) = µ(p) ◦Adg−1 = 0 for p ∈ µ−1(0).

(a2) We will show something even stronger: 0 is a regular value of µ if and only if G acts
locally freely on N .

(b) The condition in (b) is fulfilled if G is compact or (more generally) if G acts properly
on M (cf. Proposition 2.1.10).

Definition 4.2.6. We call the pair (Mred, ωred) the symplectic quotient or the reduction
of (M,ω) with respect to (G,µ).

Lemma 4.2.7. Let (M,ω,G, µ) be a hamiltonian G-space and gp denote the Lie algebra of
the stabilizer of p ∈ M . Let g0

p := { ζ ∈ g∗ | 〈ζ,X〉 = 0 ∀X ∈ gp } be the annihilator of gp.
Considering dpµ : TpM → g∗ we obtain:

ker dpµ = (Tp(G · p))ωp

im dpµ = g0
p

Proof. Notice that Gp is a closed subgroup of G, so it is a Lie group and its Lie algebra gp
is embedded in g. By equation (4.3) and Remark 4.2.3 (b) we get

〈dpµ · v,X〉 = dpµ
X · v = ωp(v, X̂p) ∀ v ∈ TpM , X ∈ g . (4.4)

Consider v ∈ ker dpµ and let x ∈ Tp(G · p) be arbitrary. By Lemma 4.1.9 we can choose an

X ∈ g with X̂p = x. Then ωp(v, x) = 0 by equation (4.4). Thus, v lies in the symplectic
orthogonal complement to Tp(G · p). If, on the other hand, v ∈ (Tp(G · p))ωp , then 〈dpµ ·
v,X〉 = 0 for all X ∈ g by Lemma 4.1.9 and equation (4.4). Hence, dpµ · v = 0.
For ζ = dpµ · v ∈ im dpµ we have to show 〈ζ,X〉 = 0 ∀X ∈ gp. If X ∈ gp, then this means
nothing else than Xe ∈ TeGp, so the complete integral curve exp(tX) lies in Gp. Thus, by

definition of X̂, we obtain X̂p = 0 and, by reusing equation (4.4), 〈dpµ · v,X〉 = 0. The final
inclusion g0

p ⊆ im dpµ is a purely dimensional argument:

dim(g0
p) dim(im dpµ)

= dim(g∗)− dim(g∗p) = dim(TpM)− dim(ker dpµ)

= dim(G)− dim(Gp) = dim(TpM)− dim( (Tp(G · p))ωp )

= dim(G/Gp) = dim(TpM)− [ dim(TpM)− dim(Tp(G · p)) ]

= dim(G · p)
= dim(G/Gp)

Corollary 4.2.8. Given a hamiltonian G-space (M,ω,G, µ). For p ∈M we have:

G acts locally freely at p ⇐⇒ p is a regular point of µ

In particular, we have proven (a) in Theorem 4.2.4.
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Proof.

G acts locally freely at p ⇐⇒ ∃U ⊆ G open neighborhood of e : Gp ∩ U = {e}
⇐⇒ Gp is discrete

⇐⇒ gp = {0}
4.2.7⇐⇒ dpµ is surjective

Lemma 4.2.9. Let (V, ω) be a symplectic vector space with isotropic subspace U . Then
Uω/U carries a canonical symplectic form ω̄ defined by ω̄(x+ U, y + U) := ω(x, y).

Proof. ω̄ is well-defined: We have to show ω(x+s, y+t) = ω(x, y) for all x, y ∈ Uω , s, t ∈ U .

ω(x+ s, y + t) = ω(x, y) + ω(x, t)︸ ︷︷ ︸
=0

+ω(s, y)︸ ︷︷ ︸
=0

+ω(s, t)︸ ︷︷ ︸
=0

= ω(x, y) ,

where ω(s, t) = 0 because U ⊆ Uω. Obviously, ω̄ is an alternating bilinear form. To show
nondegeneracy, assume that for x ∈ Uω we have ω(x, y) = 0 ∀ y ∈ Uw. Then x ∈ (Uω)ω =
U , so x+ U = 0 ∈ Uω/U .

Proof of Theorem 4.2.4 (b). Since N is a submanifold of M , the restricted action of G on N
is smooth. By the Quotient Manifold Theorem Mred = N/G is a smooth manifold. Because
π is a surjective submersion, the pullback π∗ is injective, thus there is at most one 2-form
ωred satisfying π∗ωred = i∗ω. To prove existence, recall that the tangent space of N/G at
π(p) = G ·p can be identified with TpN/Tp(G ·p) via Ψp as in Proposition 4.1.10. By Lemma
4.2.7 we have Tp(G · p) ⊆ TpN = ker dpµ = (Tp(G · p))ωp , so the tangent space of the orbit
through p is isotropic. Consider the symplectic form ωp on Tp(G ·p)ωp/Tp(G ·p) from Lemma
4.2.9. Let us define

(ωred)π(p) := (Ψ−1
p )∗ωp .

This is indeed well-defined: Assume q = g · p. We have to show

ωp(Ψ
−1
p (x̄1),Ψ−1

p (x̄2)) = ωq(Ψ
−1
q (x̄1),Ψ−1

q (x̄2)) ∀ x̄1, x̄2 ∈ Tπ(p)N/G .

Choose x1, x2 ∈ TpN with dpπ · xk = x̄k , k = 1, 2. Then Ψ−1
p (x̄k) = xk + Tp(G · p) and

Ψ−1
q (x̄k) = dpθg · xk + Tq(G · q), where θ denotes the action of G on M . It remains to show

that ωp(x1, x2) = ωq(dpθg ·x1, dpθg ·x2). This however follows directly since θ is a symplectic
action by assumption.
An immediate consequence from the definition of ωred is

(ωred)π(p)(dpπ · x1, dpπ · x2) = ωp(x1, x2) ∀ p ∈ N, x1, x2 ∈ TpN ,

which implies π∗ωred = i∗ω if ωred is smooth. To prove the smoothness, assume X̄1, X̄2 are
arbitrary vector fields on an open subset V ⊆ Mred. We want to show that ωred(X̄1, X̄2) is
a smooth function around π(p) ∈ V . Since π|π−1(V ) is a submersion, we can find an open
neighborhood U of p in π−1(V ) ⊆ N and vector fields X1, X2 on U that are π|U -related to
X̄1, X̄2. Then ωred(X̄1, X̄2) ◦ π|U = i∗ω |U (X1, X2) which is smooth. π|U is a submersion
onto the open neighborhood π(U) of π(p), hence ωred(X̄1, X̄2) is smooth around π(p).
It remains to show that ωred is a symplectic form. Since ωp is a symplectic bilinear form and
Ψp is an isomorphism, (ωred)π(p) inherits this property. In addition, π∗dωred = d(π∗ωred) =
d(i∗ω) = i∗dω = 0 and π∗ is injective, thus dωred = 0.

Remark 4.2.10. Suppose, additionally we have the moment map ν : M → h∗ of another
hamiltonian action ϑ : H ×M → M of the Lie group H on M . If the actions of G and H
commute (i.e. θg ◦ ϑh = ϑh ◦ θg ∀ g ∈ G, h ∈ H) and if µ is H- and ν is G-invariant, then
the unique map νred : Mred → h∗ with νred ◦π = ν ◦ i is a moment map for the hamiltonian
H-space (Mred, ωred, H, νred), where H acts on Mred via ϑred, ϑred(h, [p]) := [ϑ(h, p)].
In particular, if G is commutative, then Mred inherits a reduced hamiltonian G-action for
which the constant zero function is a moment map.
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Proof. Notice that we require the G-invariance of ν to prove that νred is well-defined and
the H-invariance of µ and commutativity to show that ϑred is well-defined. That ϑred is a
smooth symplectic action and νred is H-equivariant can be checked via simple calculations.
For X ∈ h let X̂ denote the induced vector field on M and X̂red the induced vector field on
Mred. For p ∈ N the vector X̂p lies in TpN and

dpπ · X̂p = dpπ · deϑ(p) ·Xe = de(π ◦ ϑ(p)) ·Xe = deϑ
(π(p))
red ·Xe = (X̂red)π(p)

and thus

π∗dνXred = d(π∗νXred) = d(i∗νX) = i∗dνX = −i∗ιX̂ω = −(ωred)π(·)(d·π X̂· , d·π ·)
= π∗(−ιX̂red

ωred) ,

which implies dνXred = −ιX̂red
ωred.

If G is abelian, then µ is G-invariant since Ad∗ becomes trivial.

Remark 4.2.11. The only reason, why whe cannot generalize this construction to other level
sets than the zero level set, is that normally other level sets are not G-invariant. However, if
G is abelian, than all level sets are G-invariant and we can endow µ−1(c)/G with a natural
reduced symplectic form.

4.3 Contact Reduction

Inspired by the symplectic case, we now want to develop a contact analog.

Definition 4.3.1. A G-action θ on M preserves a contact distribution ξ ⊆ TM if θg is a
contactomorphism for all g ∈ G. A G-action θ, which preserves ξ := kerα , preserves the
coorientation of the contact form α if for all g ∈ G , p ∈M and v ∈ TpM

αp(v) > 0 =⇒ (θ∗g α)p (v) > 0 .

Remark 4.3.2. If G is connected and the action preserves ξ = kerα, then it also preserves
the coorientation of α since the continuous function G→ R\{0} , g 7→ (θ∗g α)p (v) is strictly
positive for any v ∈ TpM with αp(v) > 0.

Theorem 4.3.3. Let (M,α) be a strict contact manifold on which the Lie group G acts
smoothly and properly via θ : G × M → M . Suppose θ preserves ξ := ker α and the
coorientation of α. Then there exists a G-invariant contact form ᾱ for ξ, i.e. ξ = ker ᾱ and
θ∗g ᾱ = ᾱ ∀ g ∈ G.

To prove this result, we finally need the extensive tools developed in section 2.3. However,
we still need one more ingredient, namely a generalization of Remark 2.3.13.

Proposition 4.3.4. Let M be a smooth G-space, H ≤ G a compact subgroup and S ⊆ M
an H-invariant submanifold with inclusion map i : S ↪→M . If σ ∈ Γ(i∗(T ∗M ⊗k)) , k ∈ N0 ,
where i∗(T ∗M ⊗k) denotes the pullback bundle of T ∗M ⊗k, and µ is the normalized Haar
measure on H, then

σ̄ :=

∫
H

h∗σ dµ(h)

is a smooth H-invariant section of i∗(T ∗M ⊗k) .

Remark 4.3.5. If ϕ : M →M is a smooth map with ϕ(S) ⊆ S, then ϕ∗σ ∈ Γ(i∗(T ∗M ⊗k)).
In particular, since S is H-invariant, h∗σ is a smooth section of the pullback bundle for all
h ∈ H.
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Proof of Remark 4.3.5. We want to show that (ϕ∗σ)(X1 ◦ i, . . . ,Xk ◦ i) is smooth for arbi-
trary local sections X1, . . . , Xk of TM on U ⊆M open. The composition σ◦ϕ|SS is a smooth
section of the bundle

(ϕ|SS)∗(i∗(T ∗M ⊗k)) ∼=
can

(ϕ|S)∗(T ∗M ⊗k) ∼=
can

i∗(ϕ∗(T ∗M ⊗k)) ∼=
can

i∗((ϕ∗(TM))∗ ⊗k)

and dϕ ·Xj is a smooth section of ϕ∗(TM).
Hence, (σ ◦ ϕ|SS)((dϕ · X1) ◦ i, . . . , (dϕ · Xk) ◦ i) = (ϕ∗σ)(X1 ◦ i, . . . ,Xk ◦ i) is indeed
smooth.

Lemma 4.3.6 (Extension Lemma for Vector Bundles, cf. [Lee13, p. 257]). Let π : E �M
be a vector bundle and A ⊆ M a closed subset contained in an open subset U ⊆ M . If
σ : A→ E is a (not necessarily continuous) section of π and around every point of A there
exists an open neighborhood and a smooth section on it, which is an extension of σ, then
there exists a global smooth section σ̃ of π with support in U , which restricts to σ on A.

Proof. Use an appropriate partition of unity.

Proof of Proposition 4.3.4. We have to prove that the integral exists and that σ̄ varies
smoothly on S. Given an arbitrary p ∈ S we can choose a chart (V, ϕ = (x1, . . . , xm))
of M , containing p, and write

σ =
∑

(i1,...,ik)

λ(i1,...,ik) dx
i1 ⊗ . . .⊗ dxik =

∑
I

λI dx
I

for smooth functions λI : S ∩ V → R , I = (i1, . . . , ik). Since i is an immersion, we can find
smooth extensions κI : V → R of λI (if necessary, make V smaller). Then

ρ :=
∑
I

κI dx
I ∈ Γ(T ∗M ⊗k∣∣

V
)

is a smooth extension of σ onto an open neighborhood of p in M . Because S is a submanifold
of M , it is locally closed, so we can find an open set S ⊆ U ⊆ M in which S is closed. By
the Extension Lemma for Vector Bundles 4.3.6 we can find a smooth section σ̃ on U , such
that σ̃|S = σ.
Now let p ∈ S be arbitrary. Since S is H-invariant and H is compact, using Corollary
A.1.10, we obtain an open H-invariant set V ⊆ U that contains p. By Remark 2.3.13 the
section

∫
H
h∗σ̃|V dµ(h) is smooth. Thus, σ̄ is well-defined and smooth on V ∩ S. This

finishes the proof since p ∈ S was arbitrary.

Proof of Theorem 4.3.3. Let us choose families (fn)n∈N , (Sn)n∈N , N ⊆ N , as in Proposi-
tion 2.3.18, so that Sn is a slice at p(n) ∈ M . For n ∈ N let us define the Gp(n)-invariant
smooth tensor field

α′n :=

∫
Gp(n)

h∗ (α |Sn) dµn(h) ∈ Γ( i∗n(T ∗M) ) ,

where µn denotes the normalized Haar measure on Gp(n) and in : Sn ↪→M is the inclusion.
Notice that Gp(n) is indeed compact since G acts properly on M . Because Sn is a slice at
p(n), Sn is Gp(n)-invariant and G·Sn is open in M . Extend α′n onto G·Sn via ᾱn ∈ Ω1(G·Sn)
with

(ᾱn)g·s(v) := (α′n)s(dg·sθg−1 · v) ∀ g ∈ G, s ∈ Sn, v ∈ Tg·sM .

This is well-defined: Suppose p = g · s = g̃ · s̃ for g, g̃ ∈ G , s, s̃ ∈ Sn and v ∈ TpM . It follows
from Theorem 2.3.6 (c) that g̃−1g ∈ Gp(n) and therefore

(α′n)s̃ ( dpθg̃−1 · v ) = (α′n)g̃−1g·s ( dpθg̃−1 · v )

= (α′n)θg̃−1g(s) ( dsθg̃−1g · dg·sθg−1 · v )

= ((θg̃−1g)
∗α′n)s ( dpθg−1 · v)

= (α′n)s(dpθg−1 · v ) .
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Now let us prove the smoothness of ᾱn. First, note that · : G×Sn � G ·Sn is a surjective
submersion: For arbitrary (g0, s0) consider a local cross section χ : U → G in G/Gp(n) and

the corresponding diffeomorphism Fg0 : (g0 ·U)×Sn
∼→ U(g0 ·Sn) onto an open neighborhood

U(g0 · Sn) of g0 · Sn from Theorem 2.3.15. Then the composition

U(g0 · Sn) g0 · U × Sn U × Sn G× Sn G× Sn
F−1
g0 g−1

0 ·×id χ×id g0·×id

is a smooth local section of · : G× Sn � G · Sn through (g0, s0). Thus · : G× Sn � G · Sn
is a submersion.
Given an arbitrary vector field X on an open subset of G · Sn, we have to show that ᾱn(X)
is smooth. Since · : G × Sn � G · Sn is a surjective submersion, it suffices to prove that
(g, s) 7→ (ᾱn)g·s(Xg·s) is smooth. By Proposition 4.3.4 α′n is a smooth section of i∗n(T ∗M),
so we might as well consider it as a (smooth) bundle homomorphism i∗n(TM)→ Sn×R over
Sn. Because we have (ᾱn)g·s(Xg·s) = α′n ◦ dθ (0Gg−1 , Xg·s) with the zero vector field 0G on

G, we have indeed proven the smoothness of (g, s) 7→ (ᾱn)g·s(Xg·s) and thus of ᾱn.
Now we can finally define ᾱ as

ᾱ :=
∑
n∈N

fn ᾱn ∈ Ω1(M) .

By construction ᾱn is G-invariant and by choice fn is so too, so ᾱ is G-invariant. It remains
to show ξ = ker α = ker ᾱ =: ξ̄. For v ∈ ξp , p ∈ G · Sn, using that the action preserves ξ,
we obtain (ᾱn)p(v) = 0 and thus ξ ⊆ ξ̄. For the converse inclusion it suffices to show that
ᾱp 6= 0. Choose v ∈ TpM with αp(v) > 0. By assumption (g∗α)p (v) > 0 ∀ g ∈ G. So, if
p = g · s ∈ G · Sn, we compute

(ᾱn)p(v) =

∫
Gp(n)

(h∗α)s(dpθg−1 · v) dµn(h)

=

∫
Gp(n)

((hg−1)∗α)p (v)︸ ︷︷ ︸
>0

dµn(h) > 0 .

Thus, ᾱp(v) > 0 , which finishes the proof.

Our next goal is, to prove the contact version of Marsden-Weinstein-Meyer. As it is fre-
quently the case in contact geometry, the result is slightly weaker than a symplectic analog
and with some constraints but is proven similarly with additional assumptions. Let us start
by defining a contact moment map.

For the rest of this section let (M,α) be a strict contact manifold with kernel ξ := kerα .
Assume, G acts smoothly on M via θ : G ×M → M and α is G-invariant (notice that if
G is connected and θ acts properly on M , then by Remark 4.3.2 and Theorem 4.3.3 such a
contact form exists for any given contact distribution ξ, preserved by θ ; in particular this
holds for G = S1). Let g denote the Lie algebra of G and g∗ its dual vector space.

Definition 4.3.7. Define the (contact) moment map µ : M → g∗ by

µ(p)(X) := µX(p) := αp(X̂p) ∀ p ∈M , X ∈ g ,

where X̂ = θ̂(X) is the generated vector field on M .

Lemma 4.3.8. µ is G-equivariant with respect to the G-action on g∗ induced by Ad∗.
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Proof.

g g

G G

(intg−1)∗

exp exp

intg−1

	 =⇒ exp( t (intg−1)∗(X) ) = intg−1(exp(tX))

and thus

X̂g·p =
d

dt

∣∣∣
t=0

(
exp(tX) · (g · p)

)
=

d

dt

∣∣∣
t=0

(
gg−1 exp(tX) g · p

)
= dpθg ·

d

dt

∣∣∣
t=0

(
g−1 exp(tX) g · p

)
= dpθg ·

d

dt

∣∣∣
t=0

(
intg−1(exp(tX)) · p

)
= dpθg ·

d

dt

∣∣∣
t=0

(
exp( t (intg−1)∗(X) ) · p

)
= dpθg · θ̂(Adg−1(X))p

Therefore,

(µ(g · p)) (X) = αg·p (X̂g·p)

= αg·p
(
dpθg · θ̂(Adg−1(X))p

)
= (θ∗g α)p

(
θ̂(Adg−1(X))p

)
= αp

(
θ̂(Adg−1(X))p

)
= (µ(p)) ( Adg−1(X) )

= µ(p) ◦Adg−1 (X)

= (g · µ(p)) (X)

In particular the zero level set N := µ−1(0) is G-invariant.
By applying Lemma 4.1.9 we obtain

p ∈ N = µ−1(0) ⇐⇒ αp
∣∣
Tp(G·p) = 0 ⇐⇒ Tp(G · p) ⊆ ξp = ker αp (4.5)

Lemma 4.3.9. Let gp be the Lie algebra of the stabilizer Gp of p and g0
p its annihilator.

Then the following equations hold for p ∈ N = µ−1(0):

(1) dµX = −ιX̂ dα ∀X ∈ g

(2) ker dpµ ∩ ξp = (Tp(G · p))(dα|ξ)p

(3) im dpµ = g0
p = { ζ ∈ g∗ | 〈ζ,X〉 = 0 ∀X ∈ gp }

Proof.

(1) Let ΦtY denote the flow of some vector field Y ∈ X(M) at time t. Then Φt
X̂

= θexp(tX).

Since α is G-invariant, this means (Φt
X̂

)∗α = α ∀ t ∈ R, so LX̂α = 0. By Cartan’s
magic formula we get

dµX = d(α(X̂)) = LX̂α− ιX̂(dα) = −ιX̂(dα) .
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(2) Use equation (1) and argue as in Lemma 4.2.7.

(3) For “⊆” use equation (1) and argue as in Lemma 4.2.7. For the converse inclusion
note that ker dpµ 6⊆ ξp : Otherwise we would have

dim(M) = dim ker dpµ + dim im dpµ

≤ dim (Tp(G · p))(dα|ξ)p + dim g0
p

= dim ξp − dim(G/Gp) + dim(G/Gp) = dim(M)− 1 ,

which is a contradiction. Thus, ker dpµ + ξp = TpM and dim ker dpµ = 1 +
dim (Tp(G · p))(dα|ξ)p = dim(M) − dim(G) + dim(Gp), which implies dim im dpµ =
dim(G)− dim(Gp) = dim g0

p.

Remark 4.3.10. In the proof above we have shown that ker dpµ 6⊆ ξp .

Corollary 4.3.11. For p ∈ N = µ−1(0) we have

G acts locally freely at p ⇐⇒ p is a regular point of µ

Proof. As in Corollary 4.2.8.

Now assume that G acts freely on N . By the preceding corollary every point of N is a
regular point of 0, so N = µ−1(0) is a closed submanifold of codimension dim(G). Then a
significant consequence of Lemma 4.3.9 is, that for p ∈ N we have

Tp(G · p) ⊆
(4.5)

ξp ∩ TpN = ξp ∩ ker dpµ = (Tp(G · p))(dα|ξ)p ⊆ ξp ,

so the tangent space of the orbit is isotropic with respect to dαp|ξp .

Theorem 4.3.12 (Geiges, [Gei97, Theorem 6]). Let (M,α) be a strict contact manifold
with contact distribution ξ and θ : G ×M → M be a smooth action on M , preserving the
contact form α. Let µ denote the moment map with respect to the given action.

(a) If G acts freely on N := µ−1(0), then 0 is a regular value of µ and N is a closed
submanifold in M of codimension dim(G).

(b) If in addition the restricted action of G on N is proper, then there exists a unique
1-form αred on the quotient manifold Mred := N/G such that π∗αred = i∗α, where
π : N � N/G denotes the projection and i : N ↪→ M is the inclusion. αred is a
contact form on Mred.

(c) Let β be another G-invariant contact form with kernel ξ and moment map ν. Then
µ−1(0) = ν−1(0) and, under the conditions of (b), kerαred = kerβred , so ξ defines a
reduced contact structure ξred := ker αred on N/G.

Remark 4.3.13.

(a1) We have already proven (a) above, including the G-invariance of N .

(a2) Corollary 4.3.11 shows that 0 is a regular value if and only if the action of G on N is
locally free.

(b) If G acts properly on M (e.g. if G is compact), then the restricted action on N is also
proper.

Definition 4.3.14. We call the pair (Mred, αred) the contact quotient or the reduction
of (M,α) with respect to the action θ.
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Lemma 4.3.15. Let V be a vector space, α ∈
∧1

V ∗ a 1-linear form, ξ := kerα and
U ⊆ N ⊆ V linear subspaces with U ⊆ ξ. Let π : N � N/U denote the projection and
i : N ↪→ V the inclusion.
Then there exists a unique 1-linear form ᾱ on N/U with π∗ᾱ = i∗α. Its kernel is ξ̄ :=
ker ᾱ = (N ∩ ξ)/U .

Proof. π∗ is injective, so there exists at most one such form ᾱ. Now define ᾱ(x+U) := α(x),
which is well-defined because U ⊆ ξ = kerα. Obviously, we have ξ̄ = ker ᾱ = (N ∩ξ)/U .

Lemma 4.3.16. Let V be a vector space, α a 1-linear form with kernel ξ , ω a 2-linear
form on V , such that ω|ξ is nondegenerate, and U ⊆ ξ ⊆ V , N ⊆ V linear subspaces with
U ⊆ Uω|ξ = ξ ∩N ⊆ N . Let π : N � N/U =: Vred denote the projection and i : N ↪→ V the
inclusion. Let ω̄ be an arbitrary 2-linear form on Vred with π∗ω̄ = i∗ω.
Then ω̄|ξ̄ is a symplectic form, where ξ̄ := ker ᾱ and ᾱ ∈

∧1
V ∗red is determined by π∗ᾱ = i∗α.

Proof. By assumption, ω|ξ is a symplectic form and U is an isotropic subspace with respect

to ω|ξ. By Lemma 4.2.9 this gives us a reduced symplectic form ωred ∈
∧2

(Uω|ξ/U)∗ defined
by ωred(x+ U, y + U) = ω(x, y). Notice that for x, y ∈ Uω|ξ = ξ ∩N we have

ωred(x+ U, y + U) = ω(x, y) = i∗ω (x, y) = π∗ω̄ (x, y) = ω̄(x+ U, y + U) ,

so ω̄ and ωred coincide on (ξ ∩N)/U = ξ̄.

Proof of Theorem 4.3.12. π∗ is injective, so αred is uniquely determined. Now let us deal
with the existence. For all p ∈ N, v̄ ∈ Tπ(p)Mred put

(αred)π(p)(v̄) := αp(v) for some v ∈ TpN with dpπ · v = v̄

This definition is independent of the choice of representatives: Assume p′ = g · p with
p, p′ ∈ N and v ∈ TpN , v′ ∈ Tp′N with v̄ = dpπ · v = dp′π · v′.

αp(v) = (θ∗g α)p(v) = αp′(dpθg · v) = αp′(dp
(
θg|NN

)
· v)

dp′π · dp
(
θg|NN

)
· v = dp

(
π ◦ θg|NN

)
· v = dpπ · v = v̄ = dp′π · v′

Thus, dp
(
θg|NN

)
· v − v′ ∈ ker dp′π = Tp′(G · p′) ⊆ ξp′ = kerαp′ , whereby we have used

Proposition 4.1.12. This shows αp(v) = αp′(dp
(
θg|NN

)
· v) = αp′(v

′) .

By definition of αred we obtain (αred)π(p)(dpπ · v) = (i∗α)p(v) for p ∈ N and v ∈ TpN .
Now the smoothness of αred follows completely analogously as in the proof of the Marsden-
Weinstein-Meyer Theorem 4.2.4 and thus π∗αred = i∗α .

It remains to show that αred is indeed a contact form. M has odd dimension, so dim(Mred) =
dim(M)−2 dim(G) is odd too. Put ξred := kerαred and [p] := π(p). By Remark 4.1.18 (b) it
suffices to prove that (dαred)|ξred is nondegenerate. Consider an arbitrary fixed p ∈ N . Let

Ψp : TpN /Tp(G ·p)
∼→ T[p]Mred be the canonical identification from Proposition 4.1.10 with

projection prp : TpN � TpN /Tp(G·p) and ᾱ := αp be the reduced 1-form on TpN /Tp(G·p)
from Lemma 4.3.15 with kernel ξ̄. Notice that

(αred)[p](v̄) = ᾱ(Ψ−1
p (v̄)) for v̄ ∈ T[p]Mred .

Thus, Ψp(ξ̄ ) = (ξred)[p] and ᾱ = Ψ∗p((αred)[p]). Define ω := (dα)p ∈
∧2

(TpM)∗ and ω̄ :=

(Ψp)
∗(dαred)[p] ∈

∧2
(TpN /Tp(G · p))∗. Then ω|ξp is nondegenerate since α is a contact

form. It follows from π∗αred = i∗α that π∗(dαred) = i∗(dα) and therefore

pr∗p ω̄ = (Ψp ◦ prp)
∗(dαred)[p]

4.1.10
===== (dpπ)∗(dαred)[p] = (dpi)

∗(dα)p = (dpi)
∗ω .
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By Lemma 4.3.16 ω̄|ξ̄ is a symplectic form. Since Ψp is an isomorphism, we have proven
that (dαred)[p]|Ψp(ξ̄) = (dαred)[p]|(ξred)[p] is nondegenerate. This finishes the proof of (b).

Now let β be another G-invariant contact form with kerβ = ξ and moment map ν. Then

N = µ−1(0) =
{
p ∈M |Tp(G · p) ⊆ ξp

}
= ν−1(0)

and as the proof above shows, we obtain

ker (αred)[p] = Ψ−1
p (ker αp)

4.3.15
===== Ψ−1

p ( (TpN ∩ ξp) / Tp(G · p) )

= . . . = ker (βred)[p] .

Remark 4.3.17. An analog of Remark 4.2.10 also holds in the contact case: If another Lie
group H acts smoothly on M via ϑ, preserving α and commuting with the G-action θ, and
if µ : M → g∗ is H-invariant and the contact moment map ν : M → h∗ with respect to the
action ϑ is G-invariant, then Mred = µ−1(0)/G admits a canonical smooth H-action ϑred

for which αred is H-invariant. The contact moment map νred : Mred → h∗ for this action is
the unique map with νred ◦ π = ν ◦ i.
In particular, if G is commutative, then Mred inherits a reduced G-action, preserving αred ,
for which the moment map µred is the constant zero function.

Remark 4.3.18. However, there is no contact counterpart of Remark 4.2.11 since we only
have Tp(G · p) ⊆ ξp if p ∈ µ−1(0), so Lemma 4.3.9 can only be formulated for points in the
zero level set, whereas Lemma 4.2.7 holds for all points in M .
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5 Symplectic and Contact Cuts

5.1 Symplectic Cuts

In this section we shall endow the topological cut of a symplectic manifold with respect to
a corresponding moment map with a natural symplectic structure, so that the symplectic
form remains unchanged above the relevant level set and the level set, together with the
symplectic reduced form from Chapter 4, becomes a symplectic submanifold of the cut.

Lemma 5.1.1. If (M1, ω1) and (M2, ω2) are symplectic manifolds, the product symplec-
tic manifold (M1×M2, ω) is given by the symplectic form ω := ω1 +ω2 := pr∗1 ω1 + pr∗2 ω2

with projections pri : M1 ×M2 →Mi.

Proof. Trivial.

Recall from 4.2.3 (c) that a moment map for an S1-action on a symplectic manifold (M,ω)
is just a smooth map f : M → R satisfying df = −ι∂̂tω.

Theorem 5.1.2. Let f be a moment map for a hamiltonian S1-action on a symplectic
manifold (M,ω). Suppose the action is free on the level set f−1(a). Then the cut M[a,∞)

is well-defined and carries a natural symplectic form ωcut. The canonical diffeomorphism
M ⊇ f−1((a,∞))

∼→ f−1((a,∞)) ⊆M[a,∞) becomes a symplectomorphism and the inclusion
(f−1(a)/S1 , ωred) ↪→ (M[a,∞), ωcut) is symplectic.

Proof. As in the proof of Proposition 3.2.1, put Ψ : M × C → R , Ψ(m, z) := f(m) − |z|2 ,
and σ : f−1([a,∞))→ Ψ−1(a) , σ(m) := (m,

√
f(m)− a) . Consider the product symplectic

manifold (M × C, ω + 2 dx ∧ dy) with the S1-action λ · (m, z) := (λ ·m,λ−1z). This is a
free action on Ψ−1(a). The differential of Ψ is dΨ = df − 2x dx− 2y dy. We argue that Ψ is
a moment map for the S1-action on M × C. Then, by Corollary 4.2.8, a is a regular value
of Ψ and therefore of f . Additionally, f is S1-invariant as moment map, thus the cut on M
with respect to a is well-defined. To prove that Ψ is a moment map, we have to show that

df − 2x dx− 2y dy = ω + 2 dx ∧ dy (−, θ̂M×C(∂t)) ,

where θ̂M×C denotes the infinitesimal generator on M × C. We have

θ̂M×C(∂t)(m,z) =
d

dt

∣∣∣
t=0

eit · (m, z)

= (θ̂M (∂t)m , −iz) ∈ T(m,z)(M × C) ∼= TmM × C

with infinitesimal generator θ̂M on M . Hence,

ω + 2 dx ∧ dy (−, θ̂M×C(∂t)) = ω (−, θ̂M (∂t)) + 2 dx ∧ dy (iz,−)

= df − 2x dx− 2y dy .

Since Ψ is a moment map and S1 is a commutative group, by Marsden-Weinstein-Meyer for
arbitrary level sets (cf. Remark 4.2.11) there is a unique symplectic form ω′ on Ψ−1(a)/S1

with pr∗ω′ = incl∗(ω + 2 dx ∧ dy). Let (ω + 2 dx ∧ dy )red denote this symplectic form ω′.
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As in the proof of Proposition 3.2.1 we write σ̄ : M[a,∞)
∼→ Ψ−1(a)/S1 for the descent of σ.

Then put ωcut := σ̄∗(ω + 2 dx ∧ dy )red , it is symplectic because σ̄ is a diffeomorphism by
construction.

We want to show that (Π|f
−1((a,∞))
f−1((a,∞)))

∗ωcut = ω|f−1((a,∞)) , with projection Π : f−1([∞)) →
M[a,∞). By diagram (3.5) we just need to validate that (σ|f−1((a,∞)))

∗(ω + 2 dx ∧ dy ) =
ω|f−1((a,∞)). However, this is trivial since d(y ◦ prC ◦ σ|f−1((a,∞))) = d (0) = 0 .

For the last statement recall that by f−1(a)/S1 ⊆M[a,∞) we mean in fact the submanifold

σ̄−1(f−1(a)/S1) with f−1(a)/S1 ∼= (f−1(a) × {0})/S1 ⊆ Ψ−1(a)/S1. Since a is a regu-

lar value of f and S1 is commutative, Marsden-Weinstein-Meyer gives us a natural sym-

plectic form ωred on f−1(a)/S1. We would like to show that (σ̄−1(f−1(a)/S1), σ̄∗ωred) ↪→
(M[a,∞), ωcut) is a symplectic inclusion, i.e. the pullback of ωcut along the inclusion is σ̄∗ωred.

Stare at the following commutative diagram:

M × C M × {0}

Ψ−1(a) f−1(a)

M[a,∞) Ψ−1(a)/S1

σ̄−1(f−1(a)/S1) f−1(a)/S1

incl4

incl5incl3

incl2

pr2

pr1

∼=
σ̄

incl1

∼=
σ̄

(5.1)

Clearly, it suffices to show that the pullback of (ω + 2 dx ∧ dy )red along incl1 is ωred. Put
Ω := ω + 2 dx ∧ dy. We have

pr∗1 ( incl∗1 Ωred ) = incl∗2 ( pr∗2 Ωred ) = incl∗2 ( incl∗3 Ω )

= incl∗5 ( incl∗4 Ω ) = incl∗5 ω = pr∗1 ωred

and, because pr∗1 is injective, this proves incl∗1 Ωred = ωred .

Proposition 5.1.3. Let (M,ω) be a symplectic manifold with boundary P = ∂M . Suppose
S1 acts smoothly and freely on P (i.e. P is a smooth principal S1-bundle) and that ω|P
is S1-invariant with kernel Tp(S

1 · p). Furthermore, assume that there is a contact form α
on P such that dα = ω|P and its Reeb vector field Rα generates the S1-action on P . We
can endow a smooth manifold X = M/∼ from Remark 3.3.6 with a symplectic structure, so
that M\P is symplectomorphic to X\(P/S1) via the projection and P/S1 is a symplectic
submanifold of X.

Proof. Let [p] := Op := S1 · p denote the orbit through p ∈ P . If we identify T[p] P/S
1 with

TpP/TpOp , let us define the 2-form ωred on P/S1 as

(ωred)[p](v1 + TpOp, v2 + TpOp) := ωp(v1, v2) ∀ p ∈ P , v1, v2 ∈ TpP .

We claim that TpOp is isotropic with symplectic complement TpP . Then the definition of
ωred is independent of the choice of representatives and ωred is symplectic by Lemma 4.2.9
(observe that we still need the S1-invariance of ω|P for independence of choice of base point).
For v1 ∈ TpP and v2 ∈ TpOp we have ωp(v1, v2) = 0 since ω|P has kernel TpOp. Thus, v1 lies
in the symplectic complement of TpOp. Because both TpP and (TpOp)ωp have codimension
1, they are in fact equal. The elaborate proof, that ωred is smooth, is the same argument
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as in the proof of Marsden-Weinstein-Meyer 4.2.4. Thus, P/S1 carries a reduced symplectic
form. Note that in fact the above argumentation is, strictly speaking, obsolete because we
will see below that ω|P = ω̃|P for some symplectic form ω̃ for which the assumptions of
Theorem 5.1.2 (with P a zero level set) hold, so it follows directly that P/S1 is a symplectic
manifold.
Let us define the following form on P × R

ω̃ := d((t+ 1)α) = dt ∧ α+ (t+ 1) dα ,

where we have omitted the necessary pullbacks along the projections. ω̃ is symplectic since
ω̃(v+λ∂t , Rα) 6= 0 for any vector v ∈ TP and any real number λ 6= 0 and ω̃(v+λRα , u) 6=
0 for any v ∈ ker(α) , λ ∈ R and some appropriate u ∈ ker(α) depending on v (dα is
nondegenerate on the kernel of α).
By assumption ω̃|P×{0} = dα = ω|P and, because Rα generates the S1-action on P , we have

Rα = ∂̂t the infinitesimal generated vector field on P .
Let S1 act trivially on R and consider the product action on P ×R (i.e. λ · (p, t) = (λ ·p, t)).
The projection f(p, t) := t onto the second factor is a moment map for this action on P ×R
because

−ι∂̂t ω̃ = ω̃(− , ∂̂t︸︷︷︸
∈TP

+ 0︸︷︷︸
∈TR

) = α(Rα)︸ ︷︷ ︸
=1

dt+ (t+ 1) dα(−, Rα)︸ ︷︷ ︸
=0

= dt = df .

A neighborhood of P has the form P × [0,∞). Extend ω on a neighborhood of P × [0,∞)
in P × R. P is a hypersurface in P × R, and thus a coisotropic submanifold. By the
Coisotropic Embedding Theorem (cf. [Sil08, Theorem 2.9]) there is a symplectomorphism
Φ from a neighborhood P ×{0} in (P ×R , ω) into a neighborhood of P ×{0} in (P ×R , ω̃)
such that Φ|P×{0} = id. Consider the connected components Pn of P . By equation (3.10)
we can define

X ∼= M\P ∪n∈N+

(
∪Φ|Un\Pn (Pn × R)[0,∞)

)
∪n∈N−

(
∪Φ|Un\Pn (Pn × R)(−∞,0]

)
(see Remark 3.3.6 for the notation). Check that Theorem 5.1.2 has an analog for cuts with
respect to the ray (−∞, a]. For each n ∈ N+ ∪N− consider the symplectic cut ω̃cut of ω̃ on
(Pn × R)[0,∞) resp. (Pn × R)(−∞,0] with respect to the projection onto the second factor.
Now let us finally define the desired symplectic form Ω on X:

Ω :=


ω on M\P
ω̃cut on (Pn × R)[0,∞)

ω̃cut on (Pn × R)(−∞,0]

Again, for clarity of notation we omit necessary pullbacks in the above definition. Ω is
well-defined because ω̃cut = ω̃ = ω on Un\Pn since Φ is a symplectomorphism. The rest of
the Proposition is an easy observation together with an application of Theorem 5.1.2.

Remark 5.1.4. It is quite likely that the assumption, that ω|P = dα for a contact form α

with Rα = ∂̂t, is in fact a consequence of the other conditions in the above proposition.
Although some uncertainties remain, at his supervisor’s suggestion the author would like to
recommend, giving Theorem 3 in [BW58] a try.

5.2 Contact Cuts

We now want to consider the contact case and ask the nearby question, whether we obtain
results similar to the previous section.

Lemma 5.2.1. Let (M,α) be a strict contact manifold and (N, dλ) a symplectic manifold
with 1-form λ. Then (M ×N,α+ λ := pr∗M α + pr∗N λ) is a strict contact manifold.
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Proof. Put dimM =: 2m+ 1 , dimN =: 2n.

(α+ λ) ∧ d(α+ λ)m+n = (α+ λ) ∧
m+n∑
j=0

(
m+ n

j

)
dαj ∧ dλm+n−j

=

(
m+ n

m

)
(α+ λ) ∧ dαm ∧ dλn

=

(
m+ n

m

)
α ∧ dαm ∧ dλn

Since dλ is symplectic, we have dλn 6= 0. For arbitrary (p, q) ∈ M × N choose bases
v1, . . . , v2m+1 ∈ TpM with (α ∧ dαn)p(v1, . . . , v2m+1) 6= 0 and w1, . . . , w2n with
(dλn)q(w1, . . . , w2n) 6= 0. Then

((α+ λ) ∧ d(α+ λ)m+n)(p,q)(v1, . . . , v2m+1, w1, . . . , w2n) 6= 0 .

Remark 5.2.2. Analogously to the symplectic case, we identify the moment map f for an
S1-action on a strict contact manifold, which preserves the contact form, with a real valued
function, i.e. we also call f∂t the momment map for the given action. By Lemma 4.3.8 f is
S1-invariant and, thus, f∂t is so too.

Theorem 5.2.3. Let (M,α) be a strict contact manifold on which S1 acts smoothly, pre-
serving α. Let f : M → R denote the corresponding moment map. Suppose S1 acts freely on
f−1(0). Then the cut M[0,∞) is well-defined and carries a natural contact form αcut. The

canonical diffeomorphism M ⊇ f−1((0,∞))
∼→ f−1((0,∞)) ⊆ M[0,∞) becomes a contacto-

morphism and the inclusion (f−1(0)/S1 , αred) ↪→ (M[0,∞), αcut) is contact.

Proof. Again, let Ψ(m, z) := f(m) − |z|2 and σ(m) := (m,
√
f(m)− 0). By the preceding

lemma the 1-form β := α + (x dy − y dx) on M × C is contact. A simple calculation shows
that it is also S1-invariant if we consider the usual action λ · (m, z) := (λ ·m,λ−1z). Similar
to the proof of Theorem 5.1.2 we will show that Ψ is a moment map with respect to β.
Since the restricted action on f−1(0) is free, the action on Ψ−1(0) is free and by Corollary
4.3.11 this implies that 0 is a regular value of f and Ψ. As moment maps bot f and Ψ are
S1-invariant, so the cut of M with respect to the ray [0,∞) is well-defined.
Now let us compute

β(m0,z0)(θ̂
M×C(∂t)(m0,z0)) = β(m0,z0)(θ̂

M (∂t)m0
,−iz0)

= αm0
(θ̂M (∂t)m0

) + x0 dyz0(−iz0)− y0 dxz0(−iz0)

= f(m0)− x2
0 − y2

0

= Ψ(m0, z0)

Hence, Ψ is indeed the moment map for β. By the Contact Reduction Theorem of Geiges
4.3.12 the quotient Ψ−1(0)/S1 carries a natural contact form βred. Now put αcut := σ̄∗ βred,
where σ̄ : M[0,∞) → Ψ−1(0)/S1 is the descendent map as in the proof of Proposition 3.2.1.

As in the symplectic case 5.1.2, it remains to show (σ|f−1((0,∞)))
∗ β = α|f−1((0,∞)) and

(f−1(0)/S1 ↪→ Ψ−1(0)/S1)∗βred = αred. The first equation is a trivial observation and the
second one follows from diagram (5.1) as in the proof of Theorem 5.1.2.

There is a contact version of Proposition 5.1.3 which can be found in [Ler01], however we
will not state it here because some (hidden) details of his proof remain unclear to the author
and this thesis is meant to be self-contained in the sense that every statement is proven
rigorously from well-known and established principles.
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5.3 Combining Symplectic and Contact Cuts

5.3.1 Cuts of Hypersurfaces

In this last section we want to examine some further properties of symplectic and contact
cuts with the focus on the interplay of these concepts. For our first result we will need the
definitions of Liouville vector fields and surfaces of contact type:

Definition 5.3.1. Let (M,ω) be a symplectic manifold.

(a) A Liouville vector field X is a vector field on M such that LXω = ω.

(b) A hypersurface Σ ⊆M is of contact type if there is some Liouville vector field X on
an open neighborhood of Σ, which is transverse to Σ.

The following proposition gives a natural contact form on a hypersurface of contact type
with respect to a fixed Liouville vector field:

Proposition 5.3.2. Let Σ be a hypersurface of contact type with transverse Liouville vector
field X. Then α := (ιXω)|Σ is a contact form on Σ.

Proof. For arbitrary differential forms η1 ∈ Ωk1(M), η2 ∈ Ωk2(M) and a vector field Y we
have ιY (η1 ∧ η2) = ιY η1 ∧ η2 + (−1)k1η1 ∧ ιY η2. Using this result, we deduce ιX(ωk) =
k (ιXω ∧ ωk−1) for all k ∈ N via induction. Let dim(M) = 2m, then

α ∧ (dα)m−1 = (ιXω ∧ (d(ιXω))m−1)|Σ
(∗)
= (ιXω ∧ ωm−1)|Σ = (

1

m
ιXω

m)|Σ .

We have used Cartan’s magic formula in (∗). Since ω is a symplectic form, ωm 6= 0. This
and the fact that X is transverse to Σ imply that α ∧ (dα)m−1 6= 0.

We now intend to examine the contact cuts of hypersurfaces of contact type and their relation
to the symplectic cut of the surrounding space.

Theorem 5.3.3. Let f : M → R be a moment map for a hamiltonian S1-action on a sym-
plectic manifold (M,ω). Suppose Σ is an S1-invariant connected hypersurface of contact type
with transverse S1-invariant Liouville vector field X on an open S1-invariant neighborhood
U of Σ , such that Σ is closed in U . The induced contact form α := ιXω |Σ is S1-invariant
and for the corresponding moment map fΣ we have fΣ = f |Σ + c for a constant c.
Assume that c = 0, S1 acts freely on f−1(0) and X is tangent to f−1(0). Then 0 is a regular
value of both f and fΣ and the contact quotient Σred is a hypersurface of contact type in the
symplectic quotient Mred with respect to the descended vector field Xred. Furthermore, the
reduced contact form αred is exactly the induced form (ιXred

ωred)|Σred
on Σred.

Proof. That α is S1-invariant, is a simple calculation. Since Σ is connected, for the second
statement it suffices to show d fΣ = d f |Σ :

d fΣ = d (α( ∂̂t )) = L∂̂tα− ι∂̂t dα = 0− ι∂̂t dα = −ι∂̂t dα ,

where the Lie derivative vanishes because α is S1-invariant. On the other hand, if iΣ : Σ ↪→
M denotes the inclusion, we have

d (f |Σ) = i∗Σ df = i∗Σ(−ι∂̂t ω) = (−ι∂̂t ω)|Σ
dα = d ((ιXω)|Σ) = d(ιXω)|Σ = (LXω )|Σ = ω|Σ

=⇒ d fΣ = −ι∂̂t ω|Σ = (−ι∂̂t ω)|Σ = d (f |Σ)

Now suppose c = 0 and that S1 acts freely on the zero level set. By Marsen-Weinstein-
Meyer 4.2.4 resp. Geiges 4.3.12, 0 is a regular value of f resp. fΣ and both f−1(0) and
f−1

Σ (0) are closed submanifolds in M resp. Σ. Thus, f−1
Σ (0) = f−1(0) ∩ Σ is a submanifold
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in f−1(0). Since Σ is closed in U , f−1
Σ (0) is closed in f−1(0) ∩ U , which itself is open in

f−1(0). By Proposition A.2.7 Σred = f−1
Σ (0)/S1 is a submanifold of (f−1(0) ∩ U) /S1, and

(f−1(0) ∩ U) /S1 is a submanifold of Mred = f−1(0)/S1, so Σred is a submanifold of Mred.
Now, additionally assume that X ∈ T f−1(0) on f−1(0) ∩ U . Then X descends to a
vector field Xred on an open subset of the symplectic quotient Mred. Since the projections
pr : M �Mred , prΣ : Σ� Σred are surjective submersions, their pullbacks are injective.

pr∗ LXred
ωred = pr∗ d ιXred

ωred = dpr∗ ιXred
ωred = d ιXω = ω = pr∗ ωred

=⇒ Xred is Liouville vector field for Σred

pr∗Σ (ιXred
ωred)|Σred

= ιXω |Σ = α = pr∗Σ αred

=⇒ (ιXred
ωred)|Σred

= αred

It remains to prove that Xred is transverse to Σred. Assume by contradiction Xred ∈ TΣred

at some point [p] ∈ Σred. Then dpr ·X = Xred = dprΣ · Y for some Y ∈ TΣ (we omit the
necessary base point [p]). Thus, X − Y ∈ ker dpr = Tp(S

1 · p) ⊆ TpΣ, which would imply
X ∈ TΣ.

In the opinion of the author, Lerman’s version of this theorem (Proposition 2.17 in [Ler01])
forgets the essential condition that X is tangent to the zero level set. This however leads to
a subsequent error in Corollary 2.18 since X cannot descend to the cut in general without
further, very particular, assumptions. We try to fix this in our next corollary, nonetheless
the statement loses much of its generality.

Corollary 5.3.4. Given the situation of Theorem 5.3.3, together with the assumptions c = 0
and a free S1-action on f−1(0), but with df · X = f on U instead of just df · X = 0 on
f−1(0). The cut Σ[0,∞) is a hypersurface of contact type in the cut M[0,∞) and we have

αcut = (ιX ωcut)|Σ[0,∞)
for a natural descended vector field X of X (defined in the proof

below).

Proof. Without loss of generality we may assume U = M . As it is our usual convention,
let Ψ : M × C → R , (m, z) 7→ f(m) − |z|2 be the corresponding map to the moment map
f and ΨΣ be the corresponding map to the moment map fΣ, i.e. ΨΣ = Ψ|Σ×C. Indeed,
Σ[0,∞) is a subset of M[0,∞). Recall, how the smooth structure on cuts has been defined: It

therefore suffices to prove that the inclusion Ψ−1
Σ (0)/S1 ↪→ Ψ−1(0)/S1 is a hypersurface of

contact type. Set Y := 1
2 (x ∂x+y ∂y) ∈ X(C). Then we get ιY (2 dx∧dy) = x dy−y dx and

consequently d (ιY (2 dx∧dy)) = 2 dx∧dy, i.e. Y is a Liouville vector field on (C , 2 dx∧dy).
Hence, X + Y is a Liouville vector field on (M × C , ω + 2 dx ∧ dy), transverse to the
hypersurface of contact type Σ × C. X and Y are S1-invariant, therefore X + Y is so too.
Furthermore, observe that X + Y is tangent to Ψ−1(0) because d(m,z)Ψ · (X + Y )(m,z) =
dmf · Xm − |z|2 = f(m) − |z|2 = 0, so we can apply Theorem 5.3.3 with moment map
Ψ, hypersurface Σ × C and vector field X + Y . Finally, let X be the descended vector
field (X + Y )red on Ψ−1(0)/S1. Then αcut = (ιX ωcut)|Σ[0,∞)

follows from ιX+Y (ω + 2 dx ∧
dy) |Σ×C = α+ (x dy − y dx) and Theorem 5.3.3.

5.3.2 Cuts of Symplectizations

Our second, much more useful result in this chapter shows that the operations of cutting
and forming the symplectization of a contact manifold commute. Let us first recapitulate
the required definitions:

Given a strict contact manifold (M,α) we can consider its symplectization (M×R, d (etα)),
renouncing the required pullbacks of projections. Obviously, we have

d (etα) = et
(
dt ∧ α+ dα

)
(5.2)

62



Chapter 5 5.3. COMBINING SYMPLECTIC AND CONTACT CUTS

If dimM = 2m − 1, then (d (etα))m = memt dt ∧ α ∧ (dα)m−1 6= 0, so ω := d (etα) is a
symplectic form on M × R. Because d ι∂tω = ω holds, ∂t is a Liouville vector field, trans-
verse to the hypersurfaces of contact type M × {t0}. For t0 = 0 the induced contact form
on M × {t0} is the original contact form α.

If additionally S1 acts on M , preserving α, with corresponding moment map µ, then ν :
M × R → R , ν(m, t) := et µ(m) is a symplectic moment map with respect to ω = d (etα)
and the canonical action λ · (m, t) := (λ ·m, t) on M ×R because for (m, t) ∈M ×R we have

(−ι∂̂t ω )(m,t)

= ω(m,t)

(
−,
(
∂̂t
M
, 0
))

(5.2)
= et

[
αm
(
∂̂t
M)

dt+ dαm
(
−, ∂̂t

M) ]
= et

[
µ(m) dt−

(
L
∂̂t
M α

)
m

+ d
(
ι
∂̂t
M α

)
m

]
= et

[
µ(m) dt− 0 + dmµ

]
= d(m,t)ν .

Symplectization and reduction commute, as the following proposition states:

Proposition 5.3.5. Suppose (M,α) is a strict contact manifold with an S1-action, preserv-
ing α. Assume the action is free on the zero level set of the corresponding moment map µ.
Then the map

I :
(

(M × R)red , (d (etα))red

) ∼=−→
(
Mred × R , d (etαred)

)
S1 · (m, t) 7−→ (S1 ·m, t)

is a symplectomorphism of the reduced symplectization of M onto the symplectized reduction
of M .

Proof. First of all, I is well-defined because µ(m) = 0 if (m, t) ∈ ν−1(0) and the above
definition is independent of choice of representatives. The inverse function (S1 · m, t) 7→
S1 · (m, t) is also obviously well-defined. In addition, the maps

µ−1(0)× R −→Mred × R , (m, t) 7→ (S1 ·m, t)
µ−1(0)× R −→ (M × R)red , (m, t) 7→ S1 · (m, t)

certainly are smooth. Hence, I is a diffeomorphism. Certainly, every symplectic diffeo-
morphism, i.e. a diffeomorphism such that its differential is linear symplectic, is already
a symplectomorphism, so it suffices to prove this for I. Let (m, t) ∈ µ−1(0) × R , v̄1, v̄2 ∈
TS1·(m,t)(M × R)red be arbitrary. We would like to ensure that

I∗
(
d (etαred)

)
S1·(m,t) (v̄1, v̄2) =

[
( d (etα) )red

]
S1·(m,t) (v̄1, v̄2)

holds. Write pr1 : µ−1(0) � Mred and pr2 : µ−1(0)× R � (M × R)red for the projections
and notice that (pr1 × idR) = I ◦ pr2. Choose vi , i = 1, 2 , with d(m,t)pr2 · vi = v̄i and
xi ∈ Tm µ−1(0) , λi ∈ R such that vi = xi + λi∂t. Put x̄i := pr1 · xi. Then

I∗
(
d (etαred)

)
S1·(m,t) (v̄1, v̄2)

=
[
d (etαred)

]
(S1·m,t)

(
x̄1 + λ1∂t , x̄2 + λ2∂t

)
= et

[
λ1 (αred)S1·m(x̄2)− λ2 (αred)S1·m(x̄1) + (dαred)S1·m(x̄1, x̄2)

]
= et

[
λ1 αm(x2)− λ2 αm(x1) + (dα)m(x1, x2)

]
= d (etα)(m,t)(v1, v2)

=
[

( d (etα) )red

]
S1·(m,t) (v̄1, v̄2) .
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For the second main theorem of this section we will need the following preliminary lemma:

Lemma 5.3.6. Let F : (M1, α1)
∼−→ (M2, α2) be a contactomorphism. Then F × idR :

(M1 × R, d (etα1) )
∼−→ (M2 × R, d (etα2) ) is a symplectomorphism.

Proof. This is a straightforward computation.

Now we can finally state the last theorem, which simply says that cutting the symplectization
of a manifold is the same as constructing the symplectization of the cut.

Theorem 5.3.7. Let (M,α) be a strict contact manifold on which S1 acts under preserva-
tion of α with moment map µ, such that the action is free on the zero level set. Then the
symplectization of the cut M[0,∞) ×R is symplectomorphic to the cut of the symplectization
(M × R)[0,∞) along its moment map ν(m, t) := et µ(m).

Proof. Clearly, the restricted action on ν−1(0) is free, so we can form the cut of M ×R. Let
Ψ : M × C −→ R , Ψ(m, z) := µ(m)− |z|2 denote the natural moment map on M × C. By
definition (cf. proof of Theorem 5.2.3) we have a contactomorphism(

M[0,∞) , αcut

) ∼=
contact

(
(M × C)red = Ψ−1(0)/S1 , (α+ x dy − y dx)red

)
and by the preliminary lemma and Proposition 5.3.5(

M[0,∞) × R , d (etαcut)
) ∼=

sympl.

(
(M × C)red × R , d (et (α+ x dy − y dx)red )

)
∼=

sympl.

(
(M × C× R)red , ( d (et (α+ x dy − y dx) ) )red

)
Again, by definition (cf. proof of Theorem 5.1.2) there is a symplectomorphism(

(M × R)[0,∞) , (d (etα))cut

) ∼=
sympl.

(
(M × R× C)red , (d (etα) + 2 dx ∧ dy)red

)
Thus, to prove the theorem, it suffices to show(

(M × C× R)red , ( d (et (α+ x dy − y dx) ) )red

)
∼=

sympl.

(
(M × R× C)red , (d (etα) + 2 dx ∧ dy)red

)
. (5.3)

The moment map on M × C× R is given by

(m, z, t) 7−→ et Ψ(m, z) = et (µ(m)− |z|2 )

and on M × R× C the moment map is

(m, t, z) 7−→ (et µ(m))− |z|2 .

Hence,

(M × C× R)red = (Ψ−1(0)× R)/S1 =
{

(m, z, t) ∈M × C× R | µ(m) = |z|2
}
/S1

(M × R× C)red =
{

(m, t, z) ∈M × R× C | et µ(m) = |z|2
}
/S1 .

Define the diffeomorphism

H : M × C× R ∼−→M × R× C , (m, z, t) 7−→ (m, t, et/2 z) .

Observe that H maps points (m, z, t) onto points of the form (n, s, w) with es µ(n) = |w|2
if and only if µ(m) = |z|2. Additionally, if λ is in S1, then

H(λ · (m, z, t)) = (λ ·m, t , et/2 λ−1 z ) = λ ·H(m, z, t) ,
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so H is S1-equivariant. Thus, H descends to a diffeomorphism

H̄ : (M × C× R)red −→ (M × R× C)red .

Put ω1 := d (et (α+x dy− y dx) ) and ω2 := d (etα) + 2 dx∧ dy. If we can show H∗ ω2 = ω1,
then H is a symplectomorphism, which implies that (5.3) holds via the symplectomorphism
H̄.
Let us compute the differential of H:
If v ∈ TmM , w ∈ TzC ∼= C , z = x+ iy , λ ∈ R, then

d(m,z,t)H · (v + w + λ∂t) = v︸︷︷︸
∈TM

+ λ∂t︸︷︷︸
∈TR

+ et/2 w +
λ

2
et/2 z︸ ︷︷ ︸

∈TC∼=C

or somewhat more informally

d(m,z,t)H =

 1 0 0
0 0 1
0 et/2 1

2 e
t/2 z

 .

Suppose vj ∈ TmM , ẑj ∈ TzC ∼= C and λj ∈ R for j = 1, 2 are arbitrary. To prove
(H∗ω2)(m,z,t) = (ω1)(m,t,z), it suffices to check the following equations:

(H∗ω2)(m,z,t) (v1, v2) =(ω1)(m,z,t) (v1, v2) (1)

(H∗ω2)(m,z,t) (ẑ1, ẑ2) =(ω1)(m,z,t) (ẑ1, ẑ2) (2)

(H∗ω2)(m,z,t) (λ1 ∂t, λ2 ∂t) =(ω1)(m,z,t) (λ1 ∂t, λ2 ∂t) (3)

(H∗ω2)(m,z,t) (v1, ẑ2) =(ω1)(m,z,t) (v1, ẑ2) (4)

(H∗ω2)(m,z,t) (v1, λ2 ∂t) =(ω1)(m,z,t) (v1, λ2 ∂t) (5)

(H∗ω2)(m,z,t) (ẑ1, λ2 ∂t) =(ω1)(m,z,t) (ẑ1, λ2 ∂t) (6)

Equations (1) and (2) are left to the reader. For (3) and (4) notice that each term is zero.
For demonstration purpose we present the calculations for (5) and (6):

Proof of equation (5): Put v := v1 and λ := λ2 .

(H∗ω2)(m,z,t) (v , λ ∂t) = (ω2)H(m,z,t) (v , λ (∂t +
1

2
et/2 z) )

= d (etα)(m,t) (v , λ ∂t)

= −λ et αm(v)

(ω1)(m,z,t) (v , λ ∂t) = et (dt ∧ α)(m,z,t) (v , λ ∂t)

= −λ et αm(v)

Proof of equation (6): Put ẑ := x̂+ iŷ := ẑ1 and λ := λ2 .

(H∗ω2)(m,z,t) (ẑ , λ ∂t) = (2 dx ∧ dy)et/2 z (et/2 ẑ , λ (∂t +
1

2
et/2 z) )

= et (dx ∧ dy)et/2 z (ẑ , λ z)

= λ et det

(
x̂ x
ŷ y

)
= λ et (x̂y − ŷx)

(ω1)(m,z,t) (ẑ , λ ∂t) = et (dt ∧ (x dy − y dx) )(m,z,t) (ẑ , λ ∂t)

= −λ et (x dyz(ẑ)− y dxz(ẑ) )

= λ et (x̂y − ŷx)
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A Appendix

A.1 Regarding Chapter 2

A quotient map q : X → Y between the topological spaces X and Y is a surjective
map such that the given topology on Y coincides with the quotient topology induced by q.
Obviously, if q is a quotient map, it is continuous.

Lemma A.1.1 (see [Lee13, Exercise A.36]). Let q : X → Y be an open quotient map. Then

Y is Hausdorff ⇐⇒ R := {(x1, x2) | q(x1) = q(x2)} is closed in X ×X

Proof.
“⇒”: Suppose that Y is Hausdorff. Let (x1, x2) ∈ (X × X)\R = RC be arbitrary.

Since Y is Hausdorff, there exist U1 , U2 open neighborhoods of q(x1) , q(x2) respectively
with U1 ∩ U2 = ∅ (here we have used q(x1) 6= q(x2)). Then q−1(U1) × q−1(U2) is an
open neighborhood of (x1, x2) contained in RC (for (x̂1, x̂2) ∈ q−1(U1) × q−1(U2) we have
q(x̂i) ∈ Ui , i = 1, 2 and since U1 and U2 are disjoint, q(x̂1) 6= q(x̂2)). Because (x1, x2) ∈ RC
was arbitrary, RC is open.

“⇐”: Suppose y1 6= y2 ∈ Y . As quotient map q is surjective, so we can find x1 , x2 ∈ X
such that q(xi) = yi , i = 1, 2. Thus, (x1, x2) is in RC which is open by assumption.
Therefore, there exist V1 , V2 open in X with (x1, x2) ∈ V1 × V2 ⊆ RC . Let Ui := q(Vi),
then Ui are open (since q is open) neighborhoods of yi and U1 ∩ U2 = ∅.

Lemma A.1.2 (see [Lee13, Theorem A.57]). Let F : X → Y be a continuous and proper
map between two topological spaces. Suppose further that Y is a locally compact Hausdorff
space, i.e. a Hausdorff space such that every point has a compact neighborhood. Then F is
closed.

Proof. Let C be a closed subset in X. Suppose (cα)α∈A is a net in C and F (cα)→ y ∈ Y .
We want to show that y ∈ F (C). Then F (C) is closed in Y since every limit point of
some net in F (C) is itself in F (C). Choose a compact neighborhood K of y. There exists
a convergent subnet (F (cα))α∈B with F (cα) ∈ K ∀α ∈ B ⊆ A and limit y in K. Since
F is proper, F−1(K) is compact and therefore also C ∩ F−1(K) is compact (it is closed
in the compact set F−1(K)). Because F is continuous, F (C ∩ F−1(K)) = F (C) ∩ K is
compact and hence closed in Y (Y is Hausdorff). Since (F (cα))α∈B is a net in F (C) ∩K
and F (cα)→ y , α ∈ B, it follows that y ∈ F (C) ∩K ⊆ F (C).

Lemma A.1.3. Let X be a first countable Hausdorff space and (pn)n∈N a sequence in
X. Suppose (pn)n∈N has a convergent subnet with limit point p ∈ X. Then it also has a
convergent subsequence with limit p.

Proof. Let (ph(i))i∈I be a convergent subnet with limit p, where (I,�) is a directed set and
the map h : I → N is monotone and final, i.e. has cofinal image.
First suppose #{n ∈ N | pn = p} = ∞. Then, obviously, there exists a convergent subse-
quence of (pn) with limit p.
Now assume, there is an n0 ∈ N, such that pn 6= p for n ≥ n0. Since h(I) is cofinal in N, we
can choose i0 ∈ I with h(i0) ≥ n0. Then (ph(i))i∈J , where h|J : J := {i ∈ I | i � i0} → N,
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is a subnet of (pn)n∈N with limit p and ph(i) 6= p ∀i ∈ J . So, without loss of generality
we may assume that ph(i) 6= p for all i ∈ I. Since X is first countable, we can choose a
neighborhood basis (Un)n∈N of p such that Un+1 ⊆ Un ∀n ∈ N.
Choose i1, such that ph(i1) ∈ U1. Now choose (in)n∈N inductively: Suppose we have chosen
i1, . . . , in ∈ I with ph(ik) ∈ Uk and ik � ik−1 for 2 ≤ k ≤ n. Then there exists i ∈ I with
ph(j) ∈ Un+1 ∀j � i. Since I is a directed set, we can choose in+1 ∈ I with in+1 � i, in.
Because we have ph(in) ∈ Un ∀n ∈ N and the fact that (Un)n is a neighborhood basis of
p, it follows that ph(in) → p. By assumption X is Hausdorff and ph(i) 6= p, so for every
n ∈ N there is some open neighborhood Wn of p with Wn ∩ {ph(i1), . . . , ph(in)} = ∅. Thus,
#{h(in) | n ∈ N} = ∞. In addition, since h is monotone, h(in) ≤ h(in+1). Consider
j : N ∼−→ {h(in) | n ∈ N} the enumeration of {h(in) | n ∈ N} in ascending order. Then
(pj(n))n∈N is a subsequence of (pn)n∈N with limit p.

Lemma A.1.4. Let θ : G×X → X be a continuous action of a topological group G on the
Hausdorff space X. For any two compact sets K1 , K2 ⊆ X, the set

((K1,K2)) := {g ∈ G | (g ·K1) ∩K2 6= ∅}

is closed in G.

Proof. Suppose (gα) is an arbitrary net in ((K1,K2)) with limit point g ∈ G. Closeness
follows if we prove g ∈ ((K1,K2)). Choose a net (pα) in K1 with gα · pα ∈ K2. By
compactness of Ki we can take a convergent subnet of (pα), say (pαβ ), and a convergent
subnet of (gαβ · pαβ ), so we may instead assume (pα) and (gα · pα) converge (and gα → g
holds still). Say pα → p ∈ K1 and gα · pα → q ∈ K2. Since θ is continuous, gα · pα → g · p
and, because limits in Hausdorff spaces are unique, it follows that g · p = q ∈ K2. Thus,
g ∈ ((K1,K2)).

Suppose we have G-spaces X and Y .
A map f : X → Y is called (G-)equivariant if

f(g · x) = g · f(x) ∀ g ∈ G , x ∈ X.

If the G-action on Y is the trivial one, we also say that f is G-invariant.

Theorem A.1.5 (Equivariant Rank Theorem). Given a smooth G-equivariant map f :
M → N between the transitive smooth G-space M and the smooth G-space N, then f has
constant rank (i.e. rk(dpf) = const.).

Proof. Let p , q ∈ M be arbitrary. Since the G-action on M is transitive, there is some
g ∈ G with g · p = q. Let θM , θN denote the actions on M resp. N . Then (θM )g and (θN )g
are diffeomorphisms. Since f is G-equivariant, we have the following commuting diagram

M N

M N

f

(θM )g (θN )g

f

Differentiation at p and the chain rule give the commutative diagram below:

TpM Tf(p)N

TqM Tf(q)N

dpf

dp(θM )g df(p)(θN )g

dqf

Since the differentials of (θM )g respectively (θM )g are isomorphisms, we conclude rk(dpf) =
rk(dqf).
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The following two lemmata are standard results in set theoretic topology and can be found
in any textbook.

Lemma A.1.6. Let X and Y be topological spaces, x ∈ X and K ⊆ Y a compact subset.
Suppose U is open in X × Y and {x} × K ⊆ U ⊆ X × Y . Then there are open subsets
Vx ⊆ X , VK ⊆ Y such that {x} ×K ⊆ Vx × VK ⊆ U .

Proof. For each k ∈ K choose open Wk ⊆ X and Vk ⊆ Y such that (x, k) ∈ Wk × Vk ⊆ U .
This is possible because a basis for the product topology is given by products of open
sets. Since K is compact, we can find k1, . . . , kn ∈ K with K ⊆

⋃n
i=1 Vki =: VK . Let

Vx :=
⋂n
i=1Wki which contains x and is open as finite intersection. Now, if (a, b) ∈ Vx×VK ,

then b ∈ Vki for some i = 1, . . . , n. Then a ∈Wki and thus (a, b) ∈Wki × Vki ⊆ U .

Note that the symmetric statement with a compact subset in the first component also holds,
for example by the next lemma:

Lemma A.1.7. Let X and Y be topological spaces and KX ⊆ X , KY ⊆ Y be compact
subspaces. Suppose U is open in X × Y and KX ×KY ⊆ U ⊆ X × Y . Then there are open
subsets VX ⊆ X and VY ⊆ Y such that KX ×KY ⊆ VX × VY ⊆ U .

Proof. For every x ∈ KX choose open sets W1(x) ⊆ X and W2(x) ⊆ Y such that {x}×KY ⊆
W1(x) ×W2(x) ⊆ U . By compactness of KX we can find x1, . . . , xn ∈ KX such that the
W1(xi) cover KX . Then put VX :=

⋃n
i=1W1(xi) and VY :=

⋂n
i=1W2(xi) .

Of course, Lemma A.1.7 is a generalization of Lemma A.1.6 since points are always compact.

Corollary A.1.8. If X1, . . . , Xn are topological spaces and Ki ⊆ Xi , i = 1, . . . , n , are
compact subspaces and K1 × . . . × Kn ⊆ U ⊆ X1 × . . . × Xn is open, then there are open
Vi ⊆ Xi , i = 1, . . . , n , such that K1 × . . .×Kn ⊆ V1 × . . .× Vn ⊆ U .

Proof. We may assume that all Ki are nonempty. Proof by induction. n = 1 is trivial.
Assume the statement holds for n. Then = K1× . . .×Kn is compact as product of compact
sets. By Lemma A.1.7 we can choose W ⊆ X1× . . .×Xn and Vn+1 ⊆ Xn+1 open such that
K1 × . . .×Kn ×Kn+1 ⊆ W × Vn+1 ⊆ U . By induction hypothesis there are open Vi ⊆ Xi

for i = 1, . . . , n with K1 × . . . ×Kn ⊆ V1 × . . . × Vn ⊆ W . Then K1 × . . . ×Kn ×Kn+1 ⊆
V1 × . . .× Vn × Vn+1 ⊆ U .

Corollary A.1.9. Let K be a compact topological space and X a topological space with point
x ∈ X. Assume that K ×{y} is contained in the open subset U ⊆ K ×X. Then there is an
open neighborhood V of x such that K × {x} ⊆ K × V ⊆ U ⊆ K ×X.

Proof. Apply Lemma A.1.6.

Corollary A.1.10. Let f : K × X → Y be a continuous function, where K is a compact
space and X , Y are arbitrary topological spaces, and x ∈ X be a fixed point. Suppose U ⊆ Y
is an open subset with the property that f(K × {x}) ⊆ U . Then there exists some open
neighborhood V ⊆ X of x with f(K × V ) ⊆ U .

Proof. f−1(U) is open by continuity and K × {x} ⊆ f−1(U). Now apply Corollary A.1.9,
we get an open neighborhood V of x with K × V ⊆ f−1(U).

A.2 Regarding Chapter 3

The following two lemmata recap basic facts about submanifolds. They are both trivial, so
we will omit a proof.

Lemma A.2.1. If M1 , M2 are manifolds and N1 ⊆ M1 , N2 ⊆ M2 are submanifolds (re-
spectively immersed submanifolds), then the product manifold N1 × N2 is a submanifold
(respectively an immersed submanifold) of M1 ×M2.
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Lemma A.2.2. Let M be a manifold and N ⊆M a submanifold (respectively an immersed
submanifold) of M . Then for any subset S ⊆ N , endowed with the subspace topology and
some smooth structure (respectively an arbitrary topology and a smooth structure), the fol-
lowing are equivalent:

(i) S is a submanifold (respectively an immersed submanifold) of M

(ii) S is a submanifold (respectively an immersed submanifold) of N .

The next lemma is a general topological fact and is easy to see as well.

Lemma A.2.3. If π : X → Y is a surjective continuous map between two topological spaces
X , Y , then the following are equivalent:

(i) π is a quotient map.

(ii) For every open subset U ⊆ X with π−1(π(U)) = U the image π(U) is open in Y .

Lemma A.2.4 (see [Lee13, Theorem A.27]). Suppose π : X → Y is a quotient map.
Let U ⊆ X be a saturated subset, i.e. π−1(π(U)) = U , which is open or closed in X.

Then the map π|π(U)
U : U → π(U) is a quotient map if π(U) carries the subspace topology.

In particular, the subspace topology on π(U) and the quotient topology, induced by π|π(U)
U ,

coincide.

Proof. Since U is saturated, we obtain (π|π(U)
U )−1(A) = π−1(A) ⊆ U for any subset A ⊆

π(U). Let τsub and τquot denote the supspace topology respectively the quotient topology
on π(U). We have to show τsub = τquot. Assume W ∈ τsub. Then W = π(U) ∩W ′ for

some open set W ′ ⊆ Y . Since U is saturated, we get (π|π(U)
U )−1(W ) = U ∩ π−1(W ) =

U ∩ π−1(π(U)) ∩ π−1(W ′) = U ∩ π−1(W ′), so (π|π(U)
U )−1(W ) is open in U , and therefore

W ∈ τquot.
To prove the converse inclusion, we have to consider two cases: First suppose U is open.

For arbitrary W ∈ τquot the set (π|π(U)
U )−1(W ) = π−1(W ) is open in U . Thus, since U is

open, the subset π−1(W ) is open in X and, because π is a quotient map, W is open in Y ,
in particular it is open in π(U).
Now assume, U is closed. Let C ⊆ π(U) be an arbitrary closed subset with respect to
the quotient topology on π(U). We will show that C is also closed with respect to the
subspace topology. Because C is closed with respect to the quotient topology, the preimage

(π|π(U)
U )−1(C) = π−1(C) is closed in U . Since U is closed, π−1(C) is closed in X, and

therefore, using that π is a quotient map, C is closed in Y . Thus, C is closed in π(U) with
respect to the subspace topology.

Proposition A.2.5 (cf. [Lee13, Theorem 21.10]). Suppose the Lie group G of dimension
k acts smoothly, freely and properly on the manifold M of dimension m. Put n := m −
k. Then for every p ∈ M there are smooth charts (WM , ϕM ) for M , containing p, and
(WM/G , ϕM/G) for M/G, containing G · p, such that the following conditions hold:

(i) The orbit projection, expressed in coordinates,

ϕM/G ◦ ΠM ◦ ϕ−1
M :

Rk × Rn ⊃ U ′ × U ′′ := ϕM (WM )→ ϕM/G(WM/G) = U ′′

is the projection onto the second factor.

(ii) Write (x, y) := (x1, . . . , xk, y1, . . . , yn) := ϕM for the coordinates. For each orbit O
that intersects WM there exists an unique a = (a1, . . . , an) ∈ Rn such that O ∩ WM =
{y1 = a1, . . . , yn = an}.

(iii) a = (0, . . . , 0) ∈ Rn for the orbit through p.
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The pair (ϕM , ϕM/G) is called adapted to the G-action and ϕM is a G-adapted chart.

Proof. By the Quotient Manifold Theorem, (M,ΠM ) is a smooth G-principal bundle. As
we have shown in the proof of Theorem 2.4.4, one can find a slice S at p (fulfilling the
conditions in Theorem 2.3.15) such that η = ΠM |VS is a diffeomorphism, where V := ΠM (S)
is open. Put mult : G×S → G·S for the multiplication map (see equation (2.17)). Then φ :=
(idG×η) ◦mult−1 : G·S → G×V is a G-equivariant diffeomorphism such that ΠM = pr2◦φ.
Choose smooth charts (WG, ϕG) for G, containing e ∈ G, and (WM/G , ϕM/G) for V , where
(WM/G , ϕM/G) is centered at ΠM (p) (i.e. ΠM (p) ∈ WM/G and ϕM/G( ΠM (p) ) = 0 ∈ Rn).
Now define

ϕM := (ϕG × ϕM/G ) ◦ φ :

WM := φ−1(WG ×WM/G)→ ϕG(WG)× ϕM/G(WM/G) =: U ′ × U ′′

Clearly, (WM , ϕM ) is a smooth chart for M , containig p. Then condition (i) follows imme-
diately:

ϕM/G ◦ ΠM ◦ ϕ−1
M = ϕM/G ◦ pr2 ◦ (ϕG × ϕM/G )−1 = prU

′×U ′′�U ′′

2 .

Now let us check condition (ii). Suppose O is an arbitrary orbit such that the intersection
with WM is not empty. Choose q ∈WM with G · q = O. Put a := ϕM/G (O) = ϕM/G (G · q).
Let φ(q) =: (g, y). Then q = g · s for the unique element s ∈ S with η(s) = ΠM (s) = y.
Hence, y = G · s = G · q and we conclude φ(q) = (g,G · q).
Consider an arbitrary q̂ ∈ G · q ∩ WM . Then we have φ(q̂) = (ĝ, G · q̂) for some ĝ ∈ G. It
follows

ϕM (q̂) = (ϕG × ϕM/G)( (ĝ, G · q̂) ) = (ϕG × ϕM/G)( (ĝ, G · q) ) = (ϕG(ĝ), a) .

To show the converse inclusion, suppose q̂ is in WM with ϕM (q̂) = (x̂, a). Let ĝ denote the
element in G with φ(q̂) = (ĝ, G · q̂). Thus, (ĝ, G · q̂) = φ(q̂) = (ϕ−1

G (x̂), (ϕM/G)−1(a) ) =

(ϕ−1
G (x̂), G · q ), in particular G · q̂ = G · q, which shows q̂ ∈ G · q ∩ WM .

This proves O ∩ WM = {y1 = a1, . . . , yn = an}. The uniqueness of such an a is trivial.
(iii) follows from a = ϕM/G (G · p) = 0 ∈ Rn.

The next corollary will be appear again in Chapter 4 but the approach of the proof will be
different.

Corollary A.2.6. G is a Lie group, acting smoothly, properly and freely on the manifold
M . For p ∈M the following holds:

ker (dpΠM ) = Tp (G · p) . (A.1)

Proof. By the preceding Proposition A.2.5, we can choose a pair of charts (ϕM , ϕM/G),
adapted to the G-action, where (WM , ϕM ) contains p and
(WM/G, ϕM/G) contains G · p. Put (x, y) = (x1, . . . , xk, y1, . . . , yn) = ϕM . By condition (i)
in Proposition A.2.5, we obtain ker (dpΠM ) = span (∂x1 , . . . , ∂xk). By condition (ii) we also
get Tp (G · p) = span(∂x1 , . . . , ∂xk), thus proving the statement.

Proposition A.2.7. Let θ : G × M → M be a smooth, proper and free action of the
Lie group G on the manifold M . Suppose the submanifold N ⊆ M is G-invariant, i.e.
g · q ∈ N ∀ g ∈ G , q ∈ N , and open or closed in M . Then the orbit space N/G, endowed
with the smooth structure from the Quotient Manifold Theorem, is a submanifold of M/G.

Proof. By the Quotient Manifold Theorem, the space M/G carries a canonical smooth struc-
ture. Since N is G-invariant, the action restricts to a smooth action θ|NG×N on N (using
the characteristic property of embeddings). Clearly, this restricted action is free. It is also
proper by Proposition 2.1.10. Thus, by the Quotient Manifold Theorem, the orbit space
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N/G is indeed a manifold.

Let ιN : N ↪→M and ιN/G : N/G ↪→M/G denote the inclusion maps. Since by assumption
N is G-invariant and open or closed in M , the quotient topology and the subspace topology
(with respect to the superset M/G) on N/G coincide (see Lemma A.2.4). Thus, the inclusion
map ιN/G is a topological embedding between the manifolds N/G and M/G. Because we
have

ιN/G ◦ ΠN = ΠM ◦ ιN ,

where ΠN , ΠM denote the projections onto the orbit, the map ιN/G is smooth by the char-
acteristic property of surjective submersions. If, in addition, it is also an immersion, then
N/G is indeed a submanifold of M/G.

Let v̄ ∈ TG·qN/G with dG·q ιN/G · v̄ = 0 ∈ TG·qM/G be arbitrary. Since ΠN is a submersion,
there exists a v ∈ TqN such that dqΠN · v = v̄. Applying the chain rule, we get

0 = dΠN (q) ιN/G ◦ dq ΠN · v = dιN (q) ΠM ◦ dq ιN · v .

By Corollary A.2.6 we reason that dq ιN · v ∈ Tq (G · q). Recall that, if we write ‘Tq (G · q) ’
and mean a linear subspace of TqM , the formal expression is in fact ‘ dq ιG·q,M (Tq (G · q)) ’,
where ιG·q,M denotes the inclusion G · q ↪→ M . If ιG·q,N : G · q ↪→ N is the inclusion, we
obtain dq ιN · v ∈ dq ιG·q,M (Tq (G ·q)) = dq ιN ( dq ιG·q,N (Tq (G ·q) ) ) and, because ιN is an
immersion, this leads to v ∈ dq ιG·q,N (Tq (G · q)). Again, using Corollary A.2.6, this means
v ∈ ker(dq ΠN ), which demonstrates v̄ = 0. In conclusion, dG·q ιN/G is injective, which
finishes the proof.
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