Ruprecht-Karls-Universitat Heidelberg
Fakultat fir Mathematik und Informatik
Interdisziplindres Zentrum fiir Wissenschaftliches Rechnen

B. Sc. Thesis

ITERATIVE SOLUTION OF MARKOV DECISION PROCESSES

Name: Phil Neitzel
Student ID: 4111375
Supervision: Prof. Dr. Roland Herzog

Dr. Karina Koval

Date of Submission: 01.06.2023

Declaration

I hereby confirm that I wrote this work independently and did not use any sources other than
those indicated.

Heidelberg, May 28, 2023 L
Author name

This bachelor thesis discusses the application of different iterative solvers to the Policy
iteration, which is commonly used to optimize the so called Markov Decision Processes
(MDPs). In general, MDPs provide us with a mathematical framework used to model decision-
making in stochastic environments, which we will be discussing in detail in this thesis.
Our focus lies on analysing and discussing the Jacobi, Gauss-Seidel, Richardson and Krylov
subspace methods. We are especially interested in understanding which model is most efficient
depending on the problem we want to solve and how the different iterators can be interpreted
in regards to our model. Meaning, we aim to describe what happens with our MDP in the
process of the linear system being solved.

In dieser Bachelorarbeit geht es um verschiedene iterative Loser und ihre Anwendung auf
das Policy-Iterationsverfahren, welches ein Standardverfahren ist um so genannte Markow
Entscheidungsprozesse (MDPs) zu optimieren. Im allgemeinen bieten MDPs einen mathema-
tischen Rahmen in dem Entscheidungen innerhalb einer stochastischen Umgebung modelliert
werden konnen, welcher in dieser Thesis ausfiihrlich beschrieben und hergeleitet wird. Unser
Fokus ist hierbei das Analysieren und Diskutieren der Jacobi-, Gauss-Seidel-, Richardson- und
Krylov-Unterraum-Verfahren. Insbesondere interessiert uns, wann man welche Verfahren
benutzen sollte und ob wir die verschiedenen Iteratoren in bezug auf die MDPs interpretieren
konnen. Wir versuchen also zu beschreiben, was beim Losen mit des linearen Gleichungssys-
tem mit unserem Problem passiert.

CONTENTS

1 INTRODUCTION

11 MarkovChains
1.2 TheBasicProblem
1.3 The Dynamic Programming Algorithm
14 Discounted Problems on the Infinite Horizon

2 MARkov DEclI

4 CONCLUSION

5 NOTATION

SION PROCESSES

21 TheModel
2.2 Some Examples for MDPs
2.2.1 An Introductory Example
2.2.2 Example: Transportation Problem .
2.2.3 Example: The Studying Problem . .
2.3 Policy Iteration
2.4 Applying Policy Iteration
2.5 Convergence of Policy Iteration
3 METHODS FOR SOLVING LINEAR SYSTEMS
3.1 Gauss-Seidel and Jacobi Method
3.2 Richardson Iteration
3.3 Krylov Subspace Methods
3.3.1 Arnoldi’s Method
3.3.2 The GMRES Algorithm
3.3.3 Krylov Subspace Methods on MDPs

B W N m

10
10
11
1
12
14
17
18
20

24
24
27
27
29
31
34

38

40

1 INTRODUCTION

In this thesis, we look at Markov Decision Processes (MDPs) and how to optimize them using
Policy Iteration with different solvers for the arising linear system. Our goal is to analyse the
different methods and interpret them in regards to our model. MDPs have a wide range of
applications such as machine learning, economics and manufacturing. However, we can also
apply them to model the decisions we have to make in our everyday life. The general idea of
this model is that for any state we are in we know what actions we can take and how much it
costs us. Furthermore, we know the probabilities of going to a new state after choosing our
action. Of course, in real life we usually do not have access to all this information. There are
extensions of MDPs that cover this problem in more detail, like Partially Observable Markov
Decision Processes which will not be part of this thesis. Before we introduce Markov Decision
Processes we have to discuss the mathematical foundation of the model.

1.1 MARKoVv CHAINS

We start with the concept of Markov Chains which model the probabilities of moving from
one state to another state as presented in the following definition.

Definition 1.1 (Markov Chains from Johannes 2021, Def. 17.01). Let T = Ny (discrete time) or
T = R* (continuous time) and S a countable non-empty set (Space of states). A stochastic process
(Xt)teT with the Space of states S is called a Markov Chain if foralln e N, allty < t, < --- <
tn <tinT and allsy, ..., sy, s inS with the probability P(Xy, = s1,..., X, = sp) € (0,1] satisfy
the Markov Properties:

P(Xt = S|Xt1 =951 "th = S?’l) = P(Xt = S|th = Sn)

For a Markov Chain (X;)iet, i < ta from T. p;j(ty,t2) withi,j € S describes the probabil-
ity of going from one state i at time t; to a state j at t; as p;j(t;,t2) = P(X;, = j| Xy, = i).
P(ti,12) = (pij(t,t2)), ;cs is called the probability matrix. The probability matrix is called
time-homogeneous if

P(ty, t2) = P(0,t, — ty) =: P(t2 — t1),

forallt; <t, inT.

In this thesis we always assume T = Nj and furthermore that our probability matrix is
time-homogeneous, so we denote P := P(1). So the Markov Properties mean nothing else

Iterative Solution of MDPs Phil Neitzel

than going from state i to state j in one time step is independent of previous states before i.
For example, using the following probability matrix

0.25 0.75
P= (0.1 0.9) ’

the Markov chain can be modelled with this diagram

0.75

0.1

1.2 THE BAsic PROBLEM

In this part, we introduce a discrete-time dynamic system to model decision-making math-
ematically as described in Bertsekas 2005. First, we gather everything this model needs,
starting with a space of states Sy at a time k. This space consists of all the states x; one could
be in at this point of time. Of course, we have to know what decisions can be made at any time,
and we denote this space as Cy with elements uy, referred to as actions or controls. Depending
on the current state it might not be possible to choose from all actions, so we usually write
ug € Ux(xx) C Ck. Lastly, our model is generally assumed to come with some uncertainty.
Since, as we know, making a decision does not always lead to the wanted result as there is
always a chance for some random disturbance making it impossible to be sure of our next
state. This disturbance wy, is characterized by the probability P(wy|x, ux) as the current state
and chosen actions can still influence the disturbances. The space of all disturbances at time
k is denoted as Dy. In total, we get a function f; determining the next state

X1 = fe(xp g, wi), k=0,1,...,N -1 (1.1)

Of course, taking an action or being in a certain state might have some cost (g > 0) or benefit
(g < 0) to it. This so-called cost function is denoted as gi (x, uk, wy) for a time k. Furthermore,
gk is considered to be additive. Meaning the cost for a model running for a time of N is

N-1

gn(xN) + Z 9k (ks Uk, W),
=0

where gy (xn) is a terminal cost added at the end of the process. However, as the cost cannot be
determined with certainty due to the random disturbances, we have to calculate the expected

cost instead
N-1

E gN(xN)+ng(xk, U, Wi) | -
=0

Phil Neitzel Bachelor Thesis 2

Iterative Solution of MDPs Phil Neitzel

Additionally, one usually decides on an action depending on their current state. We call those
policies py(xx) and if they fulfil ux = pr(xx) € Uk(xy) for all x; € Si they are considered
admissible. The class of policies is then written as

7 ={po, ..., IN-1}-

In conclusion, we get an expected cost function for a class of admissible policies depending
on an initial state xy and denote it as

N-1

Ja(x0) = E [gn (xn) + D g (ks o (i), wie) |
k=0

Since the goal is to find an optimal policy 7* minimizing the function J;(x,) over the set of
all admissible policies IT we write

T (x0) = Jz+(x0) = ?[grr[l]n(xo) (1.2)

and call this the optimal cost function for an initial state xyo. We write J* as the optimal cost
function for any initial state.

1.3 THE DYNAMIC PROGRAMMING ALGORITHM

To get an idea on how to optimize J,(xy) we use the Principle of Optimality. Again the
motivation and algorithm are taken from Bertsekas 2005. First, we consider an optimal class
of admissible policies 7* = {yg, 417, . . ., uyy_,} for a model of time length N. The expected cost
for starting at time i < N is then calculated by

N-1

E gN(xN)"'ng(xka,Uk(xk)’ wi) | -
pan

Of course, { JTH :”1*\1—1} is the optimal policy for this subproblem, because if there were a
better policy we would choose this policy for our main problem as well. This, however, would
be a contradiction to 7* being optimal. So we can see the optimal solution of Equation (1.2)
can be determined bit by bit by finding the optimal policy for the subproblem of smaller time
length and then using this result to calculate the optimal policy for the subproblem with larger
time length until we get the result for the original problem. Of course, we can formulate this
so-called Dynamic Programming Algorithm (DP Algorithm) mathematically.

Proposition 1.2 (The DP Algorithm from Bertsekas 2005, Prop. 1.3.1). For every initial state
Xo, the optimal cost J*(x¢) of the basic problem is equal to Jy(x,), given by the last step of the
following algorithm, which proceeds backward in time from period N — 1 to period 0:

IN(xn) = gn(xN) (1.3)

Phil Neitzel Bachelor Thesis 3

Iterative Solution of MDPs Phil Neitzel

Je(xx) = min E [g (xx, uk, wi) + T (e (56 g wi)) 1, k=0,1,...,N-1. (14)

ur €Uk (xx)

Where the expectation is taken with respect to the probability distribution of wy, which depends
on xi and uy. Furthermore, if u, = pi (xi) minimizes the right side of Equation (1.4) for each x
and k, the policy 7* = {yg, ..., uy_,} is optimal.

1.4 DISCOUNTED PROBLEMS ON THE INFINITE HORIZON

Now we have a general idea for the DP Algorithm on the very basic problem. However, in this
thesis, we mainly focus on infinite horizon problems. So for this section we consult Bertsekas
2012 and start by introducing @ > 0, which is called the discount factorif ¢ < 1. If @ = 1 we
will refer to the problem as undiscounted. The intuitive idea behind a discount factor is that
costs or benefits are usually worth less when lying further in the future. For example, being
asked whether one would like to receive €10 now or €11 in a year, a lot of people would take
the €10 now because €11 is being discounted by having to wait a whole year to get only a
single Euro more.

Now looking at an admissible policy 7 = {, fi1, . . ., fin—1} and a terminal cost of a™ J(xx)
where J : X — R can be generally interpreted as the expected cost function for everything
coming after the first N states. As we will see throughout this thesis, this function is usually
calculated rather than chosen. However, for the moment we assume to have knowledge over
J.

Adding the costs for the first N —1 states to the terminal cost leads to the total expected cost

E

N-1
N J(en) +) o g, e (), wk)] : (15)
k=0

As we are referring to an infinite horizon problem, from now on we denote the state x as
an element of the space X, the control u; as an element of U and the random disturbances
wg of W. The minimum of Equation (1.5) over all admissible policies 7 can be determined by
applying the DP algorithm to this problem as follows

IN-k(x) = ulellUl(r}C)E N g(x, u, w) + Nk (f(xu,w)) |,

with the initial condition
In(x) =V J(x).

Where Jy_i(x) denotes the optimal cost of the last k stages from state x. So Jy(x) is the
optimal cost function for the overall problem regarding the initial state x.

Even though this is a finite horizon problem with our interpretation of /] we can view it
as a simplified version of an infinite horizon problem. Of course, if we can simplify this
infinte-horizon problem to any N-stage problem the most intuitive decision is to choose
a one-stage problem with N = 1. Here the terminal cost is «J and the single stage cost g.

Phil Neitzel Bachelor Thesis 4

Iterative Solution of MDPs Phil Neitzel

Meaning, we calculate the expected cost of the initial state and the discounted expected future
costs. To simplify notation, we denote the optimal solution of this one-stage problem as

(T)(x) = min & [9(x, u, w) +a (f(x,u, w))], x € X. (1.6)

Definition 1.3 (Stationary Policy from Bertsekas 2005, Sec. 7.1). A stationary policy is an
admissible policy of the form = = {y, 11, . . . }, and its corresponding cost function is denoted by
Ju(i). For brevity, we refer to {1, 1, ...} as the stationary policy y. We say that p* is optimal if

Jie (i) = J () = min Jo ().

Using this definition, we denote for any function J : X — R and any stationary policy u

(1)) (x) = E[g(x, p(x), w) + a (f (x, p(x), w))], x € X, (17)

which can be interpreted analogously to the above. Next we denote by T*J the composition
of the mapping T with itself k times. Meaning, for all k we write

N-1
(TN = (TT7)) () = min E|a")Gey) + 2,90 e Wk>] xEX.

Thus, T¥J is the function obtained by applying the mapping T to the function T*'J. For
convenience, we also write

(T°N)(x) = J(x), x € X.
Similarly, T/f J is defined as

N-1
(TED () = T(TE D (x) =B | T (ew) +) a*g e i (), ww] ,xeX (18)

k=0

and

(Ty)(x) = J(x), x € X,

One can immediately see (T*])(x) is the optimal cost function for the k-stage problem and
initial state x. While (T,J)(x) is the cost function for the k-stage problem with a certain
stationary policy p.

Lemma 1.4 (Monotonicity Lemma from Bertsekas 2012, Lem. 1.1.1). Forany function] : X — R
and J' : X — R, such that for all x € X, J(x) < J'(x), and any stationary policy i : X — U,
we have

(T (x) < (T*]') (%)
(TE D) (x) < (TF)) (x)
forallx € X, andk =1,2,...

Phil Neitzel Bachelor Thesis 5

Iterative Solution of MDPs Phil Neitzel

Proof. We will prove this using induction. For k = 1 it means:

(T (x) = ugllji(r)lc)E [9(x, u, w) +a] (f (x,u,w))]

J(x)<J (x)

< ugﬁ}&)E [9(x,u, w) +] (f (x,u, w))] = (T])(x)

Now we assume that (T¥])(x) < (T*J")(x)(x) is satisfied and show (T**1])(x) < (T**1J")(x)

(T) (x) = (T(T*]))(x)

= min B[g0x) + a(T) (/)|

< min B g) + () (f (x|

= (T"]) (%),

which implies (T¥])(x) < (T*J)(x) Vx € X,k = 1,2,.... The proof works similarly for
(TE) (x) < (TE]) (%) O

Assumption 1.5 (Assumption D (Discounted Cost - Bounded Cost per Stage) from Bertsekas
2012, Sec. 1.2). The cost per stage g satisfies for all (x,u,w) € X XU X W
lg(x, u, w)| < M,
where M is some scalar. Furthermore, 0 < o0 < 1.
Since we are mainly considering finite sets X, U and W in this thesis, this assumption always

holds true and is no real restriction, but it needed to be mentioned in order to understand the
argumentation of the following propositions.

Proposition 1.6 (Bertsekas 2012, Prop. 1.2.2). For every stationary policy p, the associated cost
function satisfies for all x € X

Ju(x) = lim (TY])(x). (19)

Proof. For every positive integer N, initial state xy € X and stationary policy p, we break
down the cost J,(xo) into the portions incurred over the first N stages and over the remaining

Phil Neitzel Bachelor Thesis 6

Iterative Soluti

on of MDPs

Phil Neitzel

stages.

]y(xo)

IA

IA

lim E
K—oo

E

-

lZ..

,,
z
L

Zy 17
Lo

r

x~
I

(=]

K
Z a* g (x, (),
=0

-1
o* g (i, (i), wie)

>~
I
o

a* g (xx, p(x), wi)

>~
I
o

g (xg, 1n(xx), we)

g (x, p(xx), wi)

Using this inequality it follows that

N

B - M

N-1

IA

k=0

aN M

IA

]y(xo) +

l1-«a

—+ZakM

Wk)]

+ lim E

K—

+|lim E
K—oo

(o)

k=N
aNM
1-«

+

¥ max |J(x)|

B |aJGen) + > oo, i), wi)

+ o max |J(x)].
xeX

So by definition of (T/f\] J)(xo) it follows immediately

aN M

JH(XO) - 1-—«a
(TN) (x0)

N

IA

IA

— aN max |J(x)|
xeX

a"M
Juxo) + — +a” max|J (x)]

and by taking the limit N — oo, we receive the desired result

Ju(x0) <]\}i_rgo(T/fV](xo) < Ju(xo)

= Ju(xo) = lim (T;7]) (xo).

K
Z o g(xx, p(x), Wk)]
=N

K
> gl (), m]
k=N

(Ass. D)

Phil Neitzel

Bachelor

Thesis

Iterative Solution of MDPs Phil Neitzel

Proposition 1.7 (Convergence of the DP Algorithm from Bertsekas 2012, Prop. 1.2.2). For
any bounded function J : X — R, we have for all x € X,

J(x) = lim (TV))(x).

Proof. The proof is similar to the one from Proposition 1.6 with the main difference being we
now have 7 = {y, f41, . . . } instead of a stationary policy. This means y is also dependent on k.
In general, Proposition 1.6 is a special case of this proposition. O

Proposition 1.8 (Bertsekas 2012, Prop. 1.2.4). For every stationary policy p, the associated cost
function satisfies for all x € X,

Ju(x) = E [g(x, p(x), w) + aJu (f (x, p(x), w)]

or, equivalently

Ju =Ty
Furthermore, J, is the unique solution of this equation within the class of bounded functions.
Moreover, for any bounded function] with] > T,] (or] < T,]), we have] >], (or] <],),
respectively.

Proof. We can immediately show J, = T, J, because of Proposition 1.6
(T () =E [gCx, p(x), w) + au(f (x, p(x), w))]
-E [g(x, p(x),w) +a (nggo(TfJ) (f G), w)))]

lim B | g p(x), w) + (T) (F G, (), w))|
dim (T,7*)) (x)

dim (1Y) (x)

=],u (x).

To show uniqueness, we assume some bounded function J satisfies J = T, J then J = I\}im Tlfv J

by Proposition 1.6. So we get J =], which proves uniqueness of the solution. Now what is
left to showis] > T,] = J > J, (analogue for] < T,] = J < J,).

Solet] >1T,J.

Using the Lemma of Monotonicity Lemma 1.4 it follows

J2TJ2T 2 2T] 2T > ...
and by taking the limit k — oo it follows

2 -

Phil Neitzel Bachelor Thesis 8

Iterative Solution of MDPs Phil Neitzel

Proposition 1.9 (Bellamn’s Equation from Bertsekas 2012, Prop. 1.2.3). The optimal cost
function J* satisfies for all x € X,

J* ()= min Elg(xuw) +a)(f (xuw)] (1.10)

or equivalently,
]* — T]*.
Furthermore, J* is the unique solution of this equation within the class of bounded functions.

Moreover, for any bounded function J with] > T] (or] < T]), we have J > J* (or J < J*,
respectively)

Proof. Again this Proposition is proven with the same argumentation as in the proof of
Proposition 1.8 O

Proposition 1.10 (Necessary and Sufficient Condition for Optimality from Bertsekas 2012,
Prop. 1.2.5). A stationary policy u is optimal if and only if u(x) attains the minimum in Bellman’s
equation (1.10) for each x € X; i.e.,

T =T,J".

Proof. If TJ* = T,J*, then using the Bellman’s equation (J* = TJ*), we have J* = T,J*. So by
the uniqueness part of Proposition 1.8, we obtain J* = J;; i.e., i is optimal. Conversely, if the
stationary policy y is optimal, we have J* = J,, which by Proposition 1.8, yields J* = T, J".
Combining this with Bellman’s equation, we obtain TJ* = T, J*. O

The previous propositions should give a better understanding as to why J can be interpreted
as an expected cost function and of course the general understanding of finding the optimal
solution to our model. Additionally, they will also become useful for grasping the concept of
optimizing Markov Decision processes which we look into in the next chapter.

Phil Neitzel Bachelor Thesis 9

2 MARKOV DEcCISION PROCESSES

With the understanding of the general idea of decision-making, and the mathematical deriva-
tions gather in the previous chapter, in this chapter we introduce the model for Markov
Decision processes (MDPs), which is a special version of the problem discussed in the intro-
duction. Again the model presented in this chapter is taken from Bertsekas 2012.

2.1 THE MODEL

As mentioned in the previous chapter the space of states X, controls U and disturbances W
are assumed to be finite sets. Meaning, MDPs will be introduced working with finite-state
Markov chains. An important assumption made throughout this thesis is that the process is
discounted, so 0 < a < 1, where « is the discount factor. Furthermore, the states are simply
enumerated and denoted as i or x, respectively. So, having an MDP with n states, the space of

states is
X={1...,n}.

The disturbances used in the previous chapter are now generally the state following a made
decision. Thus, wy = xy4 for a time k and hence, the transition probability is denoted as going
from state i to state j in a single time period, so

pij(u) =P (X = jlxe = i, ue = u), fori,j,€ X,ueU().

Using the same notation we introduced in the last chapter the mappings of the expected cost
per stage TJ and T, can be written as

(TDG) = min > pyy(u)(gli) + @] (). i € X,
j=1

n

(L)@ = D pis(p()) (g, p(i),) + @] (), i € X.

j=1

However, to simplify this equation we assume g to be independent of j. This does not make a
significant difference, because if a problem’s cost is dependent on j we can always define

gliu) = > pi(wg(iu, j). (2.1)

J=1

Iterative Solution of MDPs Phil Neitzel

Meaning, the following mappings are equivalent to the ones above

(T)(0) = min |g(iu) +a JZ; PG|, i€ X, (22)
(T, (@) = g(i, p(D)) + Zpij(#(i))f(j), ieX. (2.3)
=1
As the goal is to find an optimal policy for all n states we denote
J(@) (T)H(1) (T.J)(1)
.] = s T] = > T,u.] = .
J(n) (TJ)(n) (T.J)(n)

Furthermore, we can write the probability matrix for a stationary policy y as

pu(p(®) ... p(p(1))
P, = : , .

pa(p(n)) ... pun(p(n))
and the corresponding cost vector

9(1, u(1))

9u = :
g(n, u(n))

Leading us to the equation as a vector notation

T,J = gy +aP,]. (2.4)

Using Proposition 1.8 we also know that J, is the unique solution for a stationary policy y
meaning

=T =9+ aPpr- (2.5)
Which we can rewrite as
(I-aP,)], = gu (2.6)
with [being the n X n identity matrix. This gives us a linear system we can solve for], which
is important for finding an optimal policy as we will see later in this chapter.

2.2 SOME ExAMPLES FOR MDPs

2.2.1 AN INTRODUCTORY EXAMPLE

First, let us begin with a simple example where we can choose between two actions and move
between to different states. Meaning, X = {1,2} and U = {a, b}. For each action we receive a

Phil Neitzel Bachelor Thesis 1

Iterative Solution of MDPs Phil Neitzel

probability matrix as follows

0.3 0.7 0.6 0.4
P“‘(0.3 0.7)’ Pb_(O.é 0.4)’

with the corresponding cost vectors being

o= (55} w=li)

Note, that in this case the transition probability is independent from the previous state. as the
probabilities in each row are the same. Of course, this is not the case for most models, but it
does simplify the visualisation of the MDP, seen in the following diagram.

o

Figure 2.1: The MDP visualised with the states in black and actions in

2.2.2 EXAMPLE: TRANSPORTATION PROBLEM

In this next example the MDP models the question of how someone should get to work. They
could take the bike with a guarantee to be at work in 45 minutes. Another option would be to
take the car. However, with this option they don’t know the traffic status. We assume there’s
a chance of low traffic in which case they arrive in only 15 minutes, medium traffic, leading to
30 minutes of travel and high traffic leading to 70 minutes of travel.

Lastly, they might also decide on taking the train, meaning they will have to walk to the
train station first which will take them 5 minutes. Of course, arriving at the station there
is a chance that the train might be delayed so they might have to wait for it. If the trains
does not arrive in the next three minutes, the worker can decide to go home and choose a
different use of transport or they could wait another three minutes. When the train arrives
it will take them 25 minutes to arrive at work. Of course, the goal of the worker is to get to
work as fast as possible, so we need to minimize the amount of minutes he needs to get to
work. Mathematically the set of all states X and the set of all actions U can look as follows

Phil Neitzel Bachelor Thesis 12

Iterative Solution of MDPs Phil Neitzel

X = {Home, Waiting Room, Train, On Bike, Low, Medium, High, Work},
U = {bike, car, train station, wait, go home, go to work, do the work}.

Here, the "do the work" action is only to complete the model, as some action needs to be
decided on for being in the "at work" state. The probability matrices all look very similar so
only one exemplary matrix is written down to get an idea for the overall problem.

)
f<5)
=
|
O O O O O O O O
O O O Rk O O oAl
O O =k O O O Owin
O kR O O O O Oal=
_ O O O O O O O

S O O O O O = O
S O O O O r OO
S O OO Rk O OO

Notice, we wrote a probability of "1" for staying in the same state except if one takes the action
"car" when they are in the "Home" state as this is the only state where it is allowed to take
the car. Of course, keeping them in the same state is not the only solution to this problem,
but we always have to fulfil the properties of a probability matrix with every P,. A similar
problem occurs if we look at the cost vector. To keep the worker from choosing the car, for
example when they are in the waiting room, we simply have to make the cost for doing so
extremely high. This way the action is always prevented from being chosen. So for example
Jeo to work should look something like this

&8 8

45

9go to work = 15|
30
70

Phil Neitzel Bachelor Thesis 13

Iterative Solution of MDPs Phil Neitzel

Waiting Room

start — @
5

¢/

Figure 2.2: The MDP visualised with the different states (black) and actions

To simplify the model and make it more readable there are some missing states and actions
that can be let out in the drawing but are still mathematically relevant. For example if the
worker reaches the "Train" state they will automatically take the action "go to work" or if
they decide to take the bike they will automatically reach the state "On Bike".

2.2.3 EXAMPLE: THE STUDYING PROBLEM

In this last example we look at a student who needs to decide on the amount of hours they
want to study every day for an upcoming exam. They can choose between 0.5, 2 or 4 hours
everyday. Their university grants the grades 1 - 5, where 1 is a great result and 5 means they
failed the course. Understandably, the main goal of the student is to pass the exam. So we
use a point system to decide the costs that occur depending on the action they choose. The
general goal is to have as few points as possible and the hours they spend studying always

Phil Neitzel Bachelor Thesis 14

Iterative Solution of MDPs Phil Neitzel

awards them with points worth the amount of hours they studied. Now the table for the
points received for each grade is as follows:

Grade | Points
1 -10
2 -7
3 -4
4 -1
5 10

So the overall cost for an action they choose is determined by the expected grade and the
hours they study. This means the cost is not only dependent on the current state but also
the state the student will land in. As mentioned in Equation (2.1) we can simply calculate
the expected cost and use this as our cost for every state i. For example for i = 1and u = 4h,
using the probabilities from below, the cost is calculated as follows:

9(1,4h) = pry (4h)g(1, 4k, 1) + pio (4h)g (1, 4h, 2) + pys(4h)g(1, 4h,3)
=0.75-(4—10) +0.2- (4 —7) + 0.05 - (4 — 4)
= -5.1
Another important assumption in this model is that the amount of study needed depends
on the previous grade they have obtained in this field, as this is an indicator for how well
someone understands the subject before they even start studying. So if, for example, the

student had a good grade before, there is a higher likelihood for them to receive a good grade
again and vice versa. So to describe this problem mathematically we have

X =1{1,2,3,4,5}, U = {0.5h, 2h, 4h},

with the different transition matrices for each action

0 05 035 015 0
0 0 05 04 0.1
Posp=|0 0 03 04 03],
0 0 0 0.35 0.65
0 0 0 0 1
035 0.55 0.1 0 0
01 05 03 0.1 0
Py=| 0 0 0.6 035 0.05],
0 0 01 06 0.3
0 0 0 0.5 05
0.75 0.2 0.05 0 0
04 04 02 0 0
Pp=|01 065 0.25 0 0
0 05 03 02 0
0 0 0.2 075 0.05

Phil Neitzel Bachelor Thesis 15

Iterative Solution of MDPs Phil Neitzel

and the cost vectors for each action

—4.55 —5.75 5.1
—09 -3.8 —-3.6
Jgosh =| 1.9 |, gon =|—0.251, Ggap = | —2.55].
6.65 4 -0.9
10.5 6.5 2.95

T

N =/
6.65 N (b 0.2

6.5

(‘ 0.05
0.65 (
0.6
@ 0.5 @

Figure 2.3: The MDP visualised with the grades being black and the study times in different colours

Phil Neitzel Bachelor Thesis 16

Iterative Solution of MDPs Phil Neitzel

As we see, unlike our first example, the probabilities of going from one state to another now
depend on the previous state and not just the action chosen, making the visualisation of this
example a lot more complicated.

2.3 PoLicy ITERATION

Now that we understand what Markov Decision processes are and how to model them, we
discuss a method called Policy Iteration (PI) used to find an optimal policy for the finite-space
MDPs, as introduced in Bertsekas 2012. The general idea of PI is to calculate the cost function
Ju for a given stationary policy y by solving the Bellman Equation (2.6). Using this cost
function we then compute an improved policy ji, minimizing 1], = TJ, with respect to J,.
This equation comes from the necessary and sufficient condition for optimality as seen in
Proposition 1.10. As we see in this section, the sequence consisting of the pairs {i,], } will
be monotonically improving the expected cost and will converge to the optimal solution.

Algorithm 1 Policy Iteration Algorithm from Bertsekas 2012, Sec. 2.3.1

Step 1: (Initialization) Guess an initial stationary policy pq
Step 2: (Policy Evaluation) Given the stationary policy i, compute the corresponding cost function
Ju from the linear system of equations

(L= aPu)Ju = Gy

or equivalently
Jue = Ty J -

Step 3: (Policy Improvement) Obtain a new stationary policy . satisfying

T = Ty

If], = TJy, stop; else return to step 2 and repeat the process for new policy p41.

To show that Policy Iteration does indeed converge to the optimal solution we prove the
following proposition.

Proposition 2.1 (Policy Improvement Property from Bertsekas 2012, Prop. 2.3.1). Let u and ji
be stationary policies such that T;], = T, or equivalently, fori=1,...,n,

g fli) +a) py (D)) = min (g(i.w)+a) py(u)]()].
j=1 j=t

Then we have

Ji() < (i), i=1,...,n. (2.7)

Phil Neitzel Bachelor Thesis 17

Iterative Solution of MDPs Phil Neitzel

Furthermore, if u is not optimal, strict inequality holds in the above equation for at least one
state i.

Proof. Let the stationary policy y and /i fulfil our assumption T;J, = TJ,. We know from
Proposition 1.8 J, = T, J,. So we get the following equation for all i € X

]y(i) = T,u]y
= g(i, p(D) +a@) py (N ()
j=1

ueU (i

> min) g(i,u) +«a Zpij(u)Jy(j)
=1

= (TJ) ()
= (T (D).

Applying Proposition 1.8 again we get the desired inequality J, (i) > J;(i) for all i € X. What
is left to be shown is the strict inequality if y is not an optimal policy. This can be shown
analogue to J,(i) > J;(i) only that as y is not optimal there exists at least one i € X with

g () +a) py(p(p() > min |gGw +a) py@LG)|- (8
j=1 j=t

Under the finiteness assumption on X and U, there are only a finite number of possible
stationary policies. Hence, with monotonically improving steps, the Policy Iteration converges
to an optimal solution in a finite amount of time, which is one of the advantaged of PI compared
to other methods not covered in this thesis (e.g. Value Iteration from Bertsekas 2012). Of course,
solving the Bellman equation J, = (I — aP,)]J, in Step 2 of PI can be very computationally
expensive for very large problems. We will analyse different solvers of this equation in chapter
3 and will also discuss what methods are more or less suitable for larger problems.

2.4 APPLYING POLICY ITERATION

Let us now apply the Polity Iteration algorithm to our example of Section 2.2.3. We assume
a = 0.8 and that the student decides to study more when they performed poorly on their
previous exam, but does not study as much if their grade was satisfactory. This gives us our

Phil Neitzel Bachelor Thesis 18

Iterative Solution of MDPs Phil Neitzel

initial policy po = (0.5h, 0.5k, 0.5k, 2h, 2h)”, meaning

0 05 035 015 0
0 0 05 04 01
P,=10 0 03 04 03
0 0 01 0.6 03
0 0 0 0.5 05

Leading us to the second step, the policy evaluation of (I — 0.8P,,) J,, = g,,, which looks as
follows:

1 -04 -0.28 -0.12 0 —4.55
0 1 -04 -0.32 -0.08 -0.9
0 0 076 —-0.32 -0.241],=| 19
0 0 -0.08 0.52 -0.24 4
0 0 0 -0.4 0.6 6.5

To obtain the results of the Policy Iteration algorithm in each step, we utilize the implemen-
tation available at https://github.com/PhilNeitzel/Policy_Iteration which yields the

cost function:
10.54999927

16.64285649
Juy =(20.35714229 |.

22.85714237

26.07142807

Which brings us to the next step, the policy improvement, where we need to find a 14
satisfying

mirg Gu+ APy = gy +aPyJ,.
peu

The solution is the new, improved policy y; = {4h, 4h, 4h, 4h, 4h} so P, = P,. By repeating
the process with y; we receive another linear system:

04 -016 -0.04 O 0 =51
-0.32 0.68 -0.16 0 0 -3.6
-0.08 -0.52 0.8 0 0 |J,=]-2.55].

0 -04 -024 084 O -0.9
0 0 -0.16 -0.6 0.96 2.95

Solving this linear equation then yields

—22.79891267
—20.43478215
Ju = | —18.74999947 |.
—16.15941971
—10.15172032

As ||T],, — Jull = 3.537217643680566 " the optimality condition is satisfied and the algorithm
stops with the optimal policy p* = j5. Meaning, the student should always study the full 4
hours for his next exam in order to optimize his results. Of course, in most Markov Decision
Processes the optimal solution would not be the same for every state.

Phil Neitzel Bachelor Thesis 19

https://github.com/PhilNeitzel/Policy_Iteration

Iterative Solution of MDPs Phil Neitzel

2.5 CONVERGENCE OF PoLicy ITERATION

Even though we assumed U to be a finite space at the beginning of this chapter it is also
interesting to analyse the convergence rate of Policy Iteration for U being an infinite space of
actions. For this, we use Bokanowski, Maroso, and Zidani 2009 as guidance. Our goal to find
a solution to a non-linear problem stay the same, i.e., the goal is to

find J, € R" such that mill}l((l[—aP,)], = gu) =0, (2.9)
ue

which is equivalent to finding the optimal policy y* that satisfies]~ = g,+ + aP,+J,+. However,
before we look at the convergence rate of the Policy Iteration we have to show the general
convergence of the algorithm. In order to do so we recall the following definition.

Definition 2.2 (Monotonicity from Bokanowski, Maroso, and Zidani 2009, Sec. 2). A matrix
A € R™" s said to be monotone if and only if A is invertible and A™! > 0 (component wise).

Throughout this section we use the following assumptions.

For every p € U, the matrix (I — aP,) is monotone. (Ha)

When U (i) is an infinite compact set Vi € {1,.. ., n}, the functions (H2)

peU— (I-aPy)eMandpeU g, € RY are continuous.

Note that U is simply U = U(1) X U(2) X - - - X U(n) with U(i) being the space of actions in
state i. The following theorem summarizes the general convergence of Policy Iteration for
different U.

Theorem 2.3 (Bokanowski, Maroso, and Zidani 2009, Thm. 2.1). Assume that (H1) - (Hz) hold.
Then there exists a unique J,+ in R" satisfying mi[?((l —aPy)]y —9gu) = 0. Moreover, the sequence
ue

Ju. given by the Policy Iteration satisfies the following:

() Ju = Jyyy Yk 2 0.
(ii) When U is finite, the algorithm converges in at most card(U) iterations.

(iii) If U is an infinite compact set, then J,, — J,» when k — +co.

Proof. We already showed that J,- is a unique solution by Proposition 1.9.

Phil Neitzel Bachelor Thesis 20

Iterative Solution of MDPs Phil Neitzel

(i) Ju = Jy., follows immediately from Proposition 2.1.

(i1) Assume that U (i) is finite foralli € {1,..., n}. Hence, there are at most card(U) different
variables y € U. Then there exist two indices k, [such that 0 < k < [< card(U) and
pr = (p and gy being, respectively, the k-th and [-th iterate of PI). Hence, J,, = J,,, and
since J,, > J,, = -+ = J,, we also obtain J,,,, = J,,. Therefore, the Policy Iteration
stops at the (k +1)-th iteration. This proves that J,, = J,., is a solution of Equation (2.9),

since],uk = Tyk],uk = T,Uk+1]l1k = T]Pk‘

(iii) We now consider U (i) as an infinite compact set for all i € {1,...,n}. By step 2 of the
Algorithm 1 we have

1l < 11T = @Py) gl < max 1T = aPy) " lllgull. (2.10)

By assumptions (Hz1) and (Hz), the function (I — aP,)™" is continuous on U. Moreover,
g, is continuous and U is a compact set.

Therefore, from the inequality in Equation (2.10), we deduce that (J,)xen is bounded in
R™. Here J,, converges toward some]~ € R". Let us show that J, is the solution of
Equation (2.9).

Define the function F for J,, by

F(ka) = l;lnelll}((l - aP,u)],u - g/l)) (2.11)
and let F;(J,,) be the i-th component of F(J,), so

Fi(],uk) = min((I - aPp)]p - g,u)i-
pel

It is obvious that klim Fi(J,,) = Fi(J,»). By the compactness of U (i) and using a diagonal
—+00

extraction argument, there exists a subsequence of ()i denoted by pig, that converges
toward some p € U. Furthermore, with assumption (H2), we have

kh_{l;lo((l[- aPy¢k)Jyk)i = (L= aPy) Jy)i-

Passing to the limit in ((H_O{Pmsk)]/‘¢k _gll¢k)i = 0, we deduce that ((I-aP;+) J,»—g,))i = 0
foralli € {1,...,n}. On the other hand, we also have

Fi(Jr) = kh_{rolo Fi(Jug, 1)
= k1—1>r-l;loo((ﬂ - 0{PH¢k)]p¢k_1 - g,u(;sk)i
=((I- aP,u*)]u* - gy*)i-

Hence, F;(J,+) = 0, which concludes the proof and implies that J,« is a solution of
Equation (2.9).

Phil Neitzel Bachelor Thesis 21

Iterative Solution of MDPs Phil Neitzel

Having shown the general convergence of the Policy Iteration, for the rest of this chapter, we
assume U to be an infinite compact set. To see if the algorithm converges superlinearly it
is easiest to rewrite the Policy Iteration as a Newton-like method with the goal of finding
the solution of the function F : R* — R", F(J,) := I:éi(rjl((ﬂ —aPy)]y — gu). So step 2 and 3 of

Algorithm 1 can be rewritten as

(.Uk+1)-]llk+1 e = 0 (POHCY Evaluation)

(I'=aPy,) = G = F(U) (Policy Improvement)

Meaning, (I - aP,,.,)(Jy = Ju.,) = F(Jy,) leading to the iteration

]ﬂk+1 =] (I[aP.ukH) 1F(]:uk)' (2"12)

For the following result we define the set of minimizers y for a given cost function J € R"
as

Up={peUl(l-aPy)]-g,=F()}. (2.13)

Since U is simply the cartesian product of U (i) we define U;(i) as the minimizer for the i-th
component

Uy (i) = {m € UD(e] — aPui)] +gu(i) = F(])}. (2.14)

Furthermore, we denote 1/ if i/ € Uj. Using these definitions we prove the following lemma.

Lemma 2.4 (Bokanowski, Maroso, and Zidani 2009, Lem. 3.2). Assume that (Hi1) - (Hz) hold.
For every] € R" and for alli € {1,...,n},

(/™" U (i) — 0 ash € R" and ||h|| — 0, with ;i/*" € Uy, (i),

where d is the metric on R".

Proof. Follows directly from assumptions (H1) - (H2) and the definition of Uy and U;(i). O
We now use this lemma to prove the superlinear convergence of the Policy Iteration.
Theorem 2.5 (Bokanowski, Maroso, and Zidani 2009, Thm. 3.4). Assume that (H1) - (Hz) are

satisfied. Then mil?((]I — aPy)J, + gu) = 0 has a unique solution]~ € R" and for any initial
ue

guess iy € U, the Policy Iteration converges globally (klim e = Ju

ie.,
k — oo.

Wer = Jurll = 0 (e = T

Phil Neitzel Bachelor Thesis 22

Iterative Solution of MDPs Phil Neitzel

Proof. As existence, uniqueness and the global convergence toward J,- have already been
proven in Theorem 2.3, we only need to show the superlinear convergence of . First let us

consider hy := J, — J,+ and denote pyq := p]”k = /1]#*+h’<. Due to Lemma 2.4 we know there

exists a y/ € Uj such that d(,ul.JJrh, yl.]) — Oas ||h|| = 0foralli e {1,...,n}. So because of our
assumption (H2) we know

;llii% [(T=aPym) = (I—aPy)| =o.

It follows that we can find a y/** € Uj,. such that
(I-aPy,,) — (I-aPy,,) — 0fork — oco. (2.15)
Using the definition of F it can be easily obtained that F is a concave function, as for any
B e[0,1]:
F((1=p)x+py) = rlfleilrjl(ﬂ —aP)((1=p)x+py) - g,

= %151(1 - P (I = ab)x —g,) +p((I-aPy)y —g,)

= min(1 - §)((I - aPy)x = g,) +min f((I - aP,)y = g)

= (1= p)F(x) + fF(y)

Additionally, we know F(J,<) = 0 and hence F(J,) < (I - aPy,,,)(J, — J+). Using Equa-
tion (2.12) we have

]I—’k+1 =]ﬂk - (I- ap#k+1)_1F(]ﬂk)
2].”k - (I- O‘PIJJ<+1)_1(]I - pyk’*)(]/lk - Jﬂ*)

and subtracting]~ on both sides yields

0=]Ilk+1 - JH* 2 (JI - (]I - apﬂkﬂ)_l(ﬂ - aPHk,*)) (]I—’k - JH*) (2'16)

k—+o00
By Equation (2.15) and (Hz), we obtain I — (I- P,)~ (I- aPy,) . Giving us the result

k+1)

02> Juyy = Jpr 2 00U = i),

which concludes the proof of superlinear convergence. O

Phil Neitzel Bachelor Thesis 23

3 METHODS FOR SOLVING LINEAR SYSTEMS

As discussed in the last chapter, to complete Step 2 of the Policy Iteration Algorithm, a system
of linear equations needs to be solved. In this chapter we discuss different iterative solving
algorithms and their efficiency. It might also be interesting to see if and how those algorithms
can be interpreted when applied to a MDP.

3.1 GAUSS-SEIDEL AND JACOBI METHOD

Beginning with some well-known algorithms, this section discusses the Jacobi and Gauss-
Seidel method. Before applying those methods to a MDP, the methods will be introduced for
the linear system Ax = b. Both methods will be described similarly as in Herzog 2022. We
denote

a1 di2 ... Qi b1 X1

dz1 d22 ... d2p bz X2
A = 1) b = . 3 X =

an1 Qn2 ... Qnn by Xn

In the Jacobi method A will be decomposed into a diagonal component D, a lower triangular
component L and an upper triangular component U. Leading to the following matrices

an 0 ce 0 0 ap - in
0 dzy - 0 an 0 ccc dap

D = 3 . X . s L+ U = (31)
O 0 I/ dp1 Qpo . 0

For an initial guess x(°) we can solve Ax = b iteratively with

x*) = D(p — (L + U)x™). (3.2)

Of course, in order for the Algorithm to be well-defined D needs to be invertible. Meaning, A
cannot have any zeros on its diagonal.

24

Iterative Solution of MDPs Phil Neitzel

Algorithm 2 Jacobi Method from Herzog 2022, Sec. 25

x = x©
while convergence not reached do

yi=x
fori=1,...,ndo
n
Xi= oo (bi - X aijyj)
j=1j#i
end for
end while

The Gauss-Seidel method works very similar to the Jacobi method, with the difference being
that A is decomposed into L* = L+ D and U as defined in Equation (3.1). So the iteration looks
as follows

x® = (197 (b - UxY). (33)

Algorithm 3 Gauss-Seidel Method

x = x0
while convergence not reached do

fori=1...,ndo
1 i—-1 n
xi= oo |\bi— Xoaix;— X aijx;
11 . . N
j=1 J=i+l
end for
end while

The goal now is to look at the algorithms in the environment of MDPs. Applying the

Policy Iteration algorithm to the model described in Section 2.1 leads to the following Policy
Evaluation

(I-aPy)]y = gy
Meaning, the general linear system Ax = b is replaced as follows

A=1-aP, x=Ju b=g,.

Note because I is the identity matrix it is enough to only divide P, = Pf? + PIE + PL] so with
this notation the iterators can be written as

(L-aP?)J " = g, + aPLV J (Jacobi)

o J/Ekﬂ) =g+ aP£+U]lEk) + OfPi,)]lSkH),

Phil Neitzel Bachelor Thesis 25

Iterative Solution of MDPs Phil Neitzel

(I- aPﬁ)]}(,) - gu+ an]}E) (Gauss-Seidel)
&]}(,kﬂ) =gu+ an]}Ek) + aPﬁ*]ﬁkH).

We understand J, to be the overall cost function calculated for a stationary policy p. It can
be seen that for every iterator in the Jacobi method the cost function changes only for the
diagonal part D of matrix P,, as we calculate the expected cost for the rest of the problem

using the previous cost function with aP,],Ek). Meaning, depending on whether]}Ekﬂ) <]}Sk)

or]ngﬂ) >]j") the cost for staying in the same state falls or rises. Meanwhile, the cost for
going back or forth to a different state still uses the older cost function, so the cost is assumed
to stay the same.

Similarly to the Jacobi method, the Gauss-Seidel method keeps the previous cost function for
going a state forward but if one stays in the same state or goes back to an earlier state the
cost function is set to be the new one. So again it might become more or less expensive to
move backward or stay in the same place. Of course, the new cost function still needs to be
the expected cost of the overall problem in order for it to be used as the next iterate.

Furthermore, we do not have to worry about the general convergence of Jacobi and Gauss-
Seidel method as both converge when the matrix A is strictly diagonally dominant. Meaning,

n

laii| > Z |aij| foralli e {1,...,n}.
=1
j#i

Due to the properties of aP,, we can easily see that (I — aP,) is always strictly diagonally
dominant.

The following theorem compares the speed of convergence of both methods.

Theorem 3.1 (Bradie 2006, p. 233). Suppose A is an (n X n) matrix. If a;; > 0 for each i and
ajj < 0 for everyi # j, then one and only one of the following statements holds

(i) 0 < p(Tys) < p(Tjac) <1,
(ii) 1< p(Tjac) < p(Tys),
(iii) p(Tjac) = p(Tys) = 1,

(i) p(Tjac) = p(Tgs) = 0.

where T is the iteration matrix that arises for each method and p(T) is the spectral radius.

We are able to apply this theorem to our MDPs as 1—a(P,);; > 0 and —a(P,);; < 0 foralli # j.
This theorem in general provides the information that the methods either both converge or

Phil Neitzel Bachelor Thesis 26

Iterative Solution of MDPs Phil Neitzel

both diverge. However, we already know that both methods converge so from this theorem
we can see that the Gauss-Seidel method generally converges faster than the Jacobi method
as 0 < p(Tys) < p(Tjac) < 1. This means we would always choose Gauss-Seidel over Jacobi
when it comes to MDPs.

3.2 RICHARDSON [TERATION

Another stationary method that may come to mind is the so called Richardson Iteration. The
idea is to simply rewrite the linear system Ax = b as a fixed point equation in order to derive
a fixed-point iteration. We write the problem as follows

x=x+b-Ax=b+(I-A)x

and receive the iterators
xFD = p 4 (I- A)x(k).

Applying this to the model of MDPs with (I — aP,)J, = g, the iterators]ék) will be calculated
with

I =g+ 1= @ -ap))JP

k
:g,,+aPl,]/5),

We can see immediately that this is the fixed-point iteration for Equation (2.5) and by rewriting
(k+1)
Ju as

k k—
]}S) _ gu+aP,(g,+ Ony];E 1))
=gy + aPugy + azPﬁJék_l)

k
_ j pi k+1 pk+1 7(0)
= E o' P,gy+a P
i=0

We can see that],E"“) is nothing else than the k + 1-stage expected cost as in Equation (1.8),

where the terminal cost is our initial guess]/50). However, as k grows larger and 0 < a < 1
this initial guess will become less and less relevant for the next iteration. So the Richardson
iteration can be interpreted as calculating the k-th stage expected cost.

3.3 KRYLOV SUBSPACE METHODS

This part discusses the idea of Krylov subspace methods (as presented in Saad 2003) and their
application on MDPs. As Krylov subspace methods consist of the idea of applying projection

Phil Neitzel Bachelor Thesis 27

Iterative Solution of MDPs Phil Neitzel

methods to a Krylov subspace, those projection methods will be introduced first. In general, a
projector P is a mapping from C" to itself with the idempotence property

P =P.
Furthermore, the projection can be split into two subspaces

Null(P) = {x € C"|Px = 0},
Ran(P) = {Px|x € C"}.

Of course, those subspaces only intersect each other at the element zero. Meaning, C" can be
written as the direct sum of both of them

C" = Null(P) ® Ran(P).

Simultaneously, every two subspaces M and S with C" = S @ M define a unique projector
with Null(P) = S and Ran(P) = M. Additionally, we can easily see that Null(P) = Ran(I — P).
Since if P is a projector, then I — P is a projector too. Knowing this S can be rewritten as
S =Ran(I — P) with the projector P mapping any x € C" onto the unique decomposition
X = X1 + X3, where xp is the M-component and x; the S-component. Thus, any vector x can be
written as x = Px + (I — P)x and hence Px satisfies the following conditions

Px e M,
x — Px € S.

Assuming P is of rank m, the range of I - P will be of dimension n—m. By using the orthogonal
complement L = S*, where every vector in L is orthogonal to every vector in S. The above
conditions can be rewritten as

Px e M, (3-4)
x—Px L L. (3.5)

These conditions define a projector P onto M and orthogonal to the subspace L. The following
Lemma proves it is indeed always possible to define a projection through the conditions (3.4)

and (3.5).

Lemma 3.2 (Saad 2003, Lem. 1.36). Given two subspaces M and L of the same dimension m,
the following two conditions are mathematically equivalent.

(i) No non-zero vector of M is orthogonal to L.

(ii) For any x in C" there exists a unique vector u which satisfies the conditions (3.4) and (3.5).

Proof. The proof follows from the definitions given above. O

Phil Neitzel Bachelor Thesis 28

Iterative Solution of MDPs Phil Neitzel

It is useful to represent the projector P via a basis V = [vy, ..., v;,]| of the subspace M = Ran(P)
and the basis of the subspace L as W = [wy, ..., wp,]. This leads to projection methods where
the goal is to find an approximate solution to the linear system Ax = b on a subspace of R". This
subspace will be denoted as K and x € K can be thought of as a candidate for approximation.
Considering the dimension of K is equal to m, m constraints should be sufficient to be able
to obtain an approximation. A typical way of describing these constraints is to impose m
(independent) orthogonality conditions. Specifically, the residual vector b — Ax is constrained
to be orthogonal to m linearly independent vectors. This defines another subspace L of
dimension m called the subspace of constraints. This simple framework is common to many
different mathematical methods and is known as the Petrov Galerkin condition. There are two
broad classes of projection methods: orthogonal and oblique. In an orthogonal projection
technique, the subspace of L is the same as K. In an oblique projection method, L is different
from K and may not have any relation to it. However, in this thesis the focus will lie on the
oblique projection technique L = AK. In total, for a matrix A € R”" and K and L being two
m-dimensional subspaces of R" the following conditions apply for an approximate solution
X.
find x € K, such that b — Ax L L.

Applying an initial guess to those conditions X can be rewritten as X = xy + § where § € K
and xo € R". With the residual vector r(being defined as ry = b — Ax, the condition can be
written as

find x € xy + K, such thatry — Ad L L.

Using the basis matrix representation V' and W introduced above, the approximate solution
can also be seen as
Xx=x0+Vy,

with the orthogonality condition leading to
WTAVy = Whr,.

In general, this is considered to be the basic step of the projection method. Most methods will
apply this step multiple times updating the residual ry and the initial guess x; in each step to
find an approximation of the solution x.

This leads us to the Krylov subspace methods which define K, as

K = span{rg, Arg, Arg, ..., A" 1y}, (3.6)

with ry being the residual and xj an arbitrary initial guess. As mentioned above L, is chosen
as L, = AK,, in this thesis. Of course, different Krylov subspace methods arise when using a
different subspace L,,. In general, the method approximates x as x,, through a polynomial
qm-1 of degree m — 1

A7~ X = X0 + g1 (A)ro.

3.3.1 ARNOLDI’S METHOD

The Arnoldi method introduces one of the basic Krylov subspace methods, laying the founda-
tion for the algorithms discussed later in this chapter. The goal of this method is to reduce

Phil Neitzel Bachelor Thesis 29

Iterative Solution of MDPs Phil Neitzel

the matrix A to a Hessenberg matrix H and to calculate an orthonormal basis vy, . .., v, of
the Krylov subspace. Note that a square n X n matrix H is said to be an upper Hessenberg
matrix if a;; = 0 for all i, j with i > j + 1. In this thesis an upper Hesseberg matrix will be
simply referred to as a Hessenberg matrix. In general, the algorithm works very similar to the
Gram-Schmidt method when it comes to the orthonormalization and looks as follows

Algorithm 4 Arnoldi from Saad 2003, Alg. 6.1

choose a vector u; such that ||v]]|, =1
for j=12,...,mdo
fori=12,...,jdo
hij = (Avj, 0;)
end for .
J
Wj = AUj - ,'21 hijvi

hj+1,j = ||Wj||2

if hj+1,j = 0 then
Stop

end if

— M
Ojv1 =

41,
end for

We now show this method does indeed create an orthonormal basis.

Proposition 3.3 (Saad 2003, Prop. 6.4). Assume that Algorithm 4 does not stop before the m-th
step. Then the vectors vy, vs, . .., U form an orthonormal basis of the Krylov subspace

Ky, = span{v, Aoy, Aoy, .. A")

Proof. By the construction of v; with i € {1,..., m} the orthonormality follows immediately.

So we only need to prove that the vectors vy, . . . v, do indeed form a basis of K,,,. Of course,

for m = 1K; = span{v;} = vy is the basis of K,,. Now let us assume vy, ..., v,, to be the

basis of K,,,. For m + 1 we get Ky,+1 = span{vy, Avy, ..., A™v;} and because of our assumption

K41 can be rewritten as K41 = span{oy, va, ..., A™v1}. Applying the Arnoldi method we
m

receive iy, = (Ao, v;) fori € {1,...,m}, wy, = Avy, — D himv; and vy, = ”x—:” This leads to

i=1
the following equations

m
Iwallomss = Avm = > himo

i-1
= Agm-1(A)vy — Z himqi-1(A)v;.
i-1

Which means v,,,4; can be rewritten as some polynomial of degree m denoted as g,,(A)v;.
Proving that vy, ..., 0,41 is indeed a basis of K. O

Phil Neitzel Bachelor Thesis 30

Iterative Solution of MDPs Phil Neitzel

Proposition 3.4 (Saad 2003, Prop. 6.5). Denote by V,,, the n X m matrix with column vectors
01,02, ..., 0m, by Hy, the (m+1) X m Hessenberg matrix whose non-zero entries h;; are defined by

Algorithm 4, and by Hy, the matrix obtained from H,, by deleting its last row. Then the following
relation holds

AVpy = ViHyy + wipel
= m+1ﬁms

VIAV, = H,.

Proof. Applying the Arnoldi method we can rewrite AV,, as follows

AV, = [Aoy, ..., Aoy

m+l1

2
= E hivi, ..., E himvi
| i=1 i=1]

- - -
= Z hivi, . . ., Z himoi | + [0, ..., 0, At mOma |
i=1 i=1]

T
m

=V,.Hy, +wpe

= m+1ﬁm-
Multiplying V! to both sides gives us
Vi AV = Vi Vi H + Vi winey,.

As V,, is an orthonormal basis and vy, is orthogonal to wy,, by construction. We get

Vv, =1 Viwmer, = [0,...,0,00wn] = [0,...,0,0].
Giving us the desired equation V! AV,, = Hy,. O

3.3.2 THE GMRES ALGORITHM

We now introduce the Generalized Minimal Residual Method (GMRES). As discussed at the
beginning of this chapter we choose K = K,,, and L = AK,, with K, being the Krylov subspace
as in Equation (3.6) with v; = ”:—g” The idea is that GMRES minimizes the norm of the residual
on xy + K, for an initial guess x(by exploiting the relation of Proposition 3.4. Of course, for

every vector x € xy + K;;, we can write

x =x0+ Vi, (3.7)

where we define y by the following function

Phil Neitzel Bachelor Thesis 31

Iterative Solution of MDPs Phil Neitzel

In(y) = |Ib = Axllz = [[b = A(xo + Vi y)l2- (3-8)

We denote the initial residual ry := b — Axq, f = ||roll2 and v; = %0 By then applying
Proposition 3.4 we can simplify our problem as follows

b—Ax=b—-A(xo+ Vny) (3.9)
=1y —AVp,y (3.10)
= po; — VipsiHpmy (3.12)
= Vm+1 (,Bel - Emy) . (3'12)

As the vectors of V4 are orthonormal to one another the norm is independent of V.41, leading
to

In(y) = 16— A(x0+ Vi) ll2 = |fer = Hnyll2- (3-13)

In general, GMRES approximates the solution of Ax = b by finding the minimizer y,, of
Im(y) and calculating the unique approximate x,, using y,,. The problem is written as

Xm = X0 + Vinym, Where (3.14)

ym = argmin || fe; - Hpylls. (3.15)

The advantage of this method is that it is typically inexpensive to find the solution y,, as it is
a (m + 1) X m least square problem. The GMRES algorithm is summarized as follows

Phil Neitzel Bachelor Thesis 32

Iterative Solution of MDPs Phil Neitzel

Algorithm 5 GMRES from Saad 2003, Alg. 6.9

Compute ry := b — Ax, B := ||ro||2, and v; := %’
for j=12,...,mdo
wj = Avj
fori=1,...,jdo
hij == (wj,v;)
wj == w; — h;jv;
end for
hjsj = llwjll2
if hj,1; = 0 then
m:=j
else
W
V1= s
end if
end for

Define the (m + 1) X m Hessenberg matrix H,, = {hijhi<ismai<j<m
Compute y,, the minimizer of ||fe; — Hp, y|l2 and x,, = xo + Vi ym

The algorithm uses the Arnoldi method to calculate V,,;; and the Hessenberg matrix Hp.
In the last step it calculates the minimizer y,, and with that, the unique approximation
Xm € xo + Ky,

The Minimal Residual Method (MINRES), this is another algorithm based on a Krylov subspace,
which is algebraically equivalent to the GMRES. However for this algorithm we assume A to
be a hermitian matrix. Which makes this implementation typically faster than GMRES. As
the numerical details of this are beyond the scope of this thesis we are simply taking a look at
the implementation given by Giinnel, Herzog, and Sachs 2014.

Phil Neitzel Bachelor Thesis 33

Iterative Solution of MDPs Phil Neitzel

Algorithm 6 MINRES from Giinnel, Herzog, and Sachs 2014, Alg. 3.1
Set vy := 0 and wg ;== w; :=0
Set vy := b — Axy

Set y1 = [|o]|2

Set vy := %

Set No = Y1, S0 = 81 = 0,cp:=c1:=1
Setk:=1

while not converged do
Set O = (Avg, vg)
Set vg41 := Avk — SxUk — YiVk-1
Set yi+1 = |[og+1ll2

Ykt
Set vp,4q : oo

3
Set g := xSk — ck_15k Yk and ag = (0{3 + yiﬂ)
Set ay = sp 0k + ck—1Ck Yk and a3 == Sk_1Yk
o k

Set 41 = g and sy = YO:

1
Set Wiyt = o (0 — @3Wk—1 — a2 Wk)
Set Xg+1 1= Xk—1 + Cha1 k-1 Wi+1
Set nk = —Sg4Mk—1
Setk:=k+1

end while

3.3.3 KRyLov SuBspPACE METHODS oN MDPs

Now we take a look at Krylov subspace methods applied to MDPs. To make some sort of
interpretation possible we keep the subspace a little simpler by only looking at the orthogonal
subspace. So we define the Krylov subspace as follows

K = span{ro, I — aP,)ry,..., (I - aPH)’"_lro},

with the residual ry = g, — (I— aP,) Jo and an initial guess Jy. A first idea on the interpretation
comes from Bertsekas 2005, Chapter 6 who rewrites the cost vector defined by

Ju=1I- aPu)_lgﬂ,

as

I = Z atPflgH. (3.16)
=0

Of course, this property can be easily seen by the Neuman series (a generalized form of the
geometric series) but it is also a very intuitive result. As the overall cost vector is simply the
expected cost for each time ¢ and P, is the probability matrix consisting of probabilities p;; for
going from state i to state j in exactly ¢ time, we can interpret Equation (3.16) as calculating
the expected cost for all time ¢ > 0 and discounting it by a' as costs or benefits are of less

Phil Neitzel Bachelor Thesis 34

Iterative Solution of MDPs Phil Neitzel

interest the further they lie in the future. We can rewrite this function even further using our
definition of the residual o and replacing g, with it, which results in

Jo= Y ' Pl(ro+ (I-aPy) o) (3.17)
t=0
= Z a'Piro + Z a' P (1 - aPy) Jo (3.18)
t=0 =0
= Z atPLrO +(I- aPH)_l(]I —aPy)Jo (3.19)
=0
=Jo+ Z a'tPfer. (3.20)
t=0

Using Equation (3.20), given a J, an approximation of J, can be obtained by truncating the
infinite sum at some m > 0. Thus, it would make sense if we can rewrite K, as

K = span{ro, P,ry, .. .,PL"_lro}

and the following theorem shows that both subspaces are indeed equivalent.

Theorem 3.5. Foralln € N and o # 0 the following holds

x € span{ro, Pyro, ..., Pyro} < x € span{ro, (I— aPy)ro, ..., (I— aPy)"ro}. (3.21)

Proof. Forn =1:

x € span{ro, P,ro}
S x = Aoro + MPurg for some Ag, 4; € R

& x=(Ag+ ﬁ - ﬁ)ro - é(—oz)P,,ro
a a

A A
o x=(Ag+ —1)r0 - —1(1[—aPy)ry
a a

A A
& x = foro + fi(I—aPy)ro for By == Ao + — and f; := —
a a

& x € span{ry, (I - aP,)ro}

Assuming Equation (3.21) to be true for a chosen n € N. The goal is to prove it also holds true

forn+1

n+1
Recalling (I — aP,)"' = 3 (n -:- 1

) (—aP,)" leads to the following result
i=0

PZH - (_al)n+1 ((JI —aP,)"" - Z (” -1}- 1) (_aP/l)i) : ()

i=0

Phil Neitzel Bachelor Thesis 35

Iterative Solution of MDPs Phil Neitzel

Giving us

x € span{ro, Pyro, .. .,Pﬁ“ro}

n+l1

S x= Z /L-PLrO
i=0

n
& X = Z /hPLT"O + /1n+1PZ+17'0
i=0

S X= Z Bi(I— aPy)'ro + A1 Py Ass.
i=0
; A . n+1

— 2 i n+1 n+l1 i

&S x= Z.; pi(I—aP,)'ro+ —(—a)nﬂ ((I[— aP,) +_ Z(; (;) (—aPy)) ro (%)
; R i C 5 i ATH—I 1

& x= ; Bi(T—aP,)iry+ ; Bi(T—aP,)iry+ Co (I- aP,)"r,, Ass,
Y - 2 o

& x = Z ﬁi(I[- aPy)er + ﬁnﬂ(]l - aPH)n+1r0 for ﬁn+1 = (—a—-)'-:""l and ﬁi = ﬂi + ﬁi
i=0

& x € span{ry, I - aPy)ro, ..., (I—aP,)"'ry}.

Now it becomes apparent that the Krylov subspace can be interpreted as

K = span{ro, P,ro, Pﬁ Fos. . .s PL”'lro}. As mentioned before P¥ can be interpreted as the proba-
bility for going from one state to another in k steps. Using this slightly altered Krylov subspace
and taking a look at the general method used to solve linear systems as in Equation (3.14)
Xm = Xo + Vinym it can be seen that for MDPs this yields the following equation

Jm =]0 + mem (3~22)
k
=+ Z(ym),-PL_lro, (3.23)
i=1
where we define V,, by each columni € {1,...,m} asv; = Plil_lro The question now is if there is

something that can be said about y,,. One might notice the similarity between Equation (3.23)
and Equation (3.20), which leads us to the hypothesis of the discount factor a being connected
to ym,. Indeed y, is defined by minimizing ||ry — AV}, y/|| as in Equation (3.10) or in this case

Ym = argm;n”ro - (I[—Opr)VmJ/H- (3-24)

Phil Neitzel Bachelor Thesis 36

Iterative Solution of MDPs Phil Neitzel

It is easily shown that (y,,); := &'~! fulfils Equation (3.24) for m — oo as
m .
n%ggo ”rO - (]I - ap,u) Vm}’m” = n}ggo ||Y'0 - (I[- ap,u) Z;(Ym)ipﬂ_lro”

= l1m lIro — (I - aPy) Za’ 1P’ roll Ass.

= o — (I-aPy) D a'Piroll
i=0

= lro =T =aP)(Ju = Jo)ll by (3.23)
= ”gy"'aPpJO_]0_]y+apy]y+]0_app]0”
= llgp=T=aP)Jull.

=0

The problem however is that a unique solution for y,, can only be guaranteed for m < n and
as it is not possible to calculate y,, for the generalized problem we cannot say anything of
interest about y,,. On the contrary, we can assume it is very unlikely for y,, to behave similar
to the discount factor as it is not restricted to be positive and will take negative values as well,
unlike a.

When it comes to the convergence of Krylov subspace methods they are usually considered
most efficient when applied to systems with large sparse matrices. Especially for large models
of MDPs matrix P is often sparse, as we usually cannot reach most of the states from the
state one is currently in. Of course, all the mentioned methods can always be made more
efficient with different preconditioners. However, from all the different methods introduced
in this chapter, the Krylov subspace methods seem to be the most promising when it comes
to efficiency.

Phil Neitzel Bachelor Thesis 37

4 CONCLUSION

In conclusion, Markov Decision Processes can be a useful tool for decision making and we
can optimize our MDP using the Policy Iteration algorithm which requires us to solve a linear
system. Depending on the size of our problem we saw that different iterative solvers might
perform better than others. Jacobi method and Richardson iteration, for example, converge
rather slow for large matrices. While, Krylov subspace methods converge a lot faster for large
and sparse matrices. Furthermore, we tried to interpret the iterators of those methods when
applied to MDPs in order to understand the process of calculating the expected cost vector in
a more intuitive way. However, due to the complexity of Krylov subspace methods we were
unable to discover anything of interest. Nevertheless, with the information provided in this
thesis we are able to fully implement the Policy Iteration and apply it to different MDPs, while
also being able to choose between different solvers in order to solve the problems efficiently.
For a full implementation of MDPs and the different linear solvers discussed in this thesis see
https://github.com/PhilNeitzel/Policy_Iteration.

38

https://github.com/PhilNeitzel/Policy_Iteration

BIBLIOGRAPHY

Bertsekas, Dimitri P. (2005). Dynamic Programming and Optimal Control Volume 1. 3rd ed. Athena
Scientific.

- (2012). Dynamic Programming and Optimal Control Volume 2. 4th ed. Athena Scientific.

Bokanowski, Olivier, Stefania Maroso, and Hasnaa Zidani (2009). “Some Convergence Results for
Howard’s Algorithm”. In: SIAM Journal on Numerical Analysis 47, pp. 3001-3026.

Bradie, Brian (2006). A Friendly Introduction to Numerical Analysis. Pearson.

Gunnel, Andreas, Roland Herzog, and Ekkehard Sachs (2014). “A note on preconditioners and scalar
products in Krylov subspace methods for self-adjoint problems in Hilbert space”. In: Electronic
Transactions on Numerical Analysis 41, pp. 13—20.

Herzog, Roland (2022). Einfiihrung in die Numerik. Last accessed 28th March 2023. URL: https://scoop.
iwr.uni-heidelberg.de/teaching/2022ss/lecture-einfuehrung-in-die-numerik/einf%c3%
bchrung-in-die-numerik-skript-20220717.pdf.

Johannes, Jan (2021). Wahrscheinlichkeitstheorie 1. Last accessed 6th Febuary 2023. URL: https://sip.
math.uni-heidelberg.de/vl/wt1-ss21/src/Skript-WT1-SS21-%C2%A701-%C2%A719.pdf.

Saad, Yousef (2003). Iterative Methods for Sparse Linear Systems. 2nd ed. Society for Industrial and
Applied Mathematics.

39

https://scoop.iwr.uni-heidelberg.de/teaching/2022ss/lecture-einfuehrung-in-die-numerik/einf%c3%bchrung-in-die-numerik-skript-20220717.pdf
https://scoop.iwr.uni-heidelberg.de/teaching/2022ss/lecture-einfuehrung-in-die-numerik/einf%c3%bchrung-in-die-numerik-skript-20220717.pdf
https://scoop.iwr.uni-heidelberg.de/teaching/2022ss/lecture-einfuehrung-in-die-numerik/einf%c3%bchrung-in-die-numerik-skript-20220717.pdf
https://sip.math.uni-heidelberg.de/vl/wt1-ss21/src/Skript-WT1-SS21-%C2%A701-%C2%A719.pdf
https://sip.math.uni-heidelberg.de/vl/wt1-ss21/src/Skript-WT1-SS21-%C2%A701-%C2%A719.pdf

5 NOTATION

s 2 g =

Eo= o< =

chosen action

space of all actions

disturbance that may occur

space of all disturbances

current state

space of all states

Identity matrix

Expected value

discount factor

policy that determines the action

stationary cost vector for a given policy

transition matrix

total cost vector for a given policy

mapping for minimal expected cost given a cost vector |
mapping for expected cost given a policyy and cost vector J,
Krylov subspace

orthognormal basis of the Krylov subspace

upper Hessenberg matrix

40

	Introduction
	Markov Chains
	The Basic Problem
	The Dynamic Programming Algorithm
	Discounted Problems on the Infinite Horizon

	Markov Decision Processes
	The Model
	Some Examples for MDPs
	An Introductory Example
	Example: Transportation Problem
	Example: The Studying Problem

	Policy Iteration
	Applying Policy Iteration
	Convergence of Policy Iteration

	Methods for Solving Linear Systems
	Gauss-Seidel and Jacobi Method
	Richardson Iteration
	Krylov Subspace Methods
	Arnoldi's Method
	The GMRES Algorithm
	Krylov Subspace Methods on MDPs

	Conclusion
	Notation

