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This bachelor thesis discusses the application of di�erent iterative solvers to the Policy

iteration, which is commonly used to optimize the so called Markov Decision Processes

(MDPs). In general, MDPs provide us with a mathematical framework used to model decision-

making in stochastic environments, which we will be discussing in detail in this thesis.

Our focus lies on analysing and discussing the Jacobi, Gauss-Seidel, Richardson and Krylov

subspace methods. We are especially interested in understanding which model is most e�cient

depending on the problem we want to solve and how the di�erent iterators can be interpreted

in regards to our model. Meaning, we aim to describe what happens with our MDP in the

process of the linear system being solved.

In dieser Bachelorarbeit geht es um verschiedene iterative Löser und ihre Anwendung auf

das Policy-Iterationsverfahren, welches ein Standardverfahren ist um so genannte Markow

Entscheidungsprozesse (MDPs) zu optimieren. Im allgemeinen bieten MDPs einen mathema-

tischen Rahmen in dem Entscheidungen innerhalb einer stochastischen Umgebung modelliert

werden können, welcher in dieser Thesis ausführlich beschrieben und hergeleitet wird. Unser

Fokus ist hierbei das Analysieren und Diskutieren der Jacobi-, Gauss-Seidel-, Richardson- und

Krylov-Unterraum-Verfahren. Insbesondere interessiert uns, wann man welche Verfahren

benutzen sollte und ob wir die verschiedenen Iteratoren in bezug auf die MDPs interpretieren

können. Wir versuchen also zu beschreiben, was beim Lösen mit des linearen Gleichungssys-

tem mit unserem Problem passiert.
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1 Introduction

In this thesis, we look at Markov Decision Processes (MDPs) and how to optimize them using

Policy Iteration with di�erent solvers for the arising linear system. Our goal is to analyse the

di�erent methods and interpret them in regards to our model. MDPs have a wide range of

applications such as machine learning, economics and manufacturing. However, we can also

apply them to model the decisions we have to make in our everyday life. The general idea of

this model is that for any state we are in we know what actions we can take and how much it

costs us. Furthermore, we know the probabilities of going to a new state after choosing our

action. Of course, in real life we usually do not have access to all this information. There are

extensions of MDPs that cover this problem in more detail, like Partially Observable Markov

Decision Processes which will not be part of this thesis. Before we introduce Markov Decision

Processes we have to discuss the mathematical foundation of the model.

1.1 Markov Chains

We start with the concept of Markov Chains which model the probabilities of moving from

one state to another state as presented in the following de�nition.

De�nition 1.1 (Markov Chains from Johannes 2021, Def. 17.01). Let T = N0 (discrete time) or
T = R+ (continuous time) and ( a countable non-empty set (Space of states). A stochastic process
(-C )C∈T with the Space of states ( is called a Markov Chain if for all = ∈ N, all C1 < C2 < · · · <
C= < C in T and all B1, . . . , B=, B in ( with the probability % (-C1 = B1, . . . , -C= = B=) ∈ (0, 1] satisfy
the Markov Properties:

% (-C = B |-C1 = B1, . . . , -C= = B=) = % (-C = B |-C= = B=)

For a Markov Chain (-C )C∈T, C1 ≤ C2 from T. ?8 9 (C1, C2) with 8, 9 ∈ ( describes the probabil-
ity of going from one state 8 at time C1 to a state 9 at C2 as ?8 9 (C1, C2) = % (-C1 = 9 |-C2 = 8).
% (C1, C2) =

(
?8 9 (C1, C2)

)
8, 9∈( is called the probability matrix. The probability matrix is called

time-homogeneous if
% (C1, C2) = % (0, C2 − C1) =: % (C2 − C1),

for all C1 ≤ C2 in T.

In this thesis we always assume T = N0 and furthermore that our probability matrix is

time-homogeneous, so we denote % := % (1). So the Markov Properties mean nothing else

1
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than going from state 8 to state 9 in one time step is independent of previous states before 8 .

For example, using the following probability matrix

% =

(
0.25 0.75

0.1 0.9

)
,

the Markov chain can be modelled with this diagram

1 20.25

0.75

0.1

0.9

1.2 The Basic Problem

In this part, we introduce a discrete-time dynamic system to model decision-making math-

ematically as described in Bertsekas 2005. First, we gather everything this model needs,

starting with a space of states (: at a time : . This space consists of all the states G: one could

be in at this point of time. Of course, we have to know what decisions can be made at any time,

and we denote this space as�: with elements D: referred to as actions or controls. Depending

on the current state it might not be possible to choose from all actions, so we usually write

D: ∈ *: (G:) ⊂ �: . Lastly, our model is generally assumed to come with some uncertainty.

Since, as we know, making a decision does not always lead to the wanted result as there is

always a chance for some random disturbance making it impossible to be sure of our next

state. This disturbanceF: is characterized by the probability % (F: |G: , D:) as the current state

and chosen actions can still in�uence the disturbances. The space of all disturbances at time

: is denoted as �: . In total, we get a function 5: determining the next state

G:+1 = 5: (G: , D: ,F:), : = 0, 1, . . . , # − 1. (1.1)

Of course, taking an action or being in a certain state might have some cost (6 > 0) or bene�t

(6 < 0) to it. This so-called cost function is denoted as 6: (G: , D: ,F:) for a time : . Furthermore,

6: is considered to be additive. Meaning the cost for a model running for a time of # is

6# (G# ) +
#−1∑
:=0

6: (G: , D: ,F:),

where6# (G# ) is a terminal cost added at the end of the process. However, as the cost cannot be

determined with certainty due to the random disturbances, we have to calculate the expected

cost instead

E

[
6# (G# ) +

#−1∑
:=0

6: (G: , D: ,F:)
]
.

Phil Neitzel Bachelor Thesis 2
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Additionally, one usually decides on an action depending on their current state. We call those

policies `: (G:) and if they ful�l D: = `: (G:) ∈ *: (G:) for all G: ∈ (: they are considered

admissible. The class of policies is then written as

c = {`0, . . . , `#−1}.

In conclusion, we get an expected cost function for a class of admissible policies depending

on an initial state G0 and denote it as

�c (G0) = E
[
6# (G# ) +

#−1∑
:=0

6: (G: , `: (G:),F:)
]
.

Since the goal is to �nd an optimal policy c∗ minimizing the function �c (G0) over the set of

all admissible policies Π we write

� ∗(G0) = �c∗ (G0) = min

c∈Π
�c (G0) (1.2)

and call this the optimal cost function for an initial state G0. We write � ∗ as the optimal cost

function for any initial state.

1.3 The Dynamic Programming Algorithm

To get an idea on how to optimize �c (G0) we use the Principle of Optimality. Again the

motivation and algorithm are taken from Bertsekas 2005. First, we consider an optimal class

of admissible policies c∗ = {`∗
0
, `∗

1
, . . . , `∗

#−1} for a model of time length # . The expected cost

for starting at time 8 < # is then calculated by

E

[
6# (G# ) +

#−1∑
:=8

6: (G: , `: (G:),F:)
]
.

Of course, {`∗8 , . . . , `∗#−1} is the optimal policy for this subproblem, because if there were a

better policy we would choose this policy for our main problem as well. This, however, would

be a contradiction to c∗ being optimal. So we can see the optimal solution of Equation (1.2)

can be determined bit by bit by �nding the optimal policy for the subproblem of smaller time

length and then using this result to calculate the optimal policy for the subproblem with larger

time length until we get the result for the original problem. Of course, we can formulate this

so-called Dynamic Programming Algorithm (DP Algorithm) mathematically.

Proposition 1.2 (The DP Algorithm from Bertsekas 2005, Prop. 1.3.1). For every initial state
G0, the optimal cost � ∗(G0) of the basic problem is equal to �0(G0), given by the last step of the
following algorithm, which proceeds backward in time from period # − 1 to period 0:

�# (G# ) = 6# (G# ) (1.3)

Phil Neitzel Bachelor Thesis 3
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�: (G:) = min

D:∈*: (G: )
E [6: (G: , D: ,F:) + �:+1(5: (G: , D: ,F:))] , : = 0, 1, . . . , # − 1. (1.4)

Where the expectation is taken with respect to the probability distribution ofF: , which depends
on G: and D: . Furthermore, if D∗

:
= `∗

:
(G:) minimizes the right side of Equation (1.4) for each G:

and : , the policy c∗ = {`∗
0
, . . . , `∗

#−1} is optimal.

1.4 Discounted Problems on the Infinite Horizon

Now we have a general idea for the DP Algorithm on the very basic problem. However, in this

thesis, we mainly focus on in�nite horizon problems. So for this section we consult Bertsekas

2012 and start by introducing U > 0, which is called the discount factor if U < 1. If U = 1 we

will refer to the problem as undiscounted. The intuitive idea behind a discount factor is that

costs or bene�ts are usually worth less when lying further in the future. For example, being

asked whether one would like to receive €10 now or €11 in a year, a lot of people would take

the €10 now because €11 is being discounted by having to wait a whole year to get only a

single Euro more.

Now looking at an admissible policy c = {`0, `1, . . . , `#−1} and a terminal cost of U# � (G# )
where � : - → R can be generally interpreted as the expected cost function for everything

coming after the �rst # states. As we will see throughout this thesis, this function is usually

calculated rather than chosen. However, for the moment we assume to have knowledge over

� .

Adding the costs for the �rst # − 1 states to the terminal cost leads to the total expected cost

E

[
U# � (G# ) +

#−1∑
:=0

U:6(G: , `: (G:),F:)
]
. (1.5)

As we are referring to an in�nite horizon problem, from now on we denote the state G: as

an element of the space - , the control D: as an element of * and the random disturbances

F: of, . The minimum of Equation (1.5) over all admissible policies c can be determined by

applying the DP algorithm to this problem as follows

�#−: (G) = min

D∈* (G)
E

[
U#−:6(G,D,F) + �#−:+1(5 (G,D,F))

]
,

with the initial condition

�# (G) = U# � (G).
Where �#−: (G) denotes the optimal cost of the last : stages from state G . So �0(G) is the

optimal cost function for the overall problem regarding the initial state G .

Even though this is a �nite horizon problem with our interpretation of � we can view it

as a simpli�ed version of an in�nite horizon problem. Of course, if we can simplify this

in�nte-horizon problem to any # -stage problem the most intuitive decision is to choose

a one-stage problem with # = 1. Here the terminal cost is U � and the single stage cost 6.

Phil Neitzel Bachelor Thesis 4
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Meaning, we calculate the expected cost of the initial state and the discounted expected future

costs. To simplify notation, we denote the optimal solution of this one-stage problem as

() � ) (G) = min

D∈* (G)
E [6(G,D,F) + U � (5 (G,D,F))] , G ∈ - . (1.6)

De�nition 1.3 (Stationary Policy from Bertsekas 2005, Sec. 7.1). A stationary policy is an
admissible policy of the form c = {`, `, . . . }, and its corresponding cost function is denoted by
�` (8). For brevity, we refer to {`, `, . . . } as the stationary policy `. We say that `∗ is optimal if

�`∗ (8) = � ∗(8) = min

c
�c (8).

Using this de�nition, we denote for any function � : - → R and any stationary policy `

()` � ) (G) = E [6(G, ` (G),F) + U � (5 (G, ` (G),F))] , G ∈ -, (1.7)

which can be interpreted analogously to the above. Next we denote by ) : � the composition

of the mapping ) with itself : times. Meaning, for all : we write

() : � ) (G) =
(
) () :−1� )

)
(G) = min

D:∈*: (G: )
E

[
U# � (G# ) +

#−1∑
:=0

U:6(G: , D: ,F:)
]
, G ∈ - .

Thus, ) : � is the function obtained by applying the mapping T to the function ) :−1� . For

convenience, we also write

() 0� ) (G) = � (G), G ∈ - .
Similarly, ) :` � is de�ned as

() :` � ) (G) = )` () :−1` � ) (G) = E
[
U# � (G# ) +

#−1∑
:=0

U:6(G: , `: (G:),F:)
]
, G ∈ - (1.8)

and

() 0

` � ) (G) = � (G), G ∈ - .

One can immediately see () : � ) (G) is the optimal cost function for the k-stage problem and

initial state G . While ()` � ) (G) is the cost function for the k-stage problem with a certain

stationary policy `.

Lemma 1.4 (Monotonicity Lemma from Bertsekas 2012, Lem. 1.1.1). For any function � : - → R
and � ′ : - → R, such that for all G ∈ - , � (G) ≤ � ′(G), and any stationary policy ` : - → * ,
we have

() : � ) (G) ≤ () : � ′) (G)
() :` � ) (G) ≤ () :` � ′) (G)

for all G ∈ - , and : = 1, 2, . . .

Phil Neitzel Bachelor Thesis 5



Iterative Solution of MDPs Phil Neitzel

Proof. We will prove this using induction. For : = 1 it means:

() � ) (G) = min

D∈* (G)
E [6(G,D,F) + U � (5 (G,D,F))]

� (G)≤� ′(G)
≤ min

D∈* (G)
E [6(G,D,F) + U � ′(5 (G,D,F))] = () � ′) (G)

Now we assume that () : � ) (G) ≤ () : � ′) (G) (∗) is satis�ed and show () :+1� ) (G) ≤ () :+1� ′) (G)

() :+1� ) (G) = () () : � )) (G)

= min

D∈* (G)
E

[
6(G,D,F) + U () : � ) (5 (G,D,F))

]
(∗)
≤ min

D∈* (G)
E

[
6(G,D,F) + U () : � ′) (5 (G,D,F))

]
= () :+1� ′) (G),

which implies () : � ) (G) ≤ () : � ′) (G) ∀G ∈ -, : = 1, 2, . . . . The proof works similarly for

() :` � ) (G) ≤ () :` � ′) (G). �

Assumption 1.5 (Assumption D (Discounted Cost - Bounded Cost per Stage) from Bertsekas

2012, Sec. 1.2). The cost per stage 6 satis�es for all (G,D,F) ∈ - ×* ×,

|6(G,D,F) | ≤ ",

where" is some scalar. Furthermore, 0 < U < 1.

Since we are mainly considering �nite sets - ,* and, in this thesis, this assumption always

holds true and is no real restriction, but it needed to be mentioned in order to understand the

argumentation of the following propositions.

Proposition 1.6 (Bertsekas 2012, Prop. 1.2.2). For every stationary policy `, the associated cost
function satis�es for all G ∈ -

�` (G) = lim

#→∞
()#` � ) (G) . (1.9)

Proof. For every positive integer N, initial state G0 ∈ - and stationary policy `, we break

down the cost �` (G0) into the portions incurred over the �rst N stages and over the remaining

Phil Neitzel Bachelor Thesis 6
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stages.

�` (G0) = lim

 →∞
E

[
 ∑
:=0

U:6(G: , ` (G:),F:)
]

= E

[
#−1∑
:=0

U:6(G: , ` (G:),F:)
]
+ lim

 →∞
E

[
 ∑
:=#

U:6(G: , ` (G:),F:)
]

≤ E
[
#−1∑
:=0

U:6(G: , ` (G:),F:)
]
+

����� lim →∞
E

[
 ∑
:=#

U:6(G: , ` (G:),F:)
] �����

≤ E
[
#−1∑
:=0

U:6(G: , ` (G:),F:)
]
+
∞∑
:=#

U:" (Ass. D)

= E

[
#−1∑
:=0

U:6(G: , ` (G:),F:)
]
+ U

#"

1 − U

Using this inequality it follows that

�` (G0) −
U#"

1 − U − U
#
max

G∈-
|� (G) |

≤ E
[
U# � (G# ) +

#−1∑
:=0

U:6(G: , ` (G:),F:)
]

≤ �` (G0) +
U#"

1 − U + U
#
max

G∈-
|� (G) |.

So by de�nition of ()#` � ) (G0) it follows immediately

�` (G0) −
U#"

1 − U − U
#
max

G∈-
|� (G) |

≤ ()#` � ) (G0)

≤ �` (G0) +
U#"

1 − U + U
#
max

G∈-
|� (G) |

and by taking the limit # →∞, we receive the desired result

�` (G0) ≤ lim

#→∞
()#` � (G0) ≤ �` (G0)

=⇒ �` (G0) = lim

#→∞
()#` � ) (G0).

�

Phil Neitzel Bachelor Thesis 7
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Proposition 1.7 (Convergence of the DP Algorithm from Bertsekas 2012, Prop. 1.2.2). For
any bounded function � : - → R, we have for all G ∈ - ,

� ∗(G) = lim

#→∞
()# � ) (G).

Proof. The proof is similar to the one from Proposition 1.6 with the main di�erence being we

now have c = {`0, `1, . . . } instead of a stationary policy. This means ` is also dependent on k.

In general, Proposition 1.6 is a special case of this proposition. �

Proposition 1.8 (Bertsekas 2012, Prop. 1.2.4). For every stationary policy `, the associated cost
function satis�es for all G ∈ - ,

�` (G) = E
[
6(G, ` (G),F) + U �` (5 (G, ` (G),F))

]
or, equivalently

�` = )` �` .

Furthermore, �` is the unique solution of this equation within the class of bounded functions.
Moreover, for any bounded function � with � ≥ )` � (or � ≤ )` � ), we have � ≥ �` (or � ≤ �`),
respectively.

Proof. We can immediately show �` = )` �` because of Proposition 1.6

()` �`) (G) = E
[
6(G, ` (G),F) + U �` (5 (G, ` (G),F))

]
= E

[
6(G, ` (G),F) + U

(
lim

#→∞
()#` � ) (5 (G, ` (G),F))

)]
= lim

#→∞
E

[
6(G, ` (G),F) + U ()#` � ) (5 (G, ` (G),F))

]
= lim

#→∞
()#+1` � ) (G)

= lim

#→∞
()#` � ) (G)

= �` (G).

To show uniqueness, we assume some bounded function � satis�es � = )` � then � = lim

#→∞
)#` �

by Proposition 1.6. So we get � = �` which proves uniqueness of the solution. Now what is

left to show is � ≥ )` � =⇒ � ≥ �` (analogue for � ≤ )` � =⇒ � ≤ �`).
So let � ≥ )` � .
Using the Lemma of Monotonicity Lemma 1.4 it follows

� ≥ )` � ≥ ) 2

` � ≥ · · · ≥ ) :` � ≥ ) :+1` � ≥ . . .

and by taking the limit : →∞ it follows

� ≥ lim

:→∞
) :` � = �` .

�

Phil Neitzel Bachelor Thesis 8
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Proposition 1.9 (Bellamn’s Equation from Bertsekas 2012, Prop. 1.2.3). The optimal cost
function � ∗ satis�es for all G ∈ - ,

� ∗(G) = min

D∈* (G)
E [6(G,D,F) + U � ∗(5 (G,D,F))] (1.10)

or equivalently,
� ∗ = ) � ∗.

Furthermore, � ∗ is the unique solution of this equation within the class of bounded functions.
Moreover, for any bounded function � with � ≥ ) � (or � ≤ ) � ), we have � ≥ � ∗ (or � ≤ � ∗,
respectively)

Proof. Again this Proposition is proven with the same argumentation as in the proof of

Proposition 1.8 �

Proposition 1.10 (Necessary and Su�cient Condition for Optimality from Bertsekas 2012,

Prop. 1.2.5). A stationary policy ` is optimal if and only if ` (G) attains the minimum in Bellman’s
equation (1.10) for each G ∈ - ; i.e.,

) � ∗ = )` �
∗.

Proof. If ) � ∗ = )` � ∗, then using the Bellman’s equation (� ∗ = ) � ∗), we have � ∗ = )` � ∗. So by

the uniqueness part of Proposition 1.8, we obtain � ∗ = �` ; i.e., ` is optimal. Conversely, if the

stationary policy ` is optimal, we have � ∗ = �` , which by Proposition 1.8, yields � ∗ = )` � ∗.
Combining this with Bellman’s equation, we obtain ) � ∗ = )` � ∗. �

The previous propositions should give a better understanding as to why � can be interpreted

as an expected cost function and of course the general understanding of �nding the optimal

solution to our model. Additionally, they will also become useful for grasping the concept of

optimizing Markov Decision processes which we look into in the next chapter.

Phil Neitzel Bachelor Thesis 9



2 Markov Decision Processes

With the understanding of the general idea of decision-making, and the mathematical deriva-

tions gather in the previous chapter, in this chapter we introduce the model for Markov

Decision processes (MDPs), which is a special version of the problem discussed in the intro-

duction. Again the model presented in this chapter is taken from Bertsekas 2012.

2.1 The Model

As mentioned in the previous chapter the space of states - , controls* and disturbances,

are assumed to be �nite sets. Meaning, MDPs will be introduced working with �nite-state

Markov chains. An important assumption made throughout this thesis is that the process is

discounted, so 0 < U < 1, where U is the discount factor. Furthermore, the states are simply

enumerated and denoted as 8 or G , respectively. So, having an MDP with = states, the space of

states is

- = {1, . . . , =}.
The disturbances used in the previous chapter are now generally the state following a made

decision. Thus,F: = G:+1 for a time : and hence, the transition probability is denoted as going

from state 8 to state 9 in a single time period, so

?8 9 (D) = % (G:+1 = 9 |G: = 8, D: = D) , for 8, 9, ∈ -,D ∈ * (8).

Using the same notation we introduced in the last chapter the mappings of the expected cost

per stage ) � and )` � can be written as

() � ) (8) = min

D∈* (8)

=∑
9=1

?8 9 (D) (6(8, D, 9) + U � ( 9)), 8 ∈ -,

()` � ) (8) =
=∑
9=1

?8 9 (` (8)) (6(8, ` (8), 9) + U � ( 9)), 8 ∈ - .

However, to simplify this equation we assume 6 to be independent of 9 . This does not make a

signi�cant di�erence, because if a problem’s cost is dependent on 9 we can always de�ne

6(8, D) :=
=∑
9=1

?8 9 (D)6(8, D, 9). (2.1)

10
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Meaning, the following mappings are equivalent to the ones above

() � ) (8) = min

D∈* (8)

(
6(8, D) + U

=∑
9=1

?8 9 (D) � ( 9)
)
, 8 ∈ -, (2.2)

()` � ) (8) = 6(8, ` (8)) + U
=∑
9=1

?8 9 (` (8)) � ( 9), 8 ∈ - . (2.3)

As the goal is to �nd an optimal policy for all = states we denote

� =
©­­«
� (1)
...

� (=)

ª®®¬ , ) � =
©­­«
() � ) (1)

...

() � ) (=)

ª®®¬ , )` � =
©­­«
()` � ) (1)

...

()` � ) (=)

ª®®¬ .
Furthermore, we can write the probability matrix for a stationary policy ` as

%` =
©­­«
?11(` (1)) . . . ?1= (` (1))

...
. . .

...

?=1(` (=)) . . . ?== (` (=))

ª®®¬
and the corresponding cost vector

6` =
©­­«
6(1, ` (1))

...

6(=, ` (=))

ª®®¬ .
Leading us to the equation as a vector notation

)` � = 6` + U%` � . (2.4)

Using Proposition 1.8 we also know that �` is the unique solution for a stationary policy `

meaning

�` = )` �` = 6` + U%` �` . (2.5)

Which we can rewrite as

(I − U%`) �` = 6`, (2.6)

with I being the = × = identity matrix. This gives us a linear system we can solve for �` which

is important for �nding an optimal policy as we will see later in this chapter.

2.2 Some Examples for MDPs

2.2.1 An Introductory Example

First, let us begin with a simple example where we can choose between two actions and move

between to di�erent states. Meaning, - = {1, 2} and* = {0, 1}. For each action we receive a

Phil Neitzel Bachelor Thesis 11
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probability matrix as follows

%0 =

(
0.3 0.7

0.3 0.7

)
, %1 =

(
0.6 0.4

0.6 0.4

)
,

with the corresponding cost vectors being

60 =

(
3

0.5

)
, 61 =

(
1

5

)
.

Note, that in this case the transition probability is independent from the previous state. as the

probabilities in each row are the same. Of course, this is not the case for most models, but it

does simplify the visualisation of the MDP, seen in the following diagram.

1

a

b

2

3

1

0.5

5

0.3 0.7

0.6 0.4

Figure 2.1: The MDP visualised with the states in black and actions in red.

2.2.2 Example: Transportation Problem

In this next example the MDP models the question of how someone should get to work. They

could take the bike with a guarantee to be at work in 45 minutes. Another option would be to

take the car. However, with this option they don’t know the tra�c status. We assume there’s

a chance of low tra�c in which case they arrive in only 15 minutes, medium tra�c, leading to

30 minutes of travel and high tra�c leading to 70 minutes of travel.

Lastly, they might also decide on taking the train, meaning they will have to walk to the

train station �rst which will take them 5 minutes. Of course, arriving at the station there

is a chance that the train might be delayed so they might have to wait for it. If the trains

does not arrive in the next three minutes, the worker can decide to go home and choose a

di�erent use of transport or they could wait another three minutes. When the train arrives

it will take them 25 minutes to arrive at work. Of course, the goal of the worker is to get to

work as fast as possible, so we need to minimize the amount of minutes he needs to get to

work. Mathematically the set of all states - and the set of all actions* can look as follows

Phil Neitzel Bachelor Thesis 12
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- = {Home, Waiting Room, Train, On Bike, Low, Medium, High, Work},
* = {bike, car, train station, wait, go home, go to work, do the work}.

Here, the "do the work" action is only to complete the model, as some action needs to be

decided on for being in the "at work" state. The probability matrices all look very similar so

only one exemplary matrix is written down to get an idea for the overall problem.

%car =

©­­­­­­­­­­­«

0 0 0 0
1

6

2

3

1

6
0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

ª®®®®®®®®®®®¬
Notice, we wrote a probability of "1" for staying in the same state except if one takes the action

"car" when they are in the "Home" state as this is the only state where it is allowed to take

the car. Of course, keeping them in the same state is not the only solution to this problem,

but we always have to ful�l the properties of a probability matrix with every %` . A similar

problem occurs if we look at the cost vector. To keep the worker from choosing the car, for

example when they are in the waiting room, we simply have to make the cost for doing so

extremely high. This way the action is always prevented from being chosen. So for example

6go to work should look something like this

6go to work =

©­­­­­­­­­­­«

∞
∞
25

45

15

30

70

∞

ª®®®®®®®®®®®¬
.
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Homestart

bike train station Train

Waiting Room waitgo home

car

Low

Medium

High

Work

0

0

5

45

1

6

1

6

2

3

2

3

1

3

3

5 1

3

2

3

1

25

15

30

70

Figure 2.2: The MDP visualised with the di�erent states (black) and actions (red).

To simplify the model and make it more readable there are some missing states and actions

that can be let out in the drawing but are still mathematically relevant. For example if the

worker reaches the "Train" state they will automatically take the action "go to work" or if

they decide to take the bike they will automatically reach the state "On Bike".

2.2.3 Example: The Studying Problem

In this last example we look at a student who needs to decide on the amount of hours they

want to study every day for an upcoming exam. They can choose between 0.5, 2 or 4 hours

everyday. Their university grants the grades 1 - 5, where 1 is a great result and 5 means they

failed the course. Understandably, the main goal of the student is to pass the exam. So we

use a point system to decide the costs that occur depending on the action they choose. The

general goal is to have as few points as possible and the hours they spend studying always

Phil Neitzel Bachelor Thesis 14
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awards them with points worth the amount of hours they studied. Now the table for the

points received for each grade is as follows:

Grade Points

1 −10
2 −7
3 −4
4 −1
5 10

So the overall cost for an action they choose is determined by the expected grade and the

hours they study. This means the cost is not only dependent on the current state but also

the state the student will land in. As mentioned in Equation (2.1) we can simply calculate

the expected cost and use this as our cost for every state 8 . For example for 8 = 1 and D = 4ℎ,

using the probabilities from below, the cost is calculated as follows:

6(1, 4ℎ) = ?11(4ℎ)6(1, 4ℎ, 1) + ?12(4ℎ)6(1, 4ℎ, 2) + ?13(4ℎ)6(1, 4ℎ, 3)
= 0.75 · (4 − 10) + 0.2 · (4 − 7) + 0.05 · (4 − 4)
= −5.1

Another important assumption in this model is that the amount of study needed depends

on the previous grade they have obtained in this �eld, as this is an indicator for how well

someone understands the subject before they even start studying. So if, for example, the

student had a good grade before, there is a higher likelihood for them to receive a good grade

again and vice versa. So to describe this problem mathematically we have

- = {1, 2, 3, 4, 5}, * = {0.5ℎ, 2ℎ, 4ℎ},

with the di�erent transition matrices for each action

%0.5ℎ =

©­­­­­«
0 0.5 0.35 0.15 0

0 0 0.5 0.4 0.1

0 0 0.3 0.4 0.3

0 0 0 0.35 0.65

0 0 0 0 1

ª®®®®®¬
,

%2ℎ =

©­­­­­«
0.35 0.55 0.1 0 0

0.1 0.5 0.3 0.1 0

0 0 0.6 0.35 0.05

0 0 0.1 0.6 0.3

0 0 0 0.5 0.5

ª®®®®®¬
,

%4ℎ =

©­­­­­«
0.75 0.2 0.05 0 0

0.4 0.4 0.2 0 0

0.1 0.65 0.25 0 0

0 0.5 0.3 0.2 0

0 0 0.2 0.75 0.05

ª®®®®®¬
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and the cost vectors for each action

60.5ℎ =

©­­­­­«
−4.55
−0.9
1.9

6.65

10.5

ª®®®®®¬
, 62ℎ =

©­­­­­«
−5.75
−3.8
−0.25
4

6.5

ª®®®®®¬
, 64ℎ =

©­­­­­«
−5.1
−3.6
−2.55
−0.9
2.95

ª®®®®®¬
.

1

0.5h

2h

4h

2

0.5h

2h

4h

3

0.5h

2h

4h

4

0.5h

2h

4h

5

0.5h

2h

4h

−4.55

−5.75

−5.1

−0.9

−3.8

−3.6

1.9

−0.25

−2.55

6.65
4 −0.9 10.5

6.5

2.95

0.5 0.35

0.15

0.35

0.55 0.1

0.75

0.2

0.05

0.4
0.1

0.1
0.5

0.3

0.1

0.4

0.4

0.2

0.3

0.4

0.3

0.6

0.35
0.05

0.1

0.65

0.25

0.35

0.65

0.1
0.6

0.3

0.5

0.3

0.2

1

0.5

0.5

0.2

0.75

0.05

0.5

Figure 2.3: The MDP visualised with the grades being black and the study times in di�erent colours
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As we see, unlike our �rst example, the probabilities of going from one state to another now

depend on the previous state and not just the action chosen, making the visualisation of this

example a lot more complicated.

2.3 Policy Iteration

Now that we understand what Markov Decision processes are and how to model them, we

discuss a method called Policy Iteration (PI) used to �nd an optimal policy for the �nite-space

MDPs, as introduced in Bertsekas 2012. The general idea of PI is to calculate the cost function

�` for a given stationary policy ` by solving the Bellman Equation (2.6). Using this cost

function we then compute an improved policy ˜̀, minimizing ) ˜̀ �` = ) �` with respect to �` .

This equation comes from the necessary and su�cient condition for optimality as seen in

Proposition 1.10. As we see in this section, the sequence consisting of the pairs {`: , �`: } will

be monotonically improving the expected cost and will converge to the optimal solution.

Algorithm 1 Policy Iteration Algorithm from Bertsekas 2012, Sec. 2.3.1

Step 1: (Initialization) Guess an initial stationary policy `0
Step 2: (Policy Evaluation) Given the stationary policy `: , compute the corresponding cost function

�`: from the linear system of equations

(I − U%`: ) �`: = 6`:

or equivalently

�`: = )`: �`: .

Step 3: (Policy Improvement) Obtain a new stationary policy `:+1 satisfying

)`:+1 �`: = ) �`: .

If �`: = ) �`: stop; else return to step 2 and repeat the process for new policy `:+1.

To show that Policy Iteration does indeed converge to the optimal solution we prove the

following proposition.

Proposition 2.1 (Policy Improvement Property from Bertsekas 2012, Prop. 2.3.1). Let ` and ˜̀

be stationary policies such that ) ˜̀ �` = ) �` , or equivalently, for 8 = 1, . . . , =,

6(8, ˜̀ (8)) + U
=∑
9=1

?8 9 ( ˜̀ (8)) �` ( 9) = min

D∈* (8)

(
6(8, D) + U

=∑
9=1

?8 9 (D) �` (8)
)
.

Then we have
� ˜̀ (8) ≤ �` (8), 8 = 1, . . . , =. (2.7)
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Furthermore, if ` is not optimal, strict inequality holds in the above equation for at least one
state i.

Proof. Let the stationary policy ` and ˜̀ ful�l our assumption ) ˜̀ �` = ) �` . We know from

Proposition 1.8 �` = )` �` . So we get the following equation for all 8 ∈ -

�` (8) = )` �`

= 6(8, ` (8)) + U
=∑
9=1

?8 9 (` (8)) �` ( 9)

≥ min

D∈* (8)

(
6(8, D) + U

=∑
9=1

?8 9 (D) �` ( 9)
)

= () �`) (8)
= () ˜̀ �`) (8).

Applying Proposition 1.8 again we get the desired inequality �` (8) ≥ � ˜̀ (8) for all 8 ∈ - . What

is left to be shown is the strict inequality if ` is not an optimal policy. This can be shown

analogue to �` (8) ≥ � ˜̀ (8) only that as ` is not optimal there exists at least one 8 ∈ - with

6(8, ` (8)) + U
=∑
9=1

?8 9 (` (8)) �` ( 9) > min

D∈* (8)

(
6(8, D) + U

=∑
9=1

?8 9 (D) �` ( 9)
)
. (2.8)

�

Under the �niteness assumption on - and * , there are only a �nite number of possible

stationary policies. Hence, with monotonically improving steps, the Policy Iteration converges

to an optimal solution in a �nite amount of time, which is one of the advantaged of PI compared

to other methods not covered in this thesis (e.g. Value Iteration from Bertsekas 2012). Of course,

solving the Bellman equation �` = (I − U%`) �` in Step 2 of PI can be very computationally

expensive for very large problems. We will analyse di�erent solvers of this equation in chapter

3 and will also discuss what methods are more or less suitable for larger problems.

2.4 Applying Policy Iteration

Let us now apply the Polity Iteration algorithm to our example of Section 2.2.3. We assume

U = 0.8 and that the student decides to study more when they performed poorly on their

previous exam, but does not study as much if their grade was satisfactory. This gives us our
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initial policy `0 = (0.5ℎ, 0.5ℎ, 0.5ℎ, 2ℎ, 2ℎ)) , meaning

%`0 =

©­­­­­«
0 0.5 0.35 0.15 0

0 0 0.5 0.4 0.1

0 0 0.3 0.4 0.3

0 0 0.1 0.6 0.3

0 0 0 0.5 0.5

ª®®®®®¬
Leading us to the second step, the policy evaluation of

(
I − 0.8%`0

)
�`0 = 6`0 , which looks as

follows: ©­­­­­«
1 −0.4 −0.28 −0.12 0

0 1 −0.4 −0.32 −0.08
0 0 0.76 −0.32 −0.24
0 0 −0.08 0.52 −0.24
0 0 0 −0.4 0.6

ª®®®®®¬
�`0 =

©­­­­­«
−4.55
−0.9
1.9

4

6.5

ª®®®®®¬
.

To obtain the results of the Policy Iteration algorithm in each step, we utilize the implemen-

tation available at https://github.com/PhilNeitzel/Policy_Iteration which yields the

cost function:

�`0 =

©­­­­­«
10.54999927

16.64285649

20.35714229

22.85714237

26.07142807

ª®®®®®¬
.

Which brings us to the next step, the policy improvement, where we need to �nd a `1
satisfying

min

`∈* 5

6D + U%D �`0 = 6`1 + U%`1 �`0 .

The solution is the new, improved policy `1 = {4ℎ, 4ℎ, 4ℎ, 4ℎ, 4ℎ} so %`1 = %4ℎ . By repeating

the process with `1 we receive another linear system:

©­­­­­«
0.4 −0.16 −0.04 0 0

−0.32 0.68 −0.16 0 0

−0.08 −0.52 0.8 0 0

0 −0.4 −0.24 0.84 0

0 0 −0.16 −0.6 0.96

ª®®®®®¬
�`1 =

©­­­­­«
−5.1
−3.6
−2.55
−0.9
2.95

ª®®®®®¬
.

Solving this linear equation then yields

�`1 =

©­­­­­«
−22.79891267
−20.43478215
−18.74999947
−16.15941971
−10.15172032

ª®®®®®¬
.

As ‖) �`1 − �`1 ‖ = 3.537217643680566−7 the optimality condition is satis�ed and the algorithm

stops with the optimal policy `∗ = `1. Meaning, the student should always study the full 4

hours for his next exam in order to optimize his results. Of course, in most Markov Decision

Processes the optimal solution would not be the same for every state.
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2.5 Convergence of Policy Iteration

Even though we assumed * to be a �nite space at the beginning of this chapter it is also

interesting to analyse the convergence rate of Policy Iteration for U being an in�nite space of

actions. For this, we use Bokanowski, Maroso, and Zidani 2009 as guidance. Our goal to �nd

a solution to a non-linear problem stay the same, i.e., the goal is to

�nd �` ∈ R= such that min

`∈*
((I − U%`) �` − 6`) = 0, (2.9)

which is equivalent to �nding the optimal policy `∗ that satis�es �`∗ = 6`∗ +U%`∗ �`∗ . However,

before we look at the convergence rate of the Policy Iteration we have to show the general

convergence of the algorithm. In order to do so we recall the following de�nition.

De�nition 2.2 (Monotonicity from Bokanowski, Maroso, and Zidani 2009, Sec. 2). A matrix
� ∈ R=×= is said to be monotone if and only if � is invertible and �−1 ≥ 0 (component wise).

Throughout this section we use the following assumptions.

For every ` ∈ * , the matrix (I − U%`) is monotone. (H1)

When* (8) is an in�nite compact set ∀8 ∈ {1, . . . , =}, the functions (H2)

` ∈ * ↦→ (I − U%`) ∈ " and ` ∈ * ↦→ 6` ∈ R# are continuous.

Note that* is simply* = * (1) ×* (2) × · · · ×* (=) with * (8) being the space of actions in

state 8 . The following theorem summarizes the general convergence of Policy Iteration for

di�erent* .

Theorem 2.3 (Bokanowski, Maroso, and Zidani 2009, Thm. 2.1). Assume that (H1) - (H2) hold.
Then there exists a unique �`∗ in R= satisfyingmin

`∈*
((� −U%`) �` −6`) = 0. Moreover, the sequence

�`: given by the Policy Iteration satis�es the following:

(i) �`: ≥ �`:+1 ∀: ≥ 0.

(ii) When * is �nite, the algorithm converges in at most card(* ) iterations.

(iii) If* is an in�nite compact set, then �`: → �`∗ when : → +∞.

Proof. We already showed that �`∗ is a unique solution by Proposition 1.9.
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(i) �`: ≥ �`:+1 follows immediately from Proposition 2.1.

(ii) Assume that* (8) is �nite for all 8 ∈ {1, . . . , =}. Hence, there are at most card(* ) di�erent

variables ` ∈ * . Then there exist two indices :, ; such that 0 ≤ : ≤ ; ≤ card(* ) and

`: = `; (`: and `; being, respectively, the :-th and ;-th iterate of PI). Hence, �`: = �`; , and

since �`: ≥ �`:+1 ≥ · · · ≥ �`; , we also obtain �`:+1 = �`: . Therefore, the Policy Iteration

stops at the (: + 1)-th iteration. This proves that �`: = �`:+1 is a solution of Equation (2.9),

since �`: = )`: �`: = )`:+1 �`: = ) �`: .

(iii) We now consider* (8) as an in�nite compact set for all 8 ∈ {1, . . . , =}. By step 2 of the

Algorithm 1 we have

‖ �`: ‖ ≤ ‖(I − U%`: )−16`: ‖ ≤ max

`∈*
‖(I − U%`)−1‖‖6` ‖. (2.10)

By assumptions (H1) and (H2), the function (I − U%`)−1 is continuous on* . Moreover,

6` is continuous and* is a compact set.

Therefore, from the inequality in Equation (2.10), we deduce that (�`: ):∈N is bounded in

R=. Here �`: converges toward some �`∗ ∈ R=. Let us show that �`∗ is the solution of

Equation (2.9).

De�ne the function � for �`: by

� (�`: ) := min

`∈*
((I − U%`) �` − 6`)) (2.11)

and let �8 (�`: ) be the 8-th component of � (�`), so

�8 (�`: ) = min

`∈*
((I − U%`) �` − 6`)8 .

It is obvious that lim

:→+∞
�8 (�`: ) = �8 (�`∗). By the compactness of* (8) and using a diagonal

extraction argument, there exists a subsequence of (`:):∈N denoted by `q: that converges

toward some ` ∈ * . Furthermore, with assumption (H2), we have

lim

:→∞
((I − U%`q: ) �`: )8 − ((I − U%`∗) �`∗)8 .

Passing to the limit in ((I−U%`q: ) �`q:−6`q: )8 = 0, we deduce that ((I−U%`∗) �`∗−6`∗))8 = 0

for all 8 ∈ {1, . . . , =}. On the other hand, we also have

�8 (�`∗) = lim

:→∞
�8 (�`q:−1)

= lim

:→+∞
((I − U%`q: ) �`q:−1 − 6`q: )8

= ((I − U%`∗) �`∗ − 6`∗)8 .

Hence, �8 (�`∗) = 0, which concludes the proof and implies that �`∗ is a solution of

Equation (2.9).

�
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Having shown the general convergence of the Policy Iteration, for the rest of this chapter, we

assume * to be an in�nite compact set. To see if the algorithm converges superlinearly it

is easiest to rewrite the Policy Iteration as a Newton-like method with the goal of �nding

the solution of the function � : R= → R= , � (�`) := min

`∈*
((I − U%`) �` − 6`). So step 2 and 3 of

Algorithm 1 can be rewritten as

(I − U%`:+1) �`:+1 − 6`:+1 = 0 (Policy Evaluation)

(I − U%`:+1) �`: − 6`:+1 = � (�`: ) (Policy Improvement)

Meaning, (I − U%`:+1) (�`: − �`:+1) = � (�`: ) leading to the iteration

�`:+1 = �`: − (I − U%`:+1)−1� (�`: ). (2.12)

For the following result we de�ne the set of minimizers ` for a given cost function � ∈ R=
as

* � := {` ∈ * | (I − U%`) � − 6` = � (� )}. (2.13)

Since * is simply the cartesian product of * (8) we de�ne * � (8) as the minimizer for the 8-th

component

* � (8) := {`8 ∈ * (8) | (4)8 − U%`,8) � + 6` (8) = �8 (� )}. (2.14)

Furthermore, we denote ` � if ` � ∈ * � . Using these de�nitions we prove the following lemma.

Lemma 2.4 (Bokanowski, Maroso, and Zidani 2009, Lem. 3.2). Assume that (H1) - (H2) hold.
For every � ∈ R= and for all 8 ∈ {1, . . . , =},

3 (` �+ℎ
8
,* � (8)) → 0 as ℎ ∈ R= and ‖ℎ‖ → 0, with ` �+ℎ

8
∈ * �+ℎ (8),

where 3 is the metric on R= .

Proof. Follows directly from assumptions (H1) - (H2) and the de�nition of* � and* � (8). �

We now use this lemma to prove the superlinear convergence of the Policy Iteration.

Theorem 2.5 (Bokanowski, Maroso, and Zidani 2009, Thm. 3.4). Assume that (H1) - (H2) are
satis�ed. Then min

`∈*
((I − U%`) �` + 6`) = 0 has a unique solution �`∗ ∈ R= and for any initial

guess `0 ∈ * , the Policy Iteration converges globally ( lim
:→∞
‖ �`: − �`∗ ‖ = 0) and super linearly

i.e.,
‖ �`:+1 − �`∗ ‖ = > (‖ �`: − �`∗ ‖) as : →∞.
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Proof. As existence, uniqueness and the global convergence toward �`∗ have already been

proven in Theorem 2.3, we only need to show the superlinear convergence of �`: . First let us

consider ℎ: := �`: − �`∗ and denote `:+1 := `
�`: = ` �`∗+ℎ: . Due to Lemma 2.4 we know there

exists a ` � ∈ * � such that 3 (` �+ℎ
8
, `

�

8
) → 0 as ‖ℎ‖ → 0 for all 8 ∈ {1, . . . , =}. So because of our

assumption (H2) we know

lim

ℎ→0

‖(I − U%` � +ℎ ) − (I − U%` � )‖ = 0.

It follows that we can �nd a `:,∗ ∈ * �`∗ such that

(I − U%`:+1) − (I − U%`:,∗) → 0 for : →∞. (2.15)

Using the de�nition of F it can be easily obtained that F is a concave function, as for any

V ∈ [0, 1]:

� ((1 − V)G + VH) = min

`∈*
(I − U%`) ((1 − V)G + VH) − 6`

= min

`∈*
(1 − V) ((I − U%`)G − 6`) + V ((I − U%`)H − 6`)

≥ min

`∈*
(1 − V) ((I − U%`)G − 6`) +min

`∈*
V ((I − U%`)H − 6`)

= (1 − V)� (G) + V� (H)

Additionally, we know � (�`∗) = 0 and hence � (�`: ) ≤ (I − U%`:+1) (�`: − �`∗). Using Equa-

tion (2.12) we have

�`:+1 = �`: − (I − U%`:+1)−1� (�`: )
≥ �`: − (I − U%`:+1)−1(I − %`:,∗) (�`: − �`∗)

and subtracting �`∗ on both sides yields

0 ≥ �`:+1 − �`∗ ≥
(
I − (I − U%`:+1)−1(I − U%`:,∗)

)
(�`: − �`∗). (2.16)

By Equation (2.15) and (H1), we obtain I− (I− %`:+1)−1(I− U%`:,∗)
:→+∞−→ 0. Giving us the result

0 ≥ �`:+1 − �`∗ ≥ > (�`: − �`∗),

which concludes the proof of superlinear convergence. �
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3 Methods for Solving Linear Systems

As discussed in the last chapter, to complete Step 2 of the Policy Iteration Algorithm, a system

of linear equations needs to be solved. In this chapter we discuss di�erent iterative solving

algorithms and their e�ciency. It might also be interesting to see if and how those algorithms

can be interpreted when applied to a MDP.

3.1 Gauss-Seidel and Jacobi Method

Beginning with some well-known algorithms, this section discusses the Jacobi and Gauss-

Seidel method. Before applying those methods to a MDP, the methods will be introduced for

the linear system �G = 1. Both methods will be described similarly as in Herzog 2022. We

denote

� =

©­­­­«
011 012 . . . 01=
021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

ª®®®®¬
, 1 =

©­­­­«
11
12
...

1=

ª®®®®¬
, G =

©­­­­«
G1
G2
...

G=

ª®®®®¬
.

In the Jacobi method � will be decomposed into a diagonal component � , a lower triangular

component ! and an upper triangular component* . Leading to the following matrices

� =

©­­­­«
011 0 · · · 0

0 022 · · · 0

...
...

. . .
...

0 0 · · · 0==

ª®®®®¬
, ! +* =

©­­­­«
0 012 · · · 01=
021 0 · · · 02=
...

...
. . .

...

0=1 0=2 · · · 0

ª®®®®¬
. (3.1)

For an initial guess G (0) we can solve �G = 1 iteratively with

G (:+1) = �−1(1 − (! +* )G (:)) . (3.2)

Of course, in order for the Algorithm to be well-de�ned � needs to be invertible. Meaning, �

cannot have any zeros on its diagonal.
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Algorithm 2 Jacobi Method from Herzog 2022, Sec. 25

G := G (0)

while convergence not reached do
H := G

for 8 = 1, . . . , = do

G8 =
1

088

(
18 −

=∑
9=1, 9≠8

08 9H 9

)
end for

end while

The Gauss-Seidel method works very similar to the Jacobi method, with the di�erence being

that� is decomposed into !∗ = ! +� and* as de�ned in Equation (3.1). So the iteration looks

as follows

G (:+1) = (!∗)−1(1 −*G (:)). (3.3)

Algorithm 3 Gauss-Seidel Method

G := G (0)

while convergence not reached do
for 8 = 1, . . . , = do

G8 =
1

088

(
18 −

8−1∑
9=1

08 9G 9 −
=∑

9=8+1
08 9G 9

)
end for

end while

The goal now is to look at the algorithms in the environment of MDPs. Applying the

Policy Iteration algorithm to the model described in Section 2.1 leads to the following Policy
Evaluation

(I − U%`) �` = 6` .

Meaning, the general linear system �G = 1 is replaced as follows

� = I − U%`, G = �`, 1 = 6` .

Note because I is the identity matrix it is enough to only divide %` = %
�
` + %!` + %*` so with

this notation the iterators can be written as

(I − U%�` ) �
(:+1)
` = 6` + U%!+*` �

(:)
` (Jacobi)

⇔ �
(:+1)
` = 6` + U%!+*` �

(:)
` + U%�` �

(:+1)
` ,
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(I − U%!∗` ) �
(:+1)
` = 6` + U%*` �

(:)
` (Gauss-Seidel)

⇔ �
(:+1)
` = 6` + U%*` �

(:)
` + U%!

∗
` �
(:+1)
` .

We understand �` to be the overall cost function calculated for a stationary policy `. It can

be seen that for every iterator in the Jacobi method the cost function changes only for the

diagonal part � of matrix %` , as we calculate the expected cost for the rest of the problem

using the previous cost function with U%` �
(
`:). Meaning, depending on whether �

(:+1)
` ≤ � (:)`

or �
(:+1)
` ≥ � (:)` the cost for staying in the same state falls or rises. Meanwhile, the cost for

going back or forth to a di�erent state still uses the older cost function, so the cost is assumed

to stay the same.

Similarly to the Jacobi method, the Gauss-Seidel method keeps the previous cost function for

going a state forward but if one stays in the same state or goes back to an earlier state the

cost function is set to be the new one. So again it might become more or less expensive to

move backward or stay in the same place. Of course, the new cost function still needs to be

the expected cost of the overall problem in order for it to be used as the next iterate.

Furthermore, we do not have to worry about the general convergence of Jacobi and Gauss-

Seidel method as both converge when the matrix A is strictly diagonally dominant. Meaning,

|088 | ≥
=∑
9=1
9≠8

��08 9 �� for all 8 ∈ {1, . . . , =}.

Due to the properties of U%` , we can easily see that (I − U%`) is always strictly diagonally

dominant.

The following theorem compares the speed of convergence of both methods.

Theorem 3.1 (Bradie 2006, p. 233). Suppose � is an (= × =) matrix. If 088 > 0 for each 8 and
08 9 ≤ 0 for every 8 ≠ 9 , then one and only one of the following statements holds

(i) 0 ≤ d ()6B) < d ()902) < 1,

(ii) 1 < d ()902) < d ()6B),

(iii) d ()902) = d ()6B) = 1,

(iv) d ()902) = d ()6B) = 0.

where ) is the iteration matrix that arises for each method and d () ) is the spectral radius.

We are able to apply this theorem to our MDPs as 1−U (%`)88 > 0 and −U (%`)8 9 ≤ 0 for all 8 ≠ 9 .

This theorem in general provides the information that the methods either both converge or
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both diverge. However, we already know that both methods converge so from this theorem

we can see that the Gauss-Seidel method generally converges faster than the Jacobi method

as 0 ≤ d ()6B) ≤ d ()902) < 1. This means we would always choose Gauss-Seidel over Jacobi

when it comes to MDPs.

3.2 Richardson Iteration

Another stationary method that may come to mind is the so called Richardson Iteration. The

idea is to simply rewrite the linear system �G = 1 as a �xed point equation in order to derive

a �xed-point iteration. We write the problem as follows

G = G + 1 −�G = 1 + (I −�)G

and receive the iterators

G (:+1) = 1 + (I −�)G (:) .

Applying this to the model of MDPs with (I − U%`) �` = 6` the iterators �
(:)
` will be calculated

with

�
(:+1)
` = 6` + (I − (I − U%`)) � (:)`

= 6` + U%` � (:)` .

We can see immediately that this is the �xed-point iteration for Equation (2.5) and by rewriting

�
(:+1)
` as

�
(:+1)
` = 6` + U%` (6` + U%` � (:−1)` )

= 6` + U%`6` + U2%2` �
(:−1)
`

= . . .

=

:∑
8=0

U 9% 8`6` + U:+1%:+1` �
(0)
` .

We can see that �
(:+1)
` is nothing else than the : + 1-stage expected cost as in Equation (1.8),

where the terminal cost is our initial guess �
(0)
` . However, as : grows larger and 0 < U < 1

this initial guess will become less and less relevant for the next iteration. So the Richardson

iteration can be interpreted as calculating the :-th stage expected cost.

3.3 Krylov Subspace Methods

This part discusses the idea of Krylov subspace methods (as presented in Saad 2003) and their

application on MDPs. As Krylov subspace methods consist of the idea of applying projection
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methods to a Krylov subspace, those projection methods will be introduced �rst. In general, a

projector % is a mapping from C= to itself with the idempotence property

%2 = % .

Furthermore, the projection can be split into two subspaces

Null(%) = {G ∈ C= |%G = 0},
Ran(%) = {%G |G ∈ C=}.

Of course, those subspaces only intersect each other at the element zero. Meaning, C= can be

written as the direct sum of both of them

C= = Null(%) ⊕ Ran(%).

Simultaneously, every two subspaces " and ( with C= = ( ⊕ " de�ne a unique projector

with Null(%) = ( and Ran(%) = " . Additionally, we can easily see that Null(%) = Ran(I − %).
Since if % is a projector, then I − % is a projector too. Knowing this ( can be rewritten as

( =Ran(I − %) with the projector % mapping any G ∈ C= onto the unique decomposition

G = G1 + G2, where G1 is the "-component and G2 the (-component. Thus, any vector G can be

written as G = %G + (I − %)G and hence %G satis�es the following conditions

%G ∈ ",
G − %G ∈ (.

Assuming % is of rank<, the range of I−% will be of dimension =−<. By using the orthogonal

complement ! = (⊥, where every vector in L is orthogonal to every vector in S. The above

conditions can be rewritten as

%G ∈ ", (3.4)

G − %G ⊥ !. (3.5)

These conditions de�ne a projector % onto" and orthogonal to the subspace !. The following

Lemma proves it is indeed always possible to de�ne a projection through the conditions (3.4)

and (3.5).

Lemma 3.2 (Saad 2003, Lem. 1.36). Given two subspaces " and ! of the same dimension<,
the following two conditions are mathematically equivalent.

(i) No non-zero vector of M is orthogonal to L.

(ii) For any G in C= there exists a unique vector D which satis�es the conditions (3.4) and (3.5).

Proof. The proof follows from the de�nitions given above. �
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It is useful to represent the projector % via a basis+ = [E1, . . . , E<] of the subspace" = '0=(%)
and the basis of the subspace L as, = [F1, . . . ,F<]. This leads to projection methods where

the goal is to �nd an approximate solution to the linear system�G = 1 on a subspace ofR= . This

subspace will be denoted as  and G̃ ∈  can be thought of as a candidate for approximation.

Considering the dimension of K is equal to<,< constraints should be su�cient to be able

to obtain an approximation. A typical way of describing these constraints is to impose m

(independent) orthogonality conditions. Speci�cally, the residual vector 1 −�G is constrained

to be orthogonal to < linearly independent vectors. This de�nes another subspace ! of

dimension< called the subspace of constraints. This simple framework is common to many

di�erent mathematical methods and is known as the Petrov Galerkin condition. There are two

broad classes of projection methods: orthogonal and oblique. In an orthogonal projection

technique, the subspace of ! is the same as  . In an oblique projection method, ! is di�erent

from  and may not have any relation to it. However, in this thesis the focus will lie on the

oblique projection technique ! = � . In total, for a matrix � ∈ '=×= and  and ! being two

<-dimensional subspaces of R= the following conditions apply for an approximate solution

G̃ .

�nd G̃ ∈  , such that 1 −�G̃ ⊥ !.
Applying an initial guess to those conditions G̃ can be rewritten as G̃ = G0 + X where X ∈  
and G0 ∈ R= . With the residual vector A0 being de�ned as A0 = 1 −�G0 the condition can be

written as

�nd G̃ ∈ G0 +  , such that A0 −�X ⊥ !.
Using the basis matrix representation + and, introduced above, the approximate solution

can also be seen as

G̃ = G0 ++ H,
with the orthogonality condition leading to

, )�+ H =, )A0.

In general, this is considered to be the basic step of the projection method. Most methods will

apply this step multiple times updating the residual A0 and the initial guess G0 in each step to

�nd an approximation of the solution G .

This leads us to the Krylov subspace methods which de�ne  < as

 < = B?0={A0, �A0, �2A0, . . . , �
<−1A0}, (3.6)

with A0 being the residual and G0 an arbitrary initial guess. As mentioned above !< is chosen

as !< = � < in this thesis. Of course, di�erent Krylov subspace methods arise when using a

di�erent subspace !< . In general, the method approximates G as G< through a polynomial

@<−1 of degree< − 1
�−11 ≈ G< = G0 + @<−1(�)A0.

3.3.1 Arnoldi’s Method

The Arnoldi method introduces one of the basic Krylov subspace methods, laying the founda-

tion for the algorithms discussed later in this chapter. The goal of this method is to reduce
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the matrix A to a Hessenberg matrix H and to calculate an orthonormal basis E1, . . . , E< of

the Krylov subspace. Note that a square = × = matrix � is said to be an upper Hessenberg

matrix if 08 9 = 0 for all 8, 9 with 8 > 9 + 1. In this thesis an upper Hesseberg matrix will be

simply referred to as a Hessenberg matrix. In general, the algorithm works very similar to the

Gram-Schmidt method when it comes to the orthonormalization and looks as follows

Algorithm 4 Arnoldi from Saad 2003, Alg. 6.1

choose a vector E1 such that | |E1 | |2 = 1

for 9 = 1, 2, . . . ,< do
for 8 = 1, 2, . . . , 9 do

ℎ8 9 = (�E 9 , E8)
end for

F 9 := �E 9 −
9∑
8=1

ℎ8 9E8

ℎ 9+1, 9 = | |F 9 | |2
if ℎ 9+1, 9 = 0 then

Stop

end if
E 9+1 =

F9

ℎ 9+1, 9
end for

We now show this method does indeed create an orthonormal basis.

Proposition 3.3 (Saad 2003, Prop. 6.4). Assume that Algorithm 4 does not stop before the<-th
step. Then the vectors E1, E2, . . . , E< form an orthonormal basis of the Krylov subspace

 < = B?0={E1, �E1, �2E1, . . . , �
<−1E1}.

Proof. By the construction of E8 with 8 ∈ {1, . . . ,<} the orthonormality follows immediately.

So we only need to prove that the vectors E1, . . . E< do indeed form a basis of  < . Of course,

for< = 1  1 = B?0={E1} =⇒ E1 is the basis of  <. Now let us assume E1, . . . , E< to be the

basis of  < . For< + 1 we get  <+1 = B?0={E1, �E1, . . . , �<E1} and because of our assumption

 <+1 can be rewritten as  <+1 = B?0={E1, E2, . . . , �<E1}. Applying the Arnoldi method we

receive ℎ8< = (�E<, E8) for 8 ∈ {1, . . . ,<},F< = �E< −
<∑
8=1

ℎ8<E8 and E<+1 =
F<
‖F< ‖ This leads to

the following equations

‖F<‖E<+1 = �E< −
<∑
8=1

ℎ8<E8

= �@<−1(�)E1 −
<∑
8=1

ℎ8<@8−1(�)E1.

Which means E<+1 can be rewritten as some polynomial of degree < denoted as @< (�)E1.
Proving that E1, . . . , E<+1 is indeed a basis of  <+1. �
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Proposition 3.4 (Saad 2003, Prop. 6.5). Denote by +< the = ×< matrix with column vectors
E1, E2, . . . , E< , by �< the (< + 1) ×< Hessenberg matrix whose non-zero entries ℎ8 9 are de�ned by
Algorithm 4, and by �< the matrix obtained from �< by deleting its last row. Then the following
relation holds

�+< = +<�< +F<4)<
= +<+1�<,

+)<�+< = �< .

Proof. Applying the Arnoldi method we can rewrite �+< as follows

�+< = [�E1, . . . , �E<]

=

[
2∑
8=1

ℎ81E8, . . . ,

<+1∑
8=1

ℎ8<E8

]
=

[
2∑
8=1

ℎ81E8, . . . ,

<∑
8=1

ℎ8<E8

]
+

[
0, . . . , 0, ℎ<+1,<E<+1

]
= +<�< +F<4)<
= +<+1�< .

Multiplying +)< to both sides gives us

+)<�+< = +)<+<�< ++)<F<4)< .

As +< is an orthonormal basis and E< is orthogonal toF< by construction. We get

+)<+< = I +)<F<4
)
< =

[
0, . . . , 0, E)<F<

]
= [0, . . . , 0, 0] .

Giving us the desired equation +)<�+< = �< . �

3.3.2 The GMRES Algorithm

We now introduce the Generalized Minimal Residual Method (GMRES). As discussed at the

beginning of this chapter we choose  =  < and ! = � < with  < being the Krylov subspace

as in Equation (3.6) with E1 =
A0
‖A0‖ . The idea is that GMRES minimizes the norm of the residual

on G0 +  < for an initial guess G0 by exploiting the relation of Proposition 3.4. Of course, for

every vector G ∈ G0 +  < we can write

G = G0 ++<H, (3.7)

where we de�ne H by the following function
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J< (H) = ‖1 −�G ‖2 = ‖1 −�(G0 ++<H)‖2. (3.8)

We denote the initial residual A0 := 1 − �G0, V := ‖A0‖2 and E1 :=
A0
V

. By then applying

Proposition 3.4 we can simplify our problem as follows

1 −�G = 1 −� (G0 ++<H) (3.9)

= A0 −�+<H (3.10)

= VE1 −+<+1�<H (3.11)

= +<+1
(
V41 − �<H

)
. (3.12)

As the vectors of+<+1 are orthonormal to one another the norm is independent of+<+1, leading

to

J< (H) ≡ ‖1 −� (G0 ++<H) ‖2 = ‖V41 − �<H ‖2. (3.13)

In general, GMRES approximates the solution of �G = 1 by �nding the minimizer H< of

J< (H) and calculating the unique approximate G< using H< . The problem is written as

G< = G0 ++<H<, where (3.14)

H< = 0A6min

H
‖V41 − �<H ‖2. (3.15)

The advantage of this method is that it is typically inexpensive to �nd the solution H< as it is

a (< + 1) ×< least square problem. The GMRES algorithm is summarized as follows
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Algorithm 5 GMRES from Saad 2003, Alg. 6.9

Compute A0 := 1 −�G0, V := ‖A0‖2, and E1 :=
A0
V

for 9 = 1, 2, . . . ,< do
F 9 := �E 9
for 8 = 1, . . . , 9 do

ℎ8 9 := (F 9 , E8)
F 9 := F 9 − ℎ8 9E8

end for
ℎ 9+1, 9 := ‖F 9 ‖2
if ℎ 9+1, 9 = 0 then

< := 9

else
E 9+1 :=

F9

ℎ 9+1, 9
end if

end for
De�ne the (< + 1) ×< Hessenberg matrix �< = {ℎ8 9 }1≤8≤<+1,1≤ 9≤<
Compute H< the minimizer of ‖V41 − �<H ‖2 and G< = G0 ++<H<

The algorithm uses the Arnoldi method to calculate +<+1 and the Hessenberg matrix �< .

In the last step it calculates the minimizer H< , and with that, the unique approximation

G< ∈ G0 +  < .

The Minimal Residual Method (MINRES), this is another algorithm based on a Krylov subspace,

which is algebraically equivalent to the GMRES. However for this algorithm we assume � to

be a hermitian matrix. Which makes this implementation typically faster than GMRES. As

the numerical details of this are beyond the scope of this thesis we are simply taking a look at

the implementation given by Günnel, Herzog, and Sachs 2014.
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Algorithm 6 MINRES from Günnel, Herzog, and Sachs 2014, Alg. 3.1

Set E0 := 0 andF0 := F1 := 0

Set E1 := 1 −�G0
Set W1 := ‖E1‖2
Set E1 :=

E1
W1

Set [0 := W1, B0 := B1 := 0, 20 := 21 := 1

Set : := 1

while not converged do
Set X: := 〈�E: , E:〉
Set E:+1 := �E: − X:E: − W:E:−1
Set W:+1 := ‖E:+1‖2
Set E:+1 :=

E:+1
W:+1

Set U0 := 2:X: − 2:−1B:W: and U1 :=

(
U2
0
+ W2

:+1

) 1

2

Set U2 := B:X: + 2:−12:W: and U3 := B:−1W:
Set 2:+1 :=

U0
U1

and B:+1 :=
W:+1
U1

SetF:+1 :=
1

U1
(E: − U3F:−1 − U2F: )

Set G:+1 := G:−1 + 2:+1[:−1F:+1
Set [: := −B:+1[:−1
Set : := : + 1

end while

3.3.3 Krylov Subspace Methods on MDPs

Now we take a look at Krylov subspace methods applied to MDPs. To make some sort of

interpretation possible we keep the subspace a little simpler by only looking at the orthogonal

subspace. So we de�ne the Krylov subspace as follows

 < = B?0={A0, (I − U%`)A0, . . . , (I − U%`)<−1A0},

with the residual A0 = 6` − (I−U%`) �0 and an initial guess �0. A �rst idea on the interpretation

comes from Bertsekas 2005, Chapter 6 who rewrites the cost vector de�ned by

�` = (I − U%`)−16`,

as

�` =

∞∑
C=0

UC% C`6` . (3.16)

Of course, this property can be easily seen by the Neuman series (a generalized form of the

geometric series) but it is also a very intuitive result. As the overall cost vector is simply the

expected cost for each time C and % C` is the probability matrix consisting of probabilities ?8 9 for

going from state 8 to state 9 in exactly C time, we can interpret Equation (3.16) as calculating

the expected cost for all time C ≥ 0 and discounting it by UC as costs or bene�ts are of less
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interest the further they lie in the future. We can rewrite this function even further using our

de�nition of the residual A0 and replacing 6` with it, which results in

�` =

∞∑
C=0

UC% C` (A0 + (I − U%`) �0) (3.17)

=

∞∑
C=0

UC% C`A0 +
∞∑
C=0

UC% C` (I − U%`) �0 (3.18)

=

∞∑
C=0

UC% C`A0 + (I − U%`)−1(I − U%`) �0 (3.19)

= �0 +
∞∑
C=0

UC% C`A0. (3.20)

Using Equation (3.20), given a �0, an approximation of �` can be obtained by truncating the

in�nite sum at some< > 0. Thus, it would make sense if we can rewrite  < as

 < = B?0={A0, %`A0, . . . , %<−1` A0}

and the following theorem shows that both subspaces are indeed equivalent.

Theorem 3.5. For all = ∈ N and U ≠ 0 the following holds

G ∈ B?0={A0, %`A0, . . . , %=`A0} ⇔ G ∈ B?0={A0, (I − U%`)A0, . . . , (I − U%`)=A0}. (3.21)

Proof. For = = 1:

G ∈ B?0={A0, %`A0}
⇔ G = _0A0 + _1%`A0 for some _0, _1 ∈ R

⇔ G = (_0 +
_1

U
− _1
U
)A0 −

_1

U
(−U)%`A0

⇔ G = (_0 +
_1

U
)A0 −

_1

U
(I − U%`)A0

⇔ G = V0A0 + V1(I − U%`)A0 for V0 := _0 +
_1

U
and V1 :=

_1

U

⇔ G ∈ B?0={A0, (I − U%`)A0}

Assuming Equation (3.21) to be true for a chosen = ∈ N. The goal is to prove it also holds true

for = + 1
Recalling (I − U%`)=+1 =

=+1∑
8=0

(
= + 1
8

)
(−U%`)8 leads to the following result

%=+1` =
1

(−U)=+1

(
(I − U%`)=+1 −

=∑
8=0

(
= + 1
8

)
(−U%`)8

)
. (∗)
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Giving us

G ∈ B?0={A0, %`A0, . . . , %=+1` A0}

⇔ G =

=+1∑
8=0

_8%
8
`A0

⇔ G =

=∑
8=0

_8%
8
`A0 + _=+1%=+1` A0

⇔ G =

=∑
8=0

˜V8 (I − U%`)8A0 + _=+1%=+1` A0 Ass.

⇔ G =

=∑
8=0

˜V8 (I − U%`)8A0 +
_=+1
(−U)=+1

(
(I − U%`)=+1 −

=∑
8=0

(
= + 1
8

)
(−U%`)8

)
A0 (∗)

⇔ G =

=∑
8=0

˜V8 (I − U%`)8A0 +
=∑
8=0

ˆV8 (I − U%`)8A0 +
_=+1
(−U)=+1 (I − U%`)

=+1A0, Ass.

⇔ G =

=∑
8=0

V8 (I − U%`)8A0 + V=+1(I − U%`)=+1A0 for V=+1 :=
_=+1
(−U)=+1 and V8 := ˜V8 + ˆV8

⇔ G ∈ B?0={A0, (I − U%`)A0, . . . , (I − U%`)=+1A0}.

�

Now it becomes apparent that the Krylov subspace can be interpreted as

 < = B?0={A0, %`A0, %2`A0, . . . , %<−1` A0}. As mentioned before %:` can be interpreted as the proba-

bility for going from one state to another in : steps. Using this slightly altered Krylov subspace

and taking a look at the general method used to solve linear systems as in Equation (3.14)

G< = G0 ++<H< it can be seen that for MDPs this yields the following equation

�< = �0 ++<H< (3.22)

= �0 +
:∑
8=1

(H<)8% 8−1` A0, (3.23)

where we de�ne+< by each column 8 ∈ {1, . . . ,<} as E8 = %
8−1
` A0 The question now is if there is

something that can be said about H< . One might notice the similarity between Equation (3.23)

and Equation (3.20), which leads us to the hypothesis of the discount factor U being connected

to H< . Indeed H< is de�ned by minimizing ‖A0 −�+<H ‖ as in Equation (3.10) or in this case

H< = 0A6min

H
‖A0 − (I − U%`)+<H ‖. (3.24)
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It is easily shown that (H<)8 := U8−1 ful�ls Equation (3.24) for< →∞ as

lim

<→∞
‖A0 −

(
I − U%`

)
+<H<‖ = lim

<→∞
‖A0 −

(
I − U%`

) <∑
8=1

(H<)8% 8−1` A0‖

= lim

<→∞
‖A0 −

(
I − U%`

) <∑
8=1

U8−1% 8−1` A0‖ Ass.

= ‖A0 −
(
I − U%`

) ∞∑
8=0

U8% 8`A0‖

= ‖A0 − (I − U%`) (�` − �0)‖ by (3.23)

= ‖6` + U%` �0 − �0 − �` + U%` �` + �0 − U%` �0‖
= ‖ 6` − (I − U%`) �`︸              ︷︷              ︸

=0

‖ .

The problem however is that a unique solution for H< can only be guaranteed for< ≤ = and

as it is not possible to calculate H< for the generalized problem we cannot say anything of

interest about H< . On the contrary, we can assume it is very unlikely for H< to behave similar

to the discount factor as it is not restricted to be positive and will take negative values as well,

unlike U .

When it comes to the convergence of Krylov subspace methods they are usually considered

most e�cient when applied to systems with large sparse matrices. Especially for large models

of MDPs matrix % is often sparse, as we usually cannot reach most of the states from the

state one is currently in. Of course, all the mentioned methods can always be made more

e�cient with di�erent preconditioners. However, from all the di�erent methods introduced

in this chapter, the Krylov subspace methods seem to be the most promising when it comes

to e�ciency.
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4 Conclusion

In conclusion, Markov Decision Processes can be a useful tool for decision making and we

can optimize our MDP using the Policy Iteration algorithm which requires us to solve a linear

system. Depending on the size of our problem we saw that di�erent iterative solvers might

perform better than others. Jacobi method and Richardson iteration, for example, converge

rather slow for large matrices. While, Krylov subspace methods converge a lot faster for large

and sparse matrices. Furthermore, we tried to interpret the iterators of those methods when

applied to MDPs in order to understand the process of calculating the expected cost vector in

a more intuitive way. However, due to the complexity of Krylov subspace methods we were

unable to discover anything of interest. Nevertheless, with the information provided in this

thesis we are able to fully implement the Policy Iteration and apply it to di�erent MDPs, while

also being able to choose between di�erent solvers in order to solve the problems e�ciently.

For a full implementation of MDPs and the di�erent linear solvers discussed in this thesis see

https://github.com/PhilNeitzel/Policy_Iteration.
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5 Notation

D chosen action

* space of all actions

F disturbance that may occur

, space of all disturbances

G current state

- space of all states

I Identity matrix

E Expected value

U discount factor

` policy that determines the action

6` stationary cost vector for a given policy

%` transition matrix

�` total cost vector for a given policy

) � mapping for minimal expected cost given a cost vector �

)` � mapping for expected cost given a policy` and cost vector �`

 < Krylov subspace

+< orthognormal basis of the Krylov subspace

�< upper Hessenberg matrix
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