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Abstract. We consider linear programming problems where some of the problem data are subject

to uncertainty. Such problems often times occur in operations research, for instance in the context

of uncertain customer demands. We interpret uncertainty as randomness with a given probability

distribution. This approach is called stochastic linear programming. We look for special cases where

random problem data leads to (generalized) convex optimization problems. Then we develop mathe-

matical theory as well as optimization algorithms to solve the resulting problems. We discuss convex

duality theory and interior-point methods, a cutting plane method as well as a decomposition method

for large-scale linear programming.

Zusammenfassung. Wir betrachten lineare Optimierungsprobleme, bei denen Teile der Eingabedaten

Unsicherheiten unterliegen. Probleme dieser Art treten häufig im Bereich des Operations Researchs auf,

beispielsweise im Zusammenhang mit unsicherer Kundennachfrage. Wir interpretieren Unsicherheit

als Zufall, der einer gegebenen Wahrscheinlichkeitsverteilung folgt. Dieser Ansatz wird stochastische

lineare Optimierung genannt. Wir untersuchen Spezialfälle, in denen zufällige Problemdaten zu

(verallgemeinert) konvexen Optimierungsproblemen führen. Dann entwickeln wir die zugehörige

mathematische Theorie sowie Optimierungsverfahren, um die resultierenden Probleme zu lösen. Wir

diskutieren konvexe Dualitätstheorie und Innere-Punkte-Verfahren, ein Schnittebenverfahren sowie

eine Zerlegungsmethode für sehr große lineare Optimierungsprobleme.



Contents

1 Introduction 1

2 Single-stage models 4
2.1 Single versus joint chance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Single chance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Multivariate normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Second order cone programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Lagrange duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Duality theory for second order cone programs . . . . . . . . . . . . . . . . . 14

2.2.5 Interior-point methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Example: Random objective function . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Joint chance constraints - Random right hand side . . . . . . . . . . . . . . . . . . . . 23

2.3.1 A cutting plane method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Application of the supporting hyperplane method to joint chance constraint

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Example: Transport problem with random demands . . . . . . . . . . . . . . 39

2.4 Joint chance constraints - The general case . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Finite discrete distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Approximation by discretization . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.3 Approximation by single chance constraints . . . . . . . . . . . . . . . . . . . 44

2.4.4 Example: Production planning of wind energy . . . . . . . . . . . . . . . . . . 45

3 Two-stage models 46
3.1 Finite discrete distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Benders decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Motivation of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Formal derivation of the method . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Application to two-stage models . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Example: Transport problem with random demands revisited . . . . . . . . . . . . . . 56



1 Introduction

One of the most important optimization models in practice is linear programming. We consider a

linear program of the form

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑇𝑥 ≥ ℎ

𝑥 ≥ 0

(LP)

where 𝐴 ∈ R𝑚×𝑛,𝑇 ∈ R𝑠×𝑛, 𝑏 ∈ R𝑚, ℎ ∈ R𝑠 and 𝑐 ∈ R𝑛 . A traditional approach assumes that the

problem data (𝐴,𝑇 ,𝑏, ℎ, 𝑐) is deterministic.

However, in reality this assumption often times does not hold. If (LP) contains for instance customer

demands, weather conditions, or even measurements of physical systems, they are usually subject to

uncertainty. Ignoring those uncertainties can lead to solutions that turn out to be highly infeasible for

the actual data and are hence not useful in practice.

Therefore, in this thesis we will consider a generalization of (LP): We still assume (𝐴,𝑏, 𝑐) to be

deterministic but we consider

(𝑇,ℎ) ≔ (𝑇 (𝜉), ℎ(𝜉))

as uncertain data depending on an uncertainty vector 𝜉 ∈ R𝑟 . The goal of this thesis is to review a

way how to deal with uncertainty in optimization problems. Therefore, several approaches from the

literature are discussed and related to each other.

One way to model uncertainty is to define an uncertainty set𝑈 ⊂ R𝑟 where 𝜉 belongs to and to require

that the uncertain constraints hold for all values of 𝜉 in this uncertainty set, i.e.

𝑇 (𝜉)𝑥 ≥ ℎ(𝜉) ∀𝜉 ∈ 𝑈 .

This is called robust programming. Of course, it is a very conservative approach. It is appropriate in

situations where a violation of the uncertain constraints cannot be tolerated. These include safety

critical applications. Moreover, if the underlying problem is a linear program this approach is com-

putationally tractable for a wide range of uncertainty sets. Nevertheless, we will not pursue robust

programming further in this thesis. A detailed treatment of this topic is given in Ben-Tal, Ghaoui, and

Nemirovski 2009.

An alternative to model uncertainty is to assume that the problem data are random variables following

a known probability distribution. We will exclusively pursue this approach here. Therefore we regard

𝑇 (𝜉) and ℎ(𝜉) as random data depending on a random vector 𝜉 with known probability distribution.

Max Jungmann Bachelor Thesis 1



Convex Techniques in SLP Contents

We assume that the distribution of 𝜉 does not depend on our decision 𝑥 . A naive way to incorporate

randomness is to replace the random data by their expectations 𝑇,ℎ. This leads to the problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑇𝑥 ≥ ℎ

𝑥 ≥ 0.

However, optimal solutions to this problem might violate the uncertain constraints very likely after

the realization of the randomness. As an example we consider the random constraint

𝑥1 ≥ 𝜉

where 𝜉 follows a two-point distribution

P(𝜉 = 10) = 0.9 = 1 − P(𝜉 = 0) .

Replacing 𝜉 by its expectation leads to the constraint

𝑥1 ≥ 𝜉 = 9. (1.1)

If 𝑥1 is associated with costs, it may hold 𝑥1 = 9 for an optimal solution. But this means that the

constraint would be violated with a 90% probability which is definitely not desirable. We rather want

a statement like

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) ≥ 0.95

to ensure that the constraints are satisfied with a high probability. In Chapter 2 we will consider so

called single-stage models dealing with such constraints.

In some situations (e.g. in the presence of a legal commitment) even a high probabilistic guarantee

may not be sufficient. However, it might be possible to take a recourse action after the realization of

the randomness to compensate for a violation ℎ(𝜉) −𝑇 (𝜉)𝑥 of the constraint 𝑇 (𝜉)𝑥 = ℎ(𝜉). Therefore,

after a solution 𝑥 is computed and a realization of the randomness took place, we solve a second stage

problem

minimize 𝑞⊤𝑦 where 𝑦 ∈ R𝑘

subject to 𝑊𝑦 = ℎ −𝑇𝑥

𝑦 ≥ 0

with𝑊 ∈ R𝑠×𝑘 , 𝑞 ∈ R𝑘 to compensate for this deficiency with minimal cost. The goal is to determine

𝑥 that is in a certain sense optimal also with respect to the second stage problem. Models of this type

are called two-stage models and are the topic of Chapter 3. They can also be generalized to models

with multiple stages. However, such multi-stage models are beyond the scope of this thesis. Further

information can be found in Kall and Mayer 2010, section 3.3.

This thesis focuses mainly on the optimization parts of stochastic programming rather than the

stochastic ones. In fact, we will use only basic tools from probability theory. The most important one is

the multivariate normal distribution which we introduce in Section 2.2.1. Our starting point will always

be the linear program (LP). Accordingly, we exclusively deal with stochastic linear programming

(SLP) problems. Moreover, we restrict ourselves to convex optimization techniques. That is, we look
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for special cases where SLP models lead to convex optimization problems. In particular, we leave

out the very interesting field of stochastic integer programming. An excellent introduction to linear

programming and convex optimization can be found in Herzog 2023, chapter 2 and 3. Methodically,

Section 2.2 deals with convex duality theory and is rather theoretical. Section 2.3 and Chapter 3,

however, are about algorithms (a cutting plane method and a decomposition method) to solve two

specific kinds of stochastic programming problems.
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2 Single-stage models

This chapter is about stochastic programming problems with only one decision stage. A decison 𝑥

is made ”here and now” and afterwards the realization of the randomness occurs. Unlike two-stage

models, a recourse action to compensate an unadvantageous decision cannot be taken. Single-stage

models are appropriate if a rare violation of the constraints is permitted. Examples include customer

experience in service systems. Here it is usually sufficient if the customer experience is good in many

cases but some negative customer experience can be accepted.

Single-stage models deal with constraints where the input data is not deterministic but follows a

known probability distribution depending on a random vector 𝜉 . We consider constraints of the form

𝑇 (𝜉)𝑥 ≥ ℎ(𝜉) (2.1)

in this model type. Here 𝑇 (𝜉) ∈ R𝑠×𝑛 is a random matrix and ℎ(𝜉) ∈ R𝑠 is a random vector, both

depending on the random vector 𝜉 ∈ R𝑟 . We assume that the distribution of 𝜉 does not depend on our

decision 𝑥 .

It is important to observe that the meaning of this constraints is not well defined since they contain

unknown parameters. Intuitively, a vector 𝑥 should be chosen such that this constraints have some

”advantageous” properties. Thus, we first have to formalize the term ”advantageous” in order to be

able to incorporate these constraints into an optimization problem. There are many quality measures

to do so (see Kall and Mayer 2010, p.73-82) and we will outline some of them below:

1. The simplest quality measure consists of taking the expectation, i.e. replacing constraint (2.1) by

E[𝑇 (𝜉)]𝑥 ≥ E[ℎ(𝜉)],

which results in a linear constraint. However, this is quite a poor approach as the entire

information about the probability distribution is collapsed into exactly one point and the actual

constraint might be violated in most cases.

2. Another approach is to bound the expected violation of the individual constraints, given that

the constraints are violated, i.e.

−E[𝑡𝑖 (𝜉)⊤𝑥 − ℎ𝑖 (𝜉) | 𝑡𝑖 (𝜉)⊤𝑥 − ℎ𝑖 (𝜉) < 0] ≤ 𝑑𝑖 .

Here the random vector 𝑡𝑖 (𝜉) ∈ R𝑛 denotes the i
th

row of 𝑇 (𝜉), ℎ𝑖 (𝜉) ∈ R denotes the i
th

entry

of ℎ(𝜉), and 𝑑𝑖 , 𝑖 = 1, ..., 𝑠, are some nonnegative numbers.

3. A worst case interpretation of the constraint (2.1) is given by

𝑇 (𝜉)𝑥 ≥ ℎ(𝜉) ∀𝜉 ∈ supp(𝜉),
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where supp(𝜉) ⊂ R𝑟 denotes the smallest closed set such that P(𝜉 ∈ supp(𝜉)) = 1. This approach

is also called robust optimization.

4. The possibly most natural idea of dealing with random constraints is by prescribing a (high)

probability level 𝛼 with which the constraints have to be satisfied, i.e.

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) ≥ 𝛼.

Constraints of this type are called probabilistic or chance constraints. The rest of this chapter

will exclusively deal with these chance constraints.

2.1 Single versus joint chance constraints

There are two different kinds of chance constraints which we will introduce and motivate in the

following: Single chance constraints and joint chance constraints. Therefore, we consider the following

two problems:

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0 (SCCP)

P(𝑡𝑖 (𝜉)⊤𝑥 ≥ ℎ𝑖 (𝜉)) ≥ 𝛼𝑖 , 𝑖 = 1, ..., 𝑠,

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0 (JCCP)

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) ≥ 𝛼.

Here 𝐴 ∈ R𝑚×𝑛
, 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 are deterministic. 𝑇 (𝜉) ∈ R𝑠×𝑛 is a random matrix and ℎ(𝜉) ∈ R𝑠 is a

random vector, both depending on the random vector 𝜉 ∈ R𝑟 . The random vector 𝑡𝑖 (𝜉) ∈ R𝑛 denotes

the 𝑖th row of 𝑇 (𝜉) and ℎ𝑖 (𝜉) ∈ R denotes the 𝑖th entry of ℎ(𝜉). 𝛼, 𝛼𝑖 ∈ [0, 1] are given probabilities.

The first optimization problem (SCCP) is called an individual or single chance constraint problem as each

probability function contains exactly one (scalar) inequality. Contrary to that, in the second problem

(JCCP) all the uncertain constraints are contained in exactly one probability function. Accordingly,

this is called a joint chance constraint problem.

From the modeling point of view joint chance constraints are more desirable than single chance

constraints. The reason is that a joint chance constraint ensures that all the constraints are satisfied

simultaneously with a given (high) probabillity level 𝛼 . In contrast to that, a set of single chance

constraints only ensures that each constraint individually is satisfied with a given probability 𝛼𝑖 but

makes no direct statement about the uncertain constraints as a whole. In applications one typically

wants to ensure that all the constraints are satisfied with a high probability and statements about the
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Convex Techniques in SLP 2.2 Single chance constraints

individual constraints are not of primary interest. However, in Section 2.2.6 we present a problem

where an immediate use of single chance constraints is reasonable.

Unfortunately, from an algorithmic point of view the situation is exactly the opposite: A single chance

constraint is way better to deal with algorithmically than a joint chance constraint. Nevertheless, there

are two major difficulties when dealing with chance constraints.

1. In general, the evaluation of probability functions is very difficult if not impossible at all. For

instance, for a continous distribution one has to compute an integral over the density function f,

i.e. for 𝐴 ⊂ R𝑟

P(𝐴) =
∫
𝐴

𝑓 (𝑥) 𝑑𝑥,

which is numerically intractable in high dimensions. The only available remedy is to use Monte

Carlo methods which we will briefly discuss in Section 2.3.2.

2. In general, chance constraints do not define convex sets which makes optimization over them a

highly problematic task. For instance, we consider a two point distribution

P(𝜉 = 1) = 1

2

= P(𝜉 = −1)

and the constraint

P(𝜉𝑥 ≥ 1) ≥ 0.5.

Hence, 𝑥 = 1 and 𝑦 = −1 are feasible for this constraint but 0 = 0.5 · 𝑥 + 0.5 · 𝑦 is not.

The rest of this chapter is divided in three parts. In Section 2.2 we deal with single chance constraints.

Section 2.3 is about joint chance constraints where only the right hand side ℎ(𝜉) is random. Section 2.4

considers joint chance constraints in full generality.

2.2 Single chance constraints

The motivation to consider single chance constraints is twofold:

1. First, there are important special cases that allow for a closed analytical expression and efficient

algorithms to deal with them.

2. Second, they provide a possibility to approximate joint chance constraints as we show in

Section 2.4.3.

The presentation starts with the aforementioned special case: A single chance constraint with multi-

variate normal distribution, i.e.

P(𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) ≥ 0) ≥ 𝛼 with (𝑡 (𝜉), ℎ(𝜉)) ∼ N (𝜇, Σ) . (2.2)

To increase readability we omit the indices from (SCCP). The notation (𝑡 (𝜉), ℎ(𝜉)) ∼ N (𝜇, Σ) means

that (𝑡 (𝜉), ℎ(𝜉)) follows a joint multivariate normal distribution.

Max Jungmann Bachelor Thesis 6



Convex Techniques in SLP 2.2 Single chance constraints

First, we introduce the multivariate normal distribution and derive the closed form expression. After-

wards, we develop the theoretical background to solve the resulting optimization problem.

2.2.1 Multivariate normal distribution

Literature: Kall and Mayer 2010, section 2.2.3

Definition 2.1 (Multivariate normal distribution)

The random vector 𝜉 ∈ R𝑟 has a multivariate normal distribution if there exists a matrix 𝐷 ∈ R𝑟×𝑝 and a
vector 𝜇 ∈ R𝑟 such that

𝜉 = 𝐷 ˜𝜉 + 𝜇,

where the components ˜𝜉𝑖 of the random vector ˜𝜉 ∈ R𝑝 are stochastically independent with standard normal
distribution, i.e.

˜𝜉𝑖 ∼ N(0, 1) i.i.d. ∀𝑖 = 1, ..., 𝑝.

It holds:

E[𝜉] = 𝜇, Σ := Var(𝜉) = 𝐷𝐷⊤.

If Σ is positive definite (or equivalently 𝐷 has full row rank), then the multivariate normal distribution

is called nondegenerate and has the density function (see Figure 2.1) 𝑓 : R𝑟 → R with

𝑓 (𝑦) = 1√︁
(2𝜋)𝑛 · det(Σ)

· 𝑒− 1

2
(𝑦−𝜇 )⊤Σ−1 (𝑦−𝜇 ) .

In the univariate case the density function of the standard normal distribution reads

𝑓 (𝑦) = 1

√
2𝜋

𝑒−
𝑦2

2 .

The corresponding distribution function is denoted by Φ, i.e.

Φ(𝑥) ≔ P(𝜉 ≤ 𝑥) for 𝜉 ∼ N(0, 1) .

Figure 2.1: Density functions of the standard univariate and bivariate normal distribution.
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Convex Techniques in SLP 2.2 Single chance constraints

We now assume the distribution of (𝑡 (𝜉), ℎ(𝜉)) to be multivariate normal , i.e.(
𝑡 (𝜉)
ℎ(𝜉)

)
=

(
𝐷

𝑑⊤

)
˜𝜉 +

(
𝜇

𝜇𝑛+1

)
where 𝐷 ∈ R𝑛×𝑝 , 𝑑 ∈ R𝑝 , 𝜇 ∈ R𝑛, 𝜇𝑛+1 ∈ R and

˜𝜉𝑖 ∼ N(0, 1) i.i.d. ∀𝑖 = 1, ..., 𝑝.

Therefore, it holds

𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) = 𝜉⊤𝐷⊤𝑥 + 𝜇⊤𝑥 − 𝜉⊤𝑑 − 𝜇𝑛+1

= 𝜉⊤(𝐷⊤𝑥 − 𝑑) + 𝜇⊤𝑥 − 𝜇𝑛+1.

It is well known that the sum of two independent random variables with normal distribution is again

normally distributed, i.e. for 𝜉1 ∼ N(0, 1), 𝜉2 ∼ N(0, 1) it holds

(𝜎1𝜉1 + 𝜇1) + (𝜎2𝜉2 + 𝜇2) ∼ N (𝜇1 + 𝜇2, 𝜎
2

1
+ 𝜎2

2
).

It follows that the random variable 𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) is univariate normal distributed with

E[𝑡 (𝜉)⊤𝑥 − ℎ(𝜉)] = 𝜇⊤𝑥 − 𝜇𝑛+1 and Var(𝑡 (𝜉)⊤𝑥 − ℎ(𝜉)) = ∥𝐷⊤𝑥 − 𝑑 ∥2
2
.

Assuming ∥𝐷⊤𝑥 − 𝑑 ∥2 > 0 and applying standardization implies that

𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) − 𝜇⊤𝑥 + 𝜇𝑛+1
∥𝐷⊤𝑥 − 𝑑 ∥2

∼ N(0, 1) . (2.3)

Hence, we can express the left hand side of the single chance constraint (2.2) as

P
(
𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) ≥ 0

)
= 1 − P

(
𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) ≤ 0

)
= 1 − P

(
𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) − 𝜇⊤𝑥 + 𝜇𝑛+1

∥𝐷⊤𝑥 − 𝑑 ∥2
≤ −𝜇⊤𝑥 + 𝜇𝑛+1

∥𝐷⊤𝑥 − 𝑑 ∥2

)
= 1 − Φ

(
−𝜇⊤𝑥 + 𝜇𝑛+1
∥𝐷⊤𝑥 − 𝑑 ∥2

)
= Φ

(
𝜇⊤𝑥 − 𝜇𝑛+1
∥𝐷⊤𝑥 − 𝑑 ∥2

)
where in the last equation we use the symmetry Φ(𝑥) = 1 − Φ(−𝑥) of the standard normal distribu-

tion.

Consequently, we can write the single chance constraint (2.2) as

P (𝑡 (𝜉)𝑥 − ℎ(𝜉) ≥ 0) ≥ 𝛼 ⇐⇒ Φ

(
𝜇⊤𝑥 − 𝜇𝑛+1
∥𝐷⊤𝑥 − 𝑑 ∥2

)
≥ 𝛼

⇐⇒ Φ−1(𝛼)∥𝐷⊤𝑥 − 𝑑 ∥2 − 𝜇⊤𝑥 ≤ −𝜇𝑛+1

where Φ−1(𝛼) denotes the 𝛼-quantil of the standard univariate normal distribution. For 𝛼 ≥ 0.5 it

holds Φ−1(𝛼) ≥ 0 and as norms are convex and the remaining terms are linear, the constraint function

is a convex function and thus defines a convex set for 𝛼 ≥ 0.5.
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Convex Techniques in SLP 2.2 Single chance constraints

For ∥𝐷⊤𝑥 − 𝑑 ∥2 = 0 this equivalence is also true since

0 ≤ 𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) = 𝜇⊤𝑥 − 𝜇𝑛+1

⇐⇒ −𝜇⊤𝑥 ≤ −𝜇𝑛+1.

Hence, we derived the following theorem.

Theorem 2.2 (from Kall and Mayer 2010, theorem 2.5)

Let (𝑡 (𝜉), ℎ(𝜉)) ∈ R𝑛+1 be jointly multivariate normal distributed. Then the corresponding single chance
constraint

P (𝑡 (𝜉)𝑥 − ℎ(𝜉) ≥ 0) ≥ 𝛼 (2.4)

is equivalent to the constraint

Φ−1(𝛼)∥𝐷⊤𝑥 − 𝑑 ∥2 − 𝜇⊤𝑥 ≤ −𝜇𝑛+1.

Therefore, for 𝛼 ≥ 0.5 the feasible set{
𝑥
�� P (𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) ≥ 0

)
≥ 𝛼

}
of (2.4) is convex.

Remark 2.3
The result that the value of 𝛼 matters for the convexity of the single chance constraint is quite remarkable
as it isn’t obvious at all that the probability level should play any role for the convexity.
This result can even be strengthened. One can show that if the multivariate normal distribution is
nondegenerate and the feasible set of the constraint is not R𝑛 (𝑛 ≥ 2), then for 𝛼 < 0.5 this constraint does
not define a convex set. For a proof see Kall and Mayer 2010, theorem 2.6.

Remark 2.4
The above derivation does not only work for the normal distribution. The critical step is (2.3) where a
statement about the sum of independent normally distributed random variables is made, namely that the
sum is again normally distributed.
Distributions with the property that the sum of independent random variables with this distribution
follows again this distribution are called stable distributions. There are only a few stable distributions
with a closed form analytical expression. The most important one is definitely the univariate normal
distribution. Another example ist the Cauchy distribution which allows for a very similar formulation of
the corresponding single chance constraint. For details see Kall and Mayer 2010, p.106-111.

Remark 2.5
For most distributions there is no closed analytical expression of the corresponding single chance constraint.
There are, however, several approximation strategies for single chance constraints. One possibility to
approximate single chance constraints is presented in Ben-Tal, Ghaoui, and Nemirovski 2009, chapter 2.
A good overview of approximation strategies for single chance constraints is given in Geng and Xi 2019,
section 7.3.
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2.2.2 Second order cone programs

We just showed that the single chance constraint

P(𝑡 (𝜉)⊤𝑥 − ℎ(𝜉) ≥ 0) ≥ 𝛼 with (𝑡 (𝜉), ℎ(𝜉)) ∼ N (𝜇, Σ)
is equivalent to the constraint

Φ−1(𝛼)∥𝐷⊤𝑥 − 𝑑 ∥2 − 𝜇⊤𝑥 ≤ −𝜇𝑛+1. (2.5)

Constraints of this type are called second order cone constraints (SOCC). The standard second order

cone is defined as

𝐶 ≔

{(
𝑥

𝑡

) ���� 𝑥 ∈ R𝑛−1, 𝑡 ∈ R, ∥𝑥 ∥2 ≤ 𝑡

}
.

It is also called the Lorentz, quadratic or ice-cream cone, see Figure 2.2. We note that 𝐶 is a convex

set.

Figure 2.2: Second order cone in 3 dimensions

A general SOCC has the form

∥𝐷𝑥 + 𝑑 ∥2 ≤ 𝑒⊤𝑥 + 𝑓

where 𝐷 ∈ R𝑚1×𝑛, 𝑑 ∈ R𝑚1, 𝑒 ∈ R𝑛 and 𝑓 ∈ R. This is equivalent to

(𝐷𝑥 + 𝑑, 𝑒⊤𝑥 + 𝑓 ) ∈ 𝐶.

Hence, the feasible set of a SOCC is convex as the inverse image of the convex cone 𝐶 under an affine

linear mapping. For Φ−1(𝛼) ≥ 0 the constraint (2.5) fits into this general framework.

A second order cone program (SOCP) has the form

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 ≤ 𝑒⊤𝑖 𝑥 + 𝑓𝑖 , 𝑖 = 1, ..., 𝑠 .
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where 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛 and 𝐷𝑖 ∈ R𝑚𝑖×𝑛, 𝑑𝑖 ∈ R𝑚𝑖 , 𝑒𝑖 ∈ R𝑛 and 𝑓𝑖 ∈ R for 𝑖 = 1, ..., 𝑠 . Therefore,

it is a convex optimization problem. We observe that the single chance constraint problem (SCCP)

can be represented as a SOCP if the coefficients of the single chance constraints are all multivariate

normal distributed. Setting 𝐷𝑖 = 0, 𝑑𝑖 = 0, 𝑖 = 1, ..., 𝑠 shows that SOCPs contain linear programs as a

special case. For an overview about SOCPs see Lobo, Vandenberghe, Boyd, and Lebret 1998.

Next, we cover the theoretical background to develop optimization algorithms for solving SOCPs.

Therefore, we develop the duality theory for SOCPs. First, we derive a general statement about duality

in convex optimization in Section 2.2.3. Afterwards, we apply it to the special case of SOCPs in

Section 2.2.4. Finally, in Section 2.2.5 we briefly show how it can be used to build solution methods for

SOCPs.

2.2.3 Lagrange duality

Literature: Geiger and Kanzow 2002, chapter 6.2

Now we introduce the concept of Lagrange duality. We consider the nonlinear program

minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛

subject to 𝑔𝑖 (𝑥) ≤ 0 for 𝑖 = 1, ..., 𝑠

ℎ 𝑗 (𝑥) = 0 for 𝑗 = 1, ...,𝑚.

(𝑃 )

It becomes the primal problem soon and we denote its optimal value as opt(P). Here 𝑓 : R𝑛 → R,

𝑔 : R𝑛 → R𝑠 and ℎ : R𝑛 → R𝑚 are given (not necessarily convex) functions.

For 𝜆 ∈ R𝑠 , 𝜇 ∈ R𝑚 the corresponding Lagrange function is

𝐿(𝑥, 𝜆, 𝜇) ≔ 𝑓 (𝑥) +
𝑠∑︁
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥) +
𝑚∑︁
𝑗=1

𝜇 𝑗ℎ 𝑗 (𝑥).

Let 𝑥 be feasible and 𝜆 ≥ 0. Then it holds

𝐿(𝑥, 𝜆, 𝜇) = 𝑓 (𝑥) +
𝑠∑︁
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥)︸  ︷︷  ︸
≤0

+
𝑚∑︁
𝑗=1

𝜇 𝑗ℎ 𝑗 (𝑥)︸  ︷︷  ︸
=0

≤ 𝑓 (𝑥) .

This means that 𝐿(𝑥, 𝜆, 𝜇) is a lower bound for 𝑓 (𝑥) for every feasible 𝑥 and every 𝜆 ≥ 0. Hence,

minimizing 𝐿(𝑥, 𝜆, 𝜇) with respect to 𝑥 for fixed 𝜇 and fixed 𝜆 ≥ 0 gives a lower bound on the optimal

value of P, i.e.

inf

𝑥∈R𝑛
𝐿(𝑥, 𝜆, 𝜇) ≤ opt(P) ∀𝜇 ∈ R𝑚 ∀𝜆 ≥ 0.

The Lagrange dual problem is about finding the best such lower bound. Defining

𝑞(𝜆, 𝜇) ≔ inf

𝑥∈R𝑛
𝐿(𝑥, 𝜆, 𝜇),

Max Jungmann Bachelor Thesis 11



Convex Techniques in SLP 2.2 Single chance constraints

the dual problem reads

maximize 𝑞(𝜆, 𝜇) where 𝜆 ∈ R𝑠 , 𝜇 ∈ R𝑚

subject to 𝜆 ≥ 0.
(𝐷)

We denote its optimal value by opt(D).

Hence, we derived the weak duality theorem:

Theorem 2.6 (Weak duality)

For the optimal values of the primal problem (𝑃 ) and the dual problem (𝐷) it holds

opt(D) ≤ opt(P).

In linear programming the primal and dual optimal value always coincide (except for the case of

primal infeasibility and dual infeasibility). This is called strong duality. However, contrary to linear

programming, strong duality does not always hold as the following example shows.

Example 2.7 (from Kummer 2011, example 3.4.)

We consider the SOCP (in particular a convex optimization problem)

minimize 𝑦 where (𝑥, 𝑦) ∈ R2

subject to
√︁
𝑥2 + 𝑦2 − 𝑥 ≤ 0.

(2.6)

𝑦 = 0 holds for every feasible point (𝑥, 𝑦) . Hence, the optimal value of (2.6) is 0.

Now we consider the Lagrange dual problem to (2.6). It reads

maximize 𝑞(𝜆) where 𝜆 ∈ R
subject to 𝜆 ≥ 0

(2.7)

with
𝑞(𝜆) ≔ inf

𝑥,𝑦∈R2
𝐿(𝑥, 𝑦, 𝜆) = inf

𝑥,𝑦∈R2
𝑦 + 𝜆(

√︁
𝑥2 + 𝑦2 − 𝑥) .

Let 𝜆 ≥ 0, 𝑦 be fixed. Then we find (possibly big) 𝑥 such that

𝜆(
√︁
𝑥2 + 𝑦2 − 𝑥) < 1.

Hence 𝐿(𝑥, 𝑦, 𝜆) < 𝑦 + 1. 𝑦 → −∞ shows 𝑞(𝜆) = −∞. This implies that also the optimal value of (2.7) is
−∞. Thus, strong duality does not hold in this example as −∞ < 0.

Remark 2.8
Lagrange duality can be seen as a generalization of linear programming duality. One can show (see Geiger
and Kanzow 2002, Example 6.8) that the Lagrange dual of a linear program coincides with the well known
dual linear program.
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Remark 2.9
The function 𝑞(𝜆, 𝜇) = inf𝑥 𝐿(𝑥, 𝜆, 𝜇) is always concave. This holds as 𝐿 is a linear function with respect
to 𝜆 and 𝜇 and the infimum over linear functions is a concave function. Moreover it can be shown that the
domain of 𝑞 is convex (see Geiger and Kanzow 2002, Lemma 6.11) and hence the Lagrange dual problem is
always a concave maximization problem (also if (𝑃 ) was not convex!).

As shown in Example 2.7, convexity is not sufficient for strong duality to hold. But convexity and the

existence of a Slater point is. We will show this in the following theorem.

Theorem 2.10 (Strong duality, from Geiger and Kanzow 2002, theorem 6.13)

Let the functions 𝑓 : R𝑛 → R and 𝑔𝑖 : R𝑛 → R , 𝑖 = 1, ..., 𝑠, from (𝑃 ) be convex. Moreover let the functions
ℎ 𝑗 : R

𝑛 → R , 𝑗 = 1, ...,𝑚, be affine linear, i.e. ℎ 𝑗 (𝑥) = 𝑎⊤𝑗 𝑥 + 𝑏 𝑗 for some 𝑎 𝑗 ∈ R𝑛, 𝑏 𝑗 ∈ R.
If opt(P) is finite and there is a Slater point 𝑥 , i.e. a point 𝑥 such that

𝑔𝑖 (𝑥) < 0 ∀𝑖 = 1, ..., 𝑠 and ℎ 𝑗 (𝑥) = 0 ∀𝑗 = 1, ...,𝑚 ,

then the dual problem (𝐷) is solvable and it holds

opt(D) = opt(P).

Proof. First we additionally assume that the vectors 𝑎 𝑗 , 𝑗 = 1, ...,𝑚, are linear independent.

We consider the set

𝑄 ≔ {(𝑦, 𝑧,𝑤) ∈ R𝑠 × R𝑚 × R | ∃𝑥 ∈ R𝑛 𝑠 .𝑡 . 𝑔(𝑥) ≤ 𝑦,ℎ(𝑥) = 𝑧, 𝑓 (𝑥) ≤ 𝑤}.

Using the convexity of f and g as well as the affine linearity of h one can show that Q is convex.

Moreover Q is nonempty.

Next we consider the point (0, 0, opt(P)) ∈ R𝑠 × R𝑚 × R. It holds (0, 0, opt(P)) ∉ int(Q). Otherwise

there is 𝜖 > 0 such that (0, 0, opt(P) − 𝜖) ∈ 𝑄 which contradicts the definition of opt(P).

A nonempty convex set and a point that does not belong to the interior of the set can be separated by a

hyperplane (see Geiger and Kanzow 2002, Lemma 2.21). Hence, there is 0 ≠ (𝜆∗, 𝜇∗, 𝛾∗) ∈ R𝑠 ×R𝑚 ×R,

such that

𝛾∗opt(P) ≤ (𝜆∗)⊤𝑦 + (𝜇∗)⊤𝑧 + 𝛾∗𝑤 ∀(𝑦, 𝑧,𝑤) ∈ 𝑄. (2.8)

Since for (𝑦, 𝑧,𝑤) ∈ 𝑄 and 𝜏 > 0 also (𝑦, 𝑧,𝑤 + 𝜏) ∈ 𝑄 and opt(P) is finite, it holds 𝛾∗ ≥ 0. The same

argument applied to 𝑦𝑖 yields 𝜆∗𝑖 ≥ 0 , 𝑖 = 1, ..., 𝑠 .

In the remaining part of the proof we show that indeed 𝛾∗ > 0 holds and that this implies strong duality.

So at first we assume by contradiction that𝛾∗ = 0. Then (2.8) reduces with (𝑦, 𝑧,𝑤) = (𝑔(𝑥), ℎ(𝑥), 𝑓 (𝑥))
to

0 ≤ (𝜆∗)⊤𝑔(𝑥) + (𝜇∗)⊤ℎ(𝑥) ∀𝑥 ∈ R𝑛 . (2.9)

In particular for the Slater point 𝑥 it follows 𝜆∗ = 0 due to 𝜆∗ ≥ 0, 𝑔(𝑥) < 0 and ℎ(𝑥) = 0.
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Using (2.9) and ℎ(𝑥) = 0 leads to

0 ≤ (𝜇∗)⊤(ℎ(𝑥) − ℎ(𝑥)) =
( 𝑚∑︁
𝑗=1

𝜇∗𝑗𝑎 𝑗

)⊤
(𝑥 − 𝑥) ∀𝑥 ∈ R𝑛 .

Considering

𝑥 ≔ 𝑥 ± 𝑒𝑘

for a unit vector 𝑒𝑘 ≔ (0, ...0, 1, 0, ...0)⊤ leads to

0 ≤ ±
( 𝑚∑︁
𝑗=1

𝜇∗𝑗𝑎 𝑗

)
𝑘

for 𝑘 = 1, ..., 𝑛,

and hence
𝑚∑︁
𝑗=1

𝜇∗𝑗𝑎 𝑗 = 0.

The assumed linear independency of the𝑎 𝑗 implies 𝜇∗ = 0. Thus, (𝜆∗, 𝜇∗, 𝛾∗) = 0which is a contradiction.

Hence, 𝛾∗ > 0.

W.l.o.g. we can assume 𝛾∗ = 1. Then (2.8) with (𝑦, 𝑧,𝑤) = (𝑔(𝑥), ℎ(𝑥), 𝑓 (𝑥)) leads to

opt(P) ≤ 𝑓 (𝑥) + (𝜆∗)⊤𝑔(𝑥) + (𝜇∗)⊤ℎ(𝑥) ∀𝑥 ∈ R𝑛 . (2.10)

𝜆∗ ≥ 0 implies

opt(P) ≤ inf

𝑥
𝐿(𝑥, 𝜆∗, 𝜇∗) ≤ opt(D). (2.11)

By Theorem 2.6 this inequalities have to be equalities. Hence, (𝜆∗, 𝜇∗) is a optimal solution to the dual

problem and opt(P) = opt(D).

Now we consider the case of linear dependent 𝑎 𝑗 , 𝑗 = 1, ...,𝑚. Then some equalities with indices 𝑗 ∈ 𝐽

of the system

𝑎⊤𝑗 𝑥 = 𝑏 𝑗 , 𝑗 = 1, ...,𝑚

can be expressed by the remaining ones. For the left hand side this holds as the 𝑎 𝑗 are linear dependent.

For the right hand side this holds as 𝑥 is a feasible point for this system.

Removing those redundant equalities leads to an equivalent problem where the above proof can be

applied. Extending (2.10) by 𝜇 𝑗ℎ 𝑗 for 𝑗 ∈ 𝐽 and setting 𝜇∗𝑗 ≔ 0 for 𝑗 ∈ 𝐽 , (2.11) holds also for the original

problem and the rest of the proof can be executed as above.

□

2.2.4 Duality theory for second order cone programs

Now we apply the general framework of Lagrange duality as introduced above to SOCPs.
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Firstly, we derive the Lagrange dual problem to the SOCP

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 ≤ 𝑒⊤𝑖 𝑥 + 𝑓𝑖 , 𝑖 = 1, ..., 𝑠 .

(SOCP)

where 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛 and 𝐷𝑖 ∈ R𝑚𝑖×𝑛, 𝑑𝑖 ∈ R𝑚𝑖 , 𝑒𝑖 ∈ R𝑛 and 𝑓𝑖 ∈ R for 𝑖 = 1, ..., 𝑠 . Secondly,

we show symmetry of SOCP duality, i.e. that the dual problem of the dual problem is again the primal

problem. Thirdly, we apply Theorem 2.10 to SOCPs. Fourthly, we derive optimality conditions.

Lagrange dual of SOCP

Literature: d’Aspremont 2023, p.33-37

We introduce auxiliary variables 𝑡𝑖 ∈ R, 𝑖 = 1, ..., 𝑠, and auxiliary vectors 𝑦𝑖 ∈ R𝑚𝑖 , 𝑖 = 1, ..., 𝑠, and write

(SOCP) as

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 − 𝑏 = 0

𝑦𝑖 − 𝐷𝑖𝑥 − 𝑑𝑖 = 0 , 𝑖 = 1, ..., 𝑠

𝑡𝑖 − 𝑒⊤𝑖 𝑥 − 𝑓𝑖 = 0 , 𝑖 = 1, ..., 𝑠

∥𝑦𝑖 ∥2 − 𝑡𝑖 ≤ 0 , 𝑖 = 1, ..., 𝑠 .

(2.12)

Then for 𝜎 ∈ R𝑚 , 𝜈𝑖 ∈ R𝑚𝑖 , 𝜇𝑖 ∈ R, 𝜆𝑖 ∈ R, 𝑖 = 1, ..., 𝑠, the Lagrange function reads

𝐿(𝑥, 𝑦, 𝑡, 𝜎, 𝜈, 𝜇, 𝜆) = 𝑐⊤𝑥 + 𝜎⊤(𝐴𝑥 − 𝑏) +
𝑠∑︁
𝑖=1

𝜈⊤𝑖 (𝑦𝑖 − 𝐷𝑖𝑥 − 𝑑𝑖)

+
𝑠∑︁
𝑖=1

𝜇𝑖 (𝑡𝑖 − 𝑒⊤𝑖 𝑥 − 𝑓𝑖) +
𝑠∑︁
𝑖=1

𝜆𝑖 (∥𝑦𝑖 ∥2 − 𝑡𝑖)

= (𝑐 +𝐴⊤𝜎 −
𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜇𝑖𝑒𝑖))⊤ 𝑥 +

𝑠∑︁
𝑖=1

(𝜇𝑖 − 𝜆𝑖)𝑡𝑖

+
𝑠∑︁
𝑖=1

𝜈⊤𝑖 𝑦𝑖 + 𝜆𝑖 ∥𝑦𝑖 ∥2 −
𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜇𝑖 𝑓𝑖) − 𝜎⊤𝑏. (2.13)

We recall the definition of the Lagrange dual problem

maximize 𝑞(𝜎, 𝜈, 𝜇, 𝜆) where 𝜎 ∈ R𝑚, 𝜈𝑖 ∈ R𝑚𝑖 , 𝑖 = 1, ..., 𝑠, 𝜇 ∈ R𝑠 , 𝜆 ∈ R𝑠

subject to 𝜆 ≥ 0

with

𝑞(𝜎, 𝜈, 𝜇, 𝜆) ≔ inf

𝑥,𝑦,𝑡 ∈ (R𝑛×R
∑𝑠
𝑖=1

𝑚𝑖 ×R𝑠 )
𝐿(𝑥, 𝑦, 𝑡, 𝜎, 𝜈, 𝜇, 𝜆) .
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We first determine the domain of 𝑞(𝜎, 𝜈, 𝜇, 𝜆), i.e. where 𝑞(𝜎, 𝜈, 𝜇, 𝜆) > −∞ holds. We see from (2.13)

that

𝑐 +𝐴⊤𝜎 −
𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜇𝑖𝑒𝑖) = 0,

𝜇𝑖 − 𝜆𝑖 = 0 ∀𝑖 = 1, ..., 𝑠

has to hold. This is equivalent to

𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜇𝑖𝑒𝑖) −𝐴⊤𝜎 = 𝑐, (2.15a)

𝜇𝑖 = 𝜆𝑖 ∀𝑖 = 1, ..., 𝑠 . (2.15b)

Cauchy-Schwarz inequality and 𝜆 ≥ 0 imply

inf

𝑦𝑖
𝜈⊤𝑖 𝑦𝑖 + 𝜆𝑖 ∥𝑦𝑖 ∥2 =

{
0 if ∥𝜈𝑖 ∥2 ≤ 𝜆𝑖

−∞ otherwise

.

Therefore

∥𝜈𝑖 ∥2 ≤ 𝜆𝑖 ∀𝑖 = 1, .., 𝑠 (2.16)

has to hold.

Hence, the Lagrange dual function reads

𝑞(𝜆, 𝜈, 𝜇, 𝜎) =
{
−∑𝑠

𝑖=1(𝑑⊤𝑖 𝜈𝑖 + 𝜇𝑖 𝑓𝑖) − 𝜎⊤𝑏 if (2.15𝑎), (2.15𝑏) and (2.16)
−∞ otherwise

.

Accordingly, the dual problem is

maximize −
𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜆𝑖 𝑓𝑖) − 𝜎⊤𝑏 where 𝜈𝑖 ∈ R𝑚𝑖 , 𝑖 = 1, ..., 𝑠, 𝜆 ∈ R𝑠 , 𝜎 ∈ R𝑚

subject to

𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜆𝑖𝑒𝑖) −𝐴⊤𝜎 = 𝑐

∥𝜈𝑖 ∥2 ≤ 𝜆𝑖 , 𝑖 = 1, ..., 𝑠

(Dual SOCP)

where the constraints (2.15b) are already incorporated in the problem formulation.

Symmetry of SOCP duality

Now we show that the dual of (Dual SOCP) is equivalent to (SOCP).

One way to do this is to transform (Dual SOCP) into the shape of (SOCP). That is one has to identify

the matrices and vectors 𝐴,𝑏, 𝑐, 𝐷𝑖 , 𝑑𝑖 , 𝑒𝑖 , 𝑓𝑖 in (Dual SOCP) and then can apply the above procedure.

However, writing this down might be a bit confusing.
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Therefore, we derive the Lagrange dual of (Dual SOCP) directly and show that it is equivalent to

(SOCP). First, we write (Dual SOCP) as a minimization problem:

minimize

𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜆𝑖 𝑓𝑖) + 𝜎⊤𝑏 where 𝜈𝑖 ∈ R𝑚𝑖 , 𝑖 = 1, ..., 𝑠, 𝜆 ∈ R𝑠 , 𝜎 ∈ R𝑚

subject to

𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜆𝑖𝑒𝑖) −𝐴⊤𝜎 − 𝑐 = 0

∥𝜈𝑖 ∥2 − 𝜆𝑖 ≤ 0 , 𝑖 = 1, ..., 𝑠 .

(2.17)

Believing in our claim we denote the dual variables with 𝑥 ∈ R𝑛 and 𝑡 ∈ R𝑠 . Then the Lagrange

function for (2.17) reads

𝐿(𝜎, 𝜆, 𝜈, 𝑥, 𝑡)

=

𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜆𝑖 𝑓𝑖) + 𝜎⊤𝑏 + 𝑥⊤
( 𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜆𝑖𝑒𝑖) −𝐴⊤𝜎 − 𝑐

)
+

𝑠∑︁
𝑖=1

𝑡𝑖 (∥𝜈𝑖 ∥2 − 𝜆𝑖)

= 𝜎⊤(𝑏 −𝐴𝑥) +
𝑠∑︁
𝑖=1

𝜆𝑖 (𝑓𝑖 + 𝑥⊤𝑒𝑖 − 𝑡𝑖) +
𝑠∑︁
𝑖=1

(𝑑𝑖 + 𝐷𝑖𝑥)⊤𝜈𝑖 + 𝑡𝑖 ∥𝜈𝑖 ∥2 − 𝑐⊤𝑥 . (2.18)

Here the Lagrange dual problem reads

maximize 𝑞(𝑥, 𝑡) where 𝑥 ∈ R𝑛, 𝑡 ∈ R𝑠

subject to 𝑡 ≥ 0

with

𝑞(𝑥, 𝑡) ≔ inf

𝜎,𝜆,𝜈∈ (R𝑚×R𝑠×R
∑𝑠
𝑖=1

𝑚𝑖 )
𝐿(𝜎, 𝜆, 𝜈, 𝑥, 𝑡) .

Similar as in (2.15a), (2.15b), (2.16) we obtain that 𝑞(𝑥, 𝑡) > −∞ if and only if

𝑏 −𝐴𝑥 = 0

𝑓𝑖 + 𝑥⊤𝑒𝑖 − 𝑡𝑖 = 0 ∀𝑖 = 1, .., 𝑠

∥𝑑𝑖 + 𝐷𝑖𝑥 ∥2 ≤ 𝑡𝑖 ∀𝑖 = 1, .., 𝑠 .

Hence, the first three terms in (2.18) become zero and the Lagrange dual problem of (2.17) reads

maximize − 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑡𝑖 = 𝑒⊤𝑖 𝑥 + 𝑓𝑖 ∀𝑖 = 1, .., 𝑠

∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 ≤ 𝑡𝑖 ∀𝑖 = 1, .., 𝑠 .

Eliminating the variables 𝑡𝑖 , 𝑖 = 1, ..., 𝑠 and reversing the sign in the objective shows the equivalence to

(SOCP).
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Strong duality for SOCP

In order to apply Theorem 2.10 to SOCPs we introduce the notion of strict feasibility.

Definition 2.11
(SOCP) is called strictly feasible if there is a point 𝑥 that is feasible for (SOCP) and satisfies

∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 < 𝑒⊤𝑖 𝑥 + 𝑓𝑖 ∀𝑖 = 1, ..., 𝑠 .

Definition 2.12
(Dual SOCP) is called strictly feasible if there is a point (𝜎, 𝜆, 𝜈) that is feasible for (Dual SOCP) and
satisfies

∥𝜈𝑖 ∥2 < 𝜆𝑖 ∀𝑖 = 1, ..., 𝑠 .

Now we can formulate the strong duality theorem for SOCPs. It is stated and proved in Ben-Tal,

Ghaoui, and Nemirovski 2009, p.455-457 in the context of conic programming. However, we use the

strong duality result of Lagrange duality (Theorem 2.10) for a proof here.

Theorem 2.13 (Strong duality for SOCPs)

1. If one of the problems (SOCP), (Dual SOCP) is strictly feasible and bounded, then the other problem
is solvable, and Opt(SOCP) = Opt(Dual SOCP).

2. If (SOCP) and (Dual SOCP) are both strictly feasible, then both are solvable and Opt(SOCP) =
Opt(Dual SOCP).

Proof. As norms are convex functions and SOCP duality is symmetric, statement 1 follows immediately

from Theorem 2.10.

In statement 2 Theorem 2.6 implies that the primal and dual problems are both bounded. Then statement

1 can be applied two times which finishes the proof. □

We observe that this is a very similar statement to linear programming duality although it is a bit

weaker. In linear programming it suffices that the primal problem is feasible and bounded, or that the

primal and dual problem are both feasible to ensure that the optimal values are equal and that they

are also both attained. In SOCP strictly feasible points are required. The following example illustrates

this:

Example 2.14 (from Alizadeh and Goldfarb 2002, p.25, 26)

We consider the SOCP
minimize 𝑥1 − 𝑥2 where (𝑥1, 𝑥2, 𝑥3) ∈ R3

subject to 𝑥3 = 1


 (𝑥2
𝑥3

) 



2

≤ 𝑥1.

(2.20)
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It is equivalent to
minimize 𝑥1 − 𝑥2 where (𝑥1, 𝑥2) ∈ R2

subject to 𝑥1 ≥
√︃
𝑥2
2
+ 1.

The constraint ensures 𝑥1 − 𝑥2 > 0 but 𝑥1 − 𝑥2 → 0 as 𝑥1 =
√︃
𝑥2
2
+ 1 → ∞ and 𝑥2 ≥ 0. Hence, the optimal

value of (2.20) is 0 but the problem is not solvable. Accordingly, we are in the situation of the first part of
Theorem 2.13 as the optimal value of (2.20) is bounded by 0 and the problem is obviously strictly feasible.

We now show that the dual optimal value is also 0 and the dual problem is solvable. The dual problem to
(2.20) is

maximize − 𝜎 where 𝜈 ∈ R2, 𝜆 ∈ R, 𝜎 ∈ R

subject to ©­«
0 0

1 0

0 1

ª®¬𝜈 + 𝜆
©­«
1

0

0

ª®¬ − ©­«
0

0

1

ª®¬𝜎 =
©­«
1

−1
0

ª®¬
∥𝜈 ∥2 ≤ 𝜆.

The linear constraint is equivalent to (𝜆, 𝜈) = (1,−1, 𝜎) and we can write the dual problem as

maximize − 𝜎 where 𝜎 ∈ R
subject to 1 ≥

√
1 + 𝜎2.

(2.21)

The only feasible solution is of course 𝜎 = 0. Hence, the optimal value of (2.21) is also 0 which coincides wih
the primal optimal value. We note that (2.21) is not strictly feasible and the second part of Theorem 2.13
cannot be applied.

Optimality conditions for SOCP

Now we use Theorem 2.13 to derive optimality conditions for SOCPs. Similarly to linear programming

they consist of complementarity conditions.

Theorem 2.15 (SOCP optimality conditions, from Ben-Tal, Ghaoui, and Nemirovski 2009, Theorem

A.2.2.)

Consider a primal-dual pair of SOCPs and let both be strictly feasible. Let 𝑥 be feasible for (SOCP) and
(𝜎, 𝜆, 𝜈) be feasible for (Dual SOCP). Then the following three statements are equivalent:

1. 𝑥 is optimal for (SOCP) and (𝜎, 𝜆, 𝜈) is optimal for (Dual SOCP).

2. The duality gap is zero, i.e.

𝑐⊤𝑥 − (−
𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜆𝑖 𝑓𝑖) − 𝜎⊤𝑏) = 0.
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3. The complementarity conditions(
𝑣𝑖
𝜆𝑖

)⊤
·
(
𝐷𝑖𝑥 + 𝑑𝑖
𝑒⊤𝑖 𝑥 + 𝑓𝑖

)
= 0 ∀𝑖 = 1, ..., 𝑠 (2.22)

hold.

Proof. By Theorem 2.13 we know that the optimal values of (SOCP) and (Dual SOCP) are equal, i.e.

opt(SOCP) = opt(Dual SOCP). Therefore, we have the duality gap

𝑐⊤𝑥 − (−
𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜆𝑖 𝑓𝑖) − 𝜎⊤𝑏) = 𝑐⊤𝑥 − opt(SOCP)︸                ︷︷                ︸
𝑎

+

opt(Dual SOCP) − (−
𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜆𝑖 𝑓𝑖) − 𝜎⊤𝑏)︸                                                       ︷︷                                                       ︸
𝑏

For any primal-dual feasible pair (𝑥, 𝜎, 𝜆, 𝜈) it holds 𝑎 ≥ 0, 𝑏 ≥ 0. (𝑥, 𝜎, 𝜆, 𝜈) is a pair of optimal

solutions if and only if 𝑎 = 0 = 𝑏, i.e. the duality gap is zero. This proves the equivalence of statement

1 and 2.

Now we show that statement 3 is equivalent to statement 2. As 𝑥 is primal feasible it holds

𝐴𝑥 = 𝑏 and ∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 ≤ 𝑒⊤𝑖 𝑥 + 𝑓𝑖 𝑖 = 1, ..., 𝑠 .

The dual feasibility of (𝜎, 𝜆, 𝜈) implies

𝑐 =

𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜆𝑖𝑒𝑖) −𝐴⊤𝜎 and ∥𝜈𝑖 ∥2 ≤ 𝜆𝑖 𝑖 = 1, ..., 𝑠 .

This implies

𝑐⊤𝑥 − (−
𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜆𝑖 𝑓𝑖) − 𝜎⊤𝑏) = (
𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜆𝑖𝑒𝑖) −𝐴⊤𝜎)⊤𝑥 +

𝑠∑︁
𝑖=1

(𝑑⊤𝑖 𝜈𝑖 + 𝜆𝑖 𝑓𝑖) + 𝜎⊤𝑏

= 𝜎⊤ (−𝐴𝑥 + 𝑏)︸      ︷︷      ︸
=0

+
𝑠∑︁
𝑖=1

𝜈⊤𝑖 (𝐷𝑖𝑥 + 𝑑𝑖)︸         ︷︷         ︸
≥−𝜆𝑖 (𝑒⊤𝑖 𝑥+𝑓𝑖 )

+ 𝜆𝑖 (𝑒⊤𝑖 𝑥 + 𝑓𝑖) .

Hence, the duality gap is zero if and only if

𝜈⊤𝑖 (𝐷𝑖𝑥 + 𝑑𝑖) + 𝜆𝑖 (𝑒⊤𝑖 𝑥 + 𝑓𝑖) = 0 ∀𝑖 = 1, ..., 𝑠

which proves statement 3.

□
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Similarly as for linear programs we conclude that for a strictly feasible pair of SOCPs a point (𝑥, 𝜎, 𝜆, 𝜈)
is comprised of primal and dual optimal solutions if and only if

𝐴𝑥 = 𝑏, ∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 ≤ 𝑒⊤𝑖 𝑥 + 𝑓𝑖 𝑖 = 1, ..., 𝑠 (primal feasibility)
𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜆𝑖𝑒𝑖) −𝐴⊤𝜎 = 𝑐, ∥𝜈𝑖 ∥2 ≤ 𝜆𝑖 𝑖 = 1, ..., 𝑠 (dual feasibility) (2.23)(
𝑣𝑖
𝜆𝑖

)⊤
·
(
𝐷𝑖𝑥 + 𝑑𝑖
𝑒⊤𝑖 𝑥 + 𝑓𝑖

)
= 0, 𝑖 = 1, ..., 𝑠 (complementarity) .

2.2.5 Interior-point methods

Literature: Alizadeh and Goldfarb 2002, section 7.2.

The system (2.23) is the basis for so called primal-dual interior-point methods to solve SOCPs.

However, the necessity of this system for optimality can only be ensured when (SOCP) and (Dual

SOCP) are both strictly feasible. Therefore, all the interior-point methods for solving SOCPs assume

primal-dual strict feasibility. Hence, in modeling a problem it has to be ensured that strict feasibility

holds. Otherwise there might be a duality gap that lets the methods fail.

A detailed treatment of interior-point methods is far beyond the scope of this thesis. Therefore, we will

only roughly sketch the ideas. A more comprehensive discussion can be found in the above mentioned

paper.

We start with a definition:

Definition 2.16 (Central path)

The trajectory of points (𝑥, 𝜎, 𝜆, 𝜈) satisfying

𝐴𝑥 = 𝑏, ∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 < 𝑒⊤𝑖 𝑥 + 𝑓𝑖 𝑖 = 1, ..., 𝑠

𝑠∑︁
𝑖=1

(𝐷⊤
𝑖 𝜈𝑖 + 𝜆𝑖𝑒𝑖) −𝐴⊤𝜎 = 𝑐, ∥𝜈𝑖 ∥2 < 𝜆𝑖 𝑖 = 1, ..., 𝑠 (2.24)(
𝑣𝑖
𝜆𝑖

)⊤
·
(
𝐷𝑖𝑥 + 𝑑𝑖
𝑒⊤𝑖 𝑥 + 𝑓𝑖

)
= 𝜇, 𝑖 = 1, ..., 𝑠

for some 𝜇 > 0 is called the central path.

We note that the above system (2.24) differs form the optimality system (2.23) in two ways:

1. The complementarity conditions(
𝑣𝑖
𝜆𝑖

)⊤
·
(
𝐷𝑖𝑥 + 𝑑𝑖
𝑒⊤𝑖 𝑥 + 𝑓𝑖

)
= 0, 𝑖 = 1, ..., 𝑠
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are replaced by the relaxed conditions(
𝑣𝑖
𝜆𝑖

)⊤
·
(
𝐷𝑖𝑥 + 𝑑𝑖
𝑒⊤𝑖 𝑥 + 𝑓𝑖

)
= 𝜇, 𝑖 = 1, ..., 𝑠 .

2. (𝑥, 𝜎, 𝜆, 𝜈) have to satisfy

∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 < 𝑒⊤𝑖 𝑥 + 𝑓𝑖 and ∥𝜈𝑖 ∥2 < 𝜆𝑖 𝑖 = 1, ..., 𝑠 .

This means that 𝑥 and (𝜎, 𝜆, 𝜈) have to lie in the (relative) interior of the primal and dual feasible

set, respectively. This motivates the name interior-point method.

Of course there are several variants of primal-dual interior-point methods. A general outline of these

methods is as follows (see also Figure 2.3).

1. They start with a point that lies near (or on) the central path.

2. Then they apply Newton’s method to the equalities in the system (2.24) to get a direction

(Δ𝑥,Δ𝜎,Δ𝜆,Δ𝜈) that reduces the duality gap. The step length is chosen such that the new iterate

is still feasible and satisfies the strict inequalities

∥𝐷𝑖𝑥 + 𝑑𝑖 ∥2 < 𝑒⊤𝑖 𝑥 + 𝑓𝑖 and ∥𝜈𝑖 ∥2 < 𝜆𝑖 𝑖 = 1, ..., 𝑠 .

Hence, each iterate of the methods lies in the (relative) interior of the feasible sets.

3. After each iteration the duality gap 𝜇 is reduced by a constant factor. This means the methods

follow the central path for a decreasing value of 𝜇 where 𝜇 = 0 corresponds to optimality.

Figure 2.3: Illustration of a interior-point method. Iterates lie on the central path or in some neighbor-

hood. From Nocedal and Wright 2006, p.400
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With an appropriate choice of the initial point, step length and reduction schedule for 𝜇 one can show

convergence in a polynomial number of iterations. Moreover, these algorithms do not only provide

theoretical bounds, but they are also useful in practice.

2.2.6 Example: Random objective function

Literature: Prékopa 1995, section 8.5

As mentioned in Section 2.1 a direct use of single chance constraints is usually not a good idea from the

modeling point of view. Accordingly, there are not too many examples where an immediate application

of single chance constraints seems to be reasonable. However, one such example are problems where

all the problem data is assumed to be deterministic except for a random objective function 𝑐 (𝜉)⊤𝑥 .

Therefore, we consider the following problem:

minimize 𝑐 (𝜉)⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0.

Similar as for chance constraints we first have to define what is meant by a random objective function.

Again there are several possibilities. The approach we choose here is related to chance constraints.

That is, we introduce an auxiliary variable 𝑡 and the put objective function into a new constraint, i.e.

minimize 𝑡 where 𝑥 ∈ R𝑛, 𝑡 ∈ R
subject to P(𝑐 (𝜉)⊤𝑥 ≤ 𝑡) ≥ 𝛼

𝐴𝑥 = 𝑏

𝑥 ≥ 0.

Hence, in this problem we want to find a solution vector 𝑥∗ and a minimum number 𝑡∗ such that the

objective value 𝑐 (𝜉)⊤𝑥∗ is smaller equal than this number 𝑡∗ with a (high) probability 𝛼 . This approach

naturally leads to a problem with exactly one single chance constraint. If 𝑐 (𝜉) has a multivariate

normal distribution, the theory of the previous sections can be applied. If not, approximation strategies

for single chance constraints can be used, see also Remark 2.5.

2.3 Joint chance constraints - Random right hand side

In this section we consider the joint chance constraint problem (JCCP) in the special case when only

the right hand side is random, i.e.

𝑇 (𝜉) ≡ 𝑇 deterministic and ℎ(𝜉) = 𝜉 ∈ R𝑠 .

Additionally, we assume that 𝜉 has a nondegenerate multivariate normal distribution, i.e.

𝜉 ∼ N(𝜇, Σ)
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with Σ being a positive definite matrix. Then 𝜉 has the density function

𝑓 (𝑦) = 1√︁
(2𝜋)𝑛 · det(Σ)

𝑒−
1

2
(𝑦−𝜇 )⊤Σ−1 (𝑦−𝜇 ) .

We consider the following chance constraint optimization problem in this section:

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

P(𝑇𝑥 ≥ 𝜉) ≥ 𝛼.

(2.25)

We present a cutting plane method for solving (2.25). We introduce the method for a more general

type of problems. However, it turns out that in the general case some steps of the algorithm cannot

be ensured to always work (namely the availability of a strictly feasible point and the guarantee that

the gradients do not vanish at boundary points). In Section 2.3.2 we show that these obstacles do not

occur when solving (2.25) and explain why this method is particularly well suited for (2.25).

2.3.1 A cutting plane method

In order to be able to formulate the general problem we introduce the notion of a quasiconcave

function.

Quasiconcave functions

Literature: Bazaraa, Sherali, and Shetty 2006, p.134-138

Definition 2.17 (Quasiconcave function)

Let 𝐶 ⊂ R𝑛 be a convex set. A function 𝑔 : 𝐶 → R is called quasiconcave if for all 𝑥, 𝑦 ∈ 𝐶

𝑔(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ min(𝑔(𝑥), 𝑔(𝑦)) ∀𝜆 ∈ [0, 1] (2.26)

holds.

Evidently, every concave function is also quasiconcave. Moreover, one can show easily that quasicon-

cavity is equivalent to the property of a function that all its upper level sets are convex, i.e.

𝑔 quasiconcave ⇐⇒ {𝑥 | 𝑔(𝑥) ≥ 𝛾} is convex ∀𝛾 ∈ R.

Therefore, quasiconcavity is a reasonable generalization of concavity. However, the example 𝑓 (𝑥) = 𝑥3

shows that there are quasiconcave functions that are not concave.

The important property of quasiconcave functions for the method which is presented in this section is

the following:
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Lemma 2.18 (from Bazaraa, Sherali, and Shetty 2006, theorem 3.5.4)

Let 𝐶 ⊂ R𝑛 be a convex set and 𝑔 : 𝐶 → R a differentiable quasiconcave function. Then it holds for all
𝑥, 𝑦 ∈ 𝐶 :

𝑔(𝑥) ≥ 𝑔(𝑦) =⇒ ∇𝑔(𝑦) (𝑥 − 𝑦) ≥ 0. (2.27)

Proof. Let 𝑥, 𝑦 ∈ 𝐶 such that 𝑔(𝑥) ≥ 𝑔(𝑦). Applying Taylor expansion results in

𝑔(𝜆𝑥 + (1 − 𝜆)𝑦) − 𝑔(𝑦) = 𝜆∇𝑔(𝑦) (𝑥 − 𝑦) + 𝑜 (𝜆) ∀𝜆 ∈ [0, 1] .

By the quasiconcavity of g it holds 𝑔(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝑔(𝑦) which implies

𝜆∇𝑔(𝑦) (𝑥 − 𝑦) + 𝑜 (𝜆) ≥ 0 ∀𝜆 ∈ [0, 1] .

Dividing by 𝜆 and letting 𝜆 → 0 shows that ∇𝑔(𝑦) (𝑥 − 𝑦) ≥ 0. □

Motivation of the method

With this property in mind we consider the following problem:

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

𝑔𝑖 (𝑥) ≥ 0, 𝑖 = 1, ..., 𝑙

(2.28)

where 𝑔𝑖 : R
𝑛 → R, 𝑖 = 1, ..., 𝑙, are quasiconcave differentiable functions. We assume that the set

𝑃0 ≔ {𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} (2.29)

is bounded. This can be enforced by box constraints 0 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, ..., 𝑛. This implies also the

boundedness of the feasible convex set

𝐶 ≔ {𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝑔𝑖 (𝑥) ≥ 0 ∀𝑖 = 1, ...𝑙}.

Since our actual goal is to solve (2.25), it is helpful to think about the special case of (2.28) with

𝑙 = 1 and 𝑔1(𝑥) = P(𝑇𝑥 ≥ 𝜉) .

We show in Section 2.3.2 that P(𝑇𝑥 ≥ 𝜉) is quasiconcave in 𝑥 (in fact it satisfies a stronger property

which is important for the method to work).

(2.28) is solved by a cutting plane method. We will outline now the idea of cutting plane methods

(see Figure 2.4). (2.28) is about minimizing a linear function over a convex set 𝐶 . A cutting plane

method sequentially solves linear programming relaxations of this problem, i.e. builds outer polyhedral

approximations 𝑃 of the feasible set C. If the optimal solution 𝑥∗ of the relaxation (e.g. a vertex found

by the simplex method) is also feasible for the original problem, then it is of course also optimal for
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the original problem. If not, a linear inequality ℎ⊤𝑥 ≤ 𝑧 (a.k.a. a cutting plane) is added that cuts off

the optimal relaxed solution 𝑥∗ but no feasible point of the original problem, i.e.

ℎ⊤𝑥∗ > 𝑧

but

ℎ⊤𝑥 ≤ 𝑧 ∀𝑥 ∈ 𝐶.

Figure 2.4: The feasible set is a convex ellipse. The polyhedral approximation consists of box constraints

for two the variables. The optimal vertex of this approximation (yellow) is cut off by a

hyperplane (black).

In Figure 2.4 two possible drawbacks of this general procedure become apparent:

1. On the one hand a cutting plane can be arbitrary bad in the sense that it cuts off the optimal

solution but almost nothing else of the polyhedron. This can make the method quite slow.

2. On the other hand in practice this method has to be stopped after a finite number of iterations.

It might happen that until then no feasible point was found. Of course the relaxed solutions

provide lower bounds for the optimal value but no upper bounds are available. Hence, one

cannot estimate how good (or bad) this lower bound is. Moreover, it is not clear which point

should be returned as an (approximate) solution if the method only detected infeasible points so

far.

The cutting plane method presented here will overcome these two problems (see Figure 2.5 and

Figure 2.6):

1. To avoid problem 1 supporting hyperplanes are generated. These are cutting planes that ”touch”

the feasible set. Therefore, the presented method is also called a supporting hyperplane method.
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2. Problem 2 is addressed by a sequence of boundary points that are constructed along the method

by the use of an initially given interior point. As they are feasible for the original problem they

provide upper bounds on the optimal value.

Figure 2.5: The cutting plane (black) supports the feasible set at a bounday point point (black). The

boundary point lies on the line between a strictly feasible point (blue) and the optimal

relaxed solution (yellow).

Figure 2.6: Visualization of the termination of a computer program for the supporting hyperplane

method. The black point is the boundary point with the smallest objective value and is

returned as an optimal solution.
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Supporting hyperplane method of Veinott

Literature: Veinott 1967

Now we derive the method formally. It is summarized in Algorithm 1.

First of all, the method needs a strictly feasible point 𝑎 as an input, i.e. 𝑎 is feasible for (2.28) and

𝑔𝑖 (𝑎) > 0 ∀ 𝑖 = 1, ..., 𝑙 . (2.30)

The initial poylyhedral relaxation of the feasible set 𝐶 is the linearly constrained set 𝑃0. Therefore in

iteration 𝑘 = 0 the problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

(2.31)

is solved. If the optimal solution 𝑥∗
𝑘

is already feasible for the original problem (i.e. 𝑥∗
𝑘
∈ 𝐶), then 𝑥∗

𝑘
is

also optimal and the algorithm stops.

If not, we construct a linear inequality that cuts off 𝑥∗
𝑘

but no point of the feasible set 𝐶 . In order to do

this, we determine a point on the line betweeen the strictly feasible point 𝑎 and the relaxed solution

𝑥∗
𝑘
, i.e. we find the largest number 𝜆𝑘 such that

𝑏𝑘 ≔ 𝑎 + 𝜆𝑘 (𝑥∗𝑘 − 𝑎) ∈ 𝐶.

We know for sure that 0 < 𝜆𝑘 < 1 as 𝑎 is strictly feasible for 𝐶 , 𝑥∗
𝑘

is infeasible for 𝐶 and 𝐶 is a convex

set. 𝜆𝑘 can be computed with a bisection method. Here the interval (0, 1) is successively halved and

the constraints are evaluated at the center of the interval. If the center is feasible, then the right half of

the interval is chosen in the next step, else the left half. We mention that the bisection method can

be sped up if there are bounds available for the functions 𝑔 𝑗 , 𝑗 = 1, ..., 𝑙 . This applies to probability

functions, see also Remark 2.30.

The point 𝑏𝑘 lies on the relative boundary of 𝐶 since otherwise 𝜆𝑘 could be increased. Moreover, there

is an index 𝑗 ∈ {1, ..., 𝑙} such that

𝑔 𝑗 (𝑏𝑘 ) = 0.

For every feasible point 𝑥 ∈ 𝐶 we have

𝑔 𝑗 (𝑥) ≥ 0 = 𝑔 𝑗 (𝑏𝑘 ) .

Then Lemma 2.18 implies that

∇𝑔 𝑗 (𝑏𝑘 ) (𝑥 − 𝑏𝑘 ) ≥ 0 ∀𝑥 ∈ 𝐶. (2.32)

This inequality is of course only useful if

∇𝑔 𝑗 (𝑏𝑘 ) ≠ 0

holds. In Lemma 2.20 we show that then this inequality indeed cuts off 𝑥∗
𝑘
. However, ∇𝑔 𝑗 (𝑏𝑘 ) ≠ 0

cannot always be ensured for quasiconcave functions and the algorithm might get stuck at this point.

Therefore one has to guarantee somehow that

𝑔 𝑗 (𝑏𝑘 ) = 0 =⇒ ∇𝑔 𝑗 (𝑏𝑘 ) ≠ 0.
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We show in Section 2.3.2 how this can be ensured for the joint chance constraint P(𝑇𝑥 ≥ 𝜉).

If ∇𝑔 𝑗 (𝑏𝑘 ) ≠ 0 holds, then

{𝑥 | ∇𝑔 𝑗 (𝑏𝑘 ) (𝑥 − 𝑏𝑘 ) = 0}

defines a supporting hyperplane to 𝐶 as ∇𝑔 𝑗 (𝑏𝑘 ) (𝑏𝑘 − 𝑏𝑘 ) = 0 and 𝐶 ⊂ {𝑥 | ∇𝑔 𝑗 (𝑏𝑘 ) (𝑥 − 𝑏𝑘 ) ≥ 0}. In

this case we refine the polyhedral approximation 𝑃𝑘 , i.e.

𝑃𝑘+1 := 𝑃𝑘 ∩ {𝑥 | ∇𝑔 𝑗 (𝑏𝑘 ) (𝑥 − 𝑏𝑘 ) ≥ 0}

and solve (2.31) again with 𝑃𝑘+1 as the feasible set. In Algorithm 1 we also assume that ∇𝑔 𝑗 (𝑏𝑘 ) ≠ 0

holds throughout the algorithm.

Algorithm 1 Supporting hyperplane method (Veinott)

1: Input: A problem of type (2.28) and a feasible point for (2.28) satisfying

𝑔𝑖 (𝑎) > 0 ∀ 𝑖 = 1, ..., 𝑙

2: Output: Optimal solution 𝑥∗ for (2.28)

3: Initialization: Set 𝑘 = 0 (𝑃0 is defined in (2.29))

4: Solve the LP relaxation

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝑥 ∈ 𝑃𝑘
(2.33)

5: Let 𝑥∗
𝑘

be the optimal solution.

6: if 𝑥∗
𝑘
∈ 𝐶 then

7: stop and return 𝑥∗
𝑘

which is optimal for (2.28)

8: else if some stopping criterion is met then
9: stop and return 𝑏𝑣 for

𝑣 = argmin

𝑖=1,...,𝑘

𝑐⊤𝑏𝑖

10: else
11: Find the largest number 𝜆𝑘 ∈ [0, 1] such that 𝑏𝑘 := 𝑎 + 𝜆𝑘 (𝑥∗𝑘 − 𝑎) ∈ 𝐶 .

12: Then 𝑏𝑘 lies on the boundary of C and

∃ 𝑗 ∈ {1, ...𝑙} such that 𝑔 𝑗 (𝑏𝑘 ) = 0

13: Add the linear inequality

∇𝑔 𝑗 (𝑏𝑘 ) (𝑥 − 𝑏𝑘 ) ≥ 0 (2.34)

14: to the relaxed feasible set, i.e.

𝑃𝑘+1 := 𝑃𝑘 ∩ {𝑥 | ∇𝑔 𝑗 (𝑏𝑘 ) (𝑥 − 𝑏𝑘 ) ≥ 0}

15: k := k+1, Goto 3

16: end if

Remark 2.19
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1. The feasible set in (2.33) differs from the feasible set of the previous iteration only by the added
inequality (2.34). Hence, the dual simplex method is particularly well suited to solve these problems.

2. The relaxed solutions 𝑥∗
𝑘

provide increasing lower bounds on the optimal value of (2.28). The boundary
points 𝑏𝑘 provide (not necessarily decreasing) upper bounds on the optimal value of (2.28). Hence,
after iteration k the estimation

min

𝑖=1,...,𝑘
𝑐⊤𝑏𝑖 − 𝑐⊤𝑥∗

𝑘

is available as an upper bound for the optimality gap and can be used as a practical stopping
criterion.

Nevertheless, two important questions still remain open:

1. How to find the point 𝑎 in (2.30)? We will answer this question in Section 2.3.2.

2. What are the convergence properties of this method? This will be answered now.

Convergence properties of the supporting hyperplane method

Literature: Veinott 1967

To prove the convergence let

𝑁 ≔ {𝑥 | 𝑔𝑖 (𝑥) ≥ 0 ∀ 𝑖 = 1, ..., 𝑙}

be the feasible set of the nonlinear constraints. The convergence proof focuses on the set 𝑁 rather than

the set𝐶 ⊂ 𝑁 . The reason for this is that all the linear constraints of𝐶 are satisfied in each iteration of

the algorithm. Moreover, the strictly feasible point 𝑎 lies in the interior of 𝑁 rather than the relative

interior of 𝐶 which is important for the proof to work.

We assume that

∇𝑔 𝑗 (𝑏𝑘 ) ≠ 0

always holds and hence in each iteration a supporting hyperplane can be found as outlined above. In

Section 2.3.2 we show that this always holds for problem (2.25). Following the notation of Veinott 1967

we write the supporting hyperplane inequality in iteration 𝑘 as

ℎ⊤
𝑘
𝑥 ≤ 𝑧𝑘 .

It holds

𝑁 ⊂ 𝐻𝑘 ≔ {𝑥 | ℎ⊤
𝑘
𝑥 ≤ 𝑧𝑘 },

and

ℎ⊤
𝑘
𝑏𝑘 = 𝑧𝑘

holds for a boundary point

𝑏𝑘 = 𝑎 + 𝜆𝑘 (𝑥∗𝑘 − 𝑎) .
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We note that in the notation of (2.32) it holds:

ℎ𝑘 = −∇𝑔 𝑗 (𝑏𝑘 ) and 𝑧𝑘 = −∇𝑔 𝑗 (𝑏𝑘 )𝑏𝑘 .

Moreover, we observe that (2.32) is also a supporting hyperplane to N.

We prove the convergence of the supporting hyperplane method in a slightly more general setting that

does not depend on the explict construction of the supporting hyperplane but only on the existence of

a linear inequality that defines a supporting hyperplane to 𝑁 .

The presentation starts with a lemma showing that a supporting hyperplane indeed cuts off the relaxed

solution 𝑥∗
𝑘

from the relaxed feasible set 𝑃𝑘 .

Lemma 2.20 (from Veinott 1967, lemma 3)

Let 𝑥∗
𝑘

be any iterate of Algorithm 1. If 𝑥∗
𝑘
∉ 𝑁 , then 𝑥∗

𝑘
∉ 𝐻𝑘 .

Proof. {𝑥 | ℎ⊤
𝑘
𝑥 = 𝑧𝑘 } intersects 𝑁 only at boundary points (otherwise there is 𝑥 ∈ 𝑁 such that

ℎ⊤
𝑘
𝑥 > 𝑧𝑘 ). Hence, ℎ⊤

𝑘
𝑎 < 𝑧𝑘 . Since 𝑎 ∈ int(N) and 𝑥∗

𝑘
∉ 𝑁 it holds: 0 < 𝜆𝑘 < 1.

Moreover

𝑧𝑘 = ℎ⊤
𝑘
𝑏𝑘 = ℎ⊤

𝑘
((1 − 𝜆𝑘 )𝑎 + 𝜆𝑘𝑥

∗
𝑘
)

= (1 − 𝜆𝑘 ) ℎ⊤
𝑘
𝑎︸︷︷︸

<𝑧𝑘

+ 𝜆𝑘ℎ
⊤
𝑘
𝑥∗
𝑘
.

This implies ℎ⊤
𝑘
𝑥∗
𝑘
> 𝑧𝑘 and hence 𝑥∗

𝑘
is cut off. □

The next statement will also be needed in the convergence proof.

Lemma 2.21 (from Veinott 1967, theorem 1)

Let 𝑥∗ be an accumulation point of the iterates {𝑥∗
𝑘
} of Algorithm 1 such that 𝑥∗ ∈ 𝐶 . Then 𝑥∗ is optimal

for (2.28).

Proof. Evidently, 𝑃0 ⊃ 𝑃1 ⊃ ... ⊃ 𝐶 and hence with 𝑓 ∗ being the optimal value of (2.28)

𝑐⊤𝑥∗
1
≤ 𝑐⊤𝑥∗

2
≤ ... ≤ 𝑓 ∗.

By assumption 𝑥∗ ∈ 𝐶 (i.e. is feasible for (2.28)). As linear functions are continous it also holds

𝑐⊤𝑥∗ ≤ 𝑓 ∗. Hence, 𝑥∗ is optimal. □

Now we can prove the main convergence theorem.
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Theorem 2.22 (Convergence of the supporting hyperplane method, from Veinott 1967, theorem 2)

If 𝑥∗
𝑘
∉ 𝐶 for all 𝑘 , then the accumulation points of {𝑥∗

𝑘
} and {𝑏𝑘 } of Algorithm 1 coincide and are optimal

for problem (2.28).

Proof. Since 𝐶 is closed and 𝑏𝑘 ∈ 𝐶 for all 𝑘 , all the accumulation points of {𝑏𝑘 } lie in 𝐶 . Therefore, it

suffices to show that the accumulation points of {𝑥∗
𝑘
} and {𝑏𝑘 } coincide as then all the accumulation

points of {𝑥∗
𝑘
} lie in C and the statement follows by Lemma 2.21.

W.l.o.g. we assume that ∥ℎ𝑘 ∥ = 1 ∀𝑘 , i.e. ℎ𝑘 is bounded (otherwise we divide each ℎ𝑘 by ∥ℎ𝑘 ∥).

Let 𝑥∗ be an accumulation point of {𝑥∗
𝑘
}. It exists as 𝑥∗

𝑘
∈ 𝑃0 for all 𝑘 and we assumed 𝑃0 to be bounded.

Moreover the sequences {𝑏𝑘 } ⊂ 𝐶 ⊂ 𝑃0, {ℎ𝑘 } and {𝜆𝑘 } ⊂ (0, 1) are bounded. Applying the theorem of

Bolzano-Weierstrass several times implies that there exists a subsequence such that

lim

𝑖→∞
(𝑥𝑖 , 𝑏𝑖 , ℎ𝑖 , 𝜆𝑖) = (𝑥∗, 𝑏∗, ℎ∗, 𝜆∗)

for some vectors 𝑥∗, 𝑏∗, ℎ∗, 𝜆∗. Now we show 𝑥∗ = 𝑏∗.

It holds

ℎ𝑖𝑥 ≤ 𝑧𝑖 = ℎ𝑖𝑏𝑖 ∀𝑖 ∀𝑥 ∈ 𝑁

as 𝑁 ⊂ 𝐻𝑖 ∀𝑖 . Letting 𝑖 → ∞ leads to

ℎ∗𝑥 ≤ ℎ∗𝑏∗ ∀𝑥 ∈ 𝑁 . (2.35)

By construction of the algorithm 𝑥𝑖+1 ∈ 𝐻𝑖 and according to Lemma 2.20 𝑥𝑖 ∉ 𝐻𝑖 .

This implies

ℎ𝑖𝑥𝑖+1 ≤ ℎ𝑖𝑏𝑖 < ℎ𝑖𝑥𝑖 ∀𝑖

and in the limit 𝑖 → ∞
ℎ∗𝑥∗ = ℎ∗𝑏∗.

Using 𝑏∗ = (1 − 𝜆∗)𝑎 + 𝜆∗𝑥∗ leads to

ℎ∗𝑥∗ = ℎ∗𝑏∗ = (1 − 𝜆∗)ℎ∗𝑎 + 𝜆∗ℎ∗𝑥∗.

This implies

(1 − 𝜆∗)ℎ∗𝑏∗ = (1 − 𝜆∗)ℎ∗𝑥∗ = (1 − 𝜆∗)ℎ∗𝑎. (2.36)

As 𝑎 ∈ int(N), ℎ∗𝑎 < ℎ∗𝑏∗ since otherwise there is 𝑥 ∈ 𝑁 such that ℎ∗𝑥 > ℎ∗𝑏∗ contradicting (2.35).

Then 𝜆∗ = 1 because of (2.36) and hence 𝑏∗ = 𝑥∗. This shows that each accumulation point of {𝑥∗
𝑘
} is

also one of {𝑏𝑘 }. For the inverse implication exchange the roles of 𝑥∗ and 𝑏∗.

□
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2.3.2 Application of the supporting hyperplane method to joint chance constraint
problems

In this section we apply Algorithm 1 to problem (2.25). This section is divided in three parts:

1. The (generalized) concavity properties of the constraint

𝑔(𝑥) ≔ P(𝑇𝑥 ≥ 𝜉) ≥ 𝛼 with 𝜉 ∼ N(𝜇, Σ) .

Related with this is also the question how ∇𝑔(𝑏𝑘 ) ≠ 0 can be ensured in (2.32).

2. The problem (2.30) of finding a point 𝑎 ∈ 𝐶 satisfying

𝑔(𝑎) = P(𝑇𝑎 ≥ 𝜉) > 𝛼.

3. The evaluation of P(𝑇𝑥 ≥ 𝜉) and ∇P(𝑇𝑥 ≥ 𝜉).

Generalized concavity properties of probability functions

In Section 2.3.1 we introduced quasiconcavity as a generalization of concavity. In the following we will

introduce two further generalizations of concavity along with their relationships and meanings for

solving problem (2.25) (see Figure 2.7):

logconcave =⇒ pseudoconcave =⇒ quasiconcave

Moreover we make use of theorem about the relation of logconcave probability density functions and

their corresponding probability measures.

The presentation starts with the definition of a logconcave function.

Definition 2.23 (Logconcave function)

Let 𝐶 ⊂ R𝑛 be a convex set. A function 𝑓 : 𝐶 → R+ is called logconcave if for all 𝑥, 𝑦 ∈ 𝐶 and for all
𝜆 ∈ [0, 1]

log(𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦)) ≥ 𝜆 · log(𝑓 (𝑥)) + (1 − 𝜆) · log(𝑓 (𝑦))

holds.

The definition basically says that f is logconcave if and only if log(𝑓 ) is a concave function. Moreover

one can show that a positive concave function is also logconcave.

The notion of a logconcave probability measure is defined similarly.
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Definition 2.24 (Logconcave measure)

A probability measure P is called logconcave if for all pair of convex sets 𝐴, 𝐵 ⊂ R𝑛 and for all 𝜆 ∈ [0, 1]

log(P(𝜆𝐴 + (1 − 𝜆)𝐵)) ≥ 𝜆 log(P(𝐴)) + (1 − 𝜆) log(P(𝐵))

holds.

Now we can formulate without proof the aforementioned theorem.

Theorem 2.25 (from Prékopa 1995, theorem 4.2.1)

Let f be a logconcave probability density function and P be the probability measure generated by f. Then P
is a logconcave measure.

To see how this theorem applies to the setting of (2.25) we consider the probability density function of

the right hand side vector 𝜉 which was assumed to be nondegenerate multivariate normal distributed:

𝑓 (𝑦) = 1√︁
(2𝜋)𝑛 · det(Σ)

· 𝑒− 1

2
(𝑦−𝜇 )⊤Σ−1 (𝑦−𝜇 ) .

Taking the logarithm on both sides and neglecting an additive constant leads to

log(𝑓 (𝑦)) = − 1

2

(𝑦 − 𝜇)⊤Σ−1(𝑦 − 𝜇).

As Σ was assumed to be positive definite, the same holds for Σ−1
. Therefore log(𝑓 (𝑦)) is concave and

hence 𝑓 (𝑦) a logconcave density function. Theorem 2.25 implies that the corresponding measure P is

also logconcave.

Setting

𝑔(𝑥) ≔ P(𝑇𝑥 ≥ 𝜉),
and

𝐴 ≔ {𝜉 | 𝑇𝑥 ≥ 𝜉}, 𝐵 ≔ {𝜉 | 𝑇 𝑦 ≥ 𝜉}
for fixed vectors 𝑥 and 𝑦 , we see that 𝑔 is a logconcave function since

log(𝑔(𝜆𝑥 + (1 − 𝜆)𝑦)) = log(P(𝑇 (𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝜉))
= log(P(𝜆𝐴 + (1 − 𝜆)𝐵))
≥ 𝜆 log(P(𝐴)) + (1 − 𝜆) log(P(𝐵))
= 𝜆 log(P(𝑇𝑥 ≥ 𝜉)) + (1 − 𝜆) log(P(𝑇 𝑦 ≥ 𝜉))
= 𝜆 log(𝑔(𝑥)) + (1 − 𝜆) log(𝑔(𝑦)) .

Remark 2.26
The logconcavity of P(𝑇𝑥 ≥ 𝜉) does not only hold if 𝜉 follows a nondegenerate multivariate normal
distribution. The important property of the normal distribution is its logconcave probability density function
which is by Theorem 2.25 sufficient (though not necessary) for the logconcavity of the corresponding
probability measure. For further examples of logconcave probability distributions see Prékopa 1995, section
4.4.
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Next, we show that every logconcave function is pseudoconcave.

Definition 2.27 (Pseudoconcave function)

Let𝐶 ⊂ R𝑛 be a convex set. A differentiable function 𝑔 : 𝐶 → R is called pseudoconcave if for all 𝑥, 𝑦 ∈ 𝐶

∇𝑔(𝑥) (𝑦 − 𝑥) ≤ 0 =⇒ 𝑔(𝑦) ≤ 𝑔(𝑥)

holds.

Again, every concave function is also pseudoconcave by the gradient characterization of concavity

(see Herzog 2023, theorem 13.17 ii)). Moreover we note that by the definition it is obvious that for a

pseudoconcave function ∇𝑔(𝑥) = 0 is sufficient for x to be a global maximimizer.

Figure 2.7: On the left the function 𝑒−𝑥
2

is plotted. It is both logconcave and pseudoconcave, but not

concave. On the right the function 𝑥3 is plotted. It is quasiconcave but not pseudoconcave

as the gradient vanishes at 𝑥 = 0 but there is no maximum.

Lemma 2.28 (from Kall and Mayer 2010, proposition 2.35)

Let g be a positive, differentiable and logconcave function over a convex set 𝐶 ⊂ R𝑛 . Then g is also
pseudoconcave.

Proof. Let 𝑥, 𝑦 ∈ 𝐶, 𝜆 ∈ [0, 1] and assume ∇𝑔(𝑥) (𝑦 − 𝑥) ≤ 0. This implies

∇(log(𝑔(𝑥))) (𝑦 − 𝑥) = 1

𝑔(𝑥) ∇𝑔(𝑥) (𝑦 − 𝑥) ≤ 0. (2.37)

By assumption log(𝑔(𝑥)) is concave and hence also pseudoconcave. Considering (2.37) this implies

log(𝑔(𝑦)) ≤ log(𝑔(𝑥))

and hence 𝑔(𝑦) ≤ 𝑔(𝑥) as the logarithm is monotone. □
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We conclude that 𝑔(𝑥) = P(𝑇𝑥 ≥ 𝜉) is a pseudoconcave function. This has an important consequence

for Algorithm 1: In (2.32) there was the restriction that the gradient must not vanish at boundary

points. Given that there is a point 𝑎 satisfying

P(𝑇𝑎 ≥ 𝜉) > 𝛼 (2.38)

this always holds: Assume by contradiction that ∇P(𝑇𝑏 ≥ 𝜉) = 0 for some boundary point 𝑏 (i.e.

P(𝑇𝑏 ≥ 𝜉) = 𝛼). This would mean that 𝑏 is a global maximimizer contradicting the existence of a point

𝑎 in (2.38).

Finally, we show that pseudoconcavity implies quasiconcavity.

Lemma 2.29 (from Bazaraa, Sherali, and Shetty 2006, theorem 3.5.11 and lemma 3.5.7)

Let 𝑔 : 𝐶 → R be a pseudoconcave function over a convex set 𝐶 ⊂ R𝑛 . Then g is quasiconcave.

Proof. Let 𝑥, 𝑦 ∈ 𝐶 . In this proof let 𝑥 (𝜆) ≔ 𝜆𝑥 + (1 − 𝜆)𝑦 for 𝜆 ∈ (0, 1) (see Figure 2.8). The proof

consists of two cases.

Case 1:

For 𝑔(𝑥) ≠ 𝑔(𝑦) we prove a statement slightly stronger than quasiconcavity:

𝑔(𝑥) ≠ 𝑔(𝑦) =⇒ 𝑔(𝑥 (𝜆)) > min(𝑔(𝑥), 𝑔(𝑦)) ∀𝜆 ∈ (0, 1).

We assume by contradiction that 𝑔(𝑥) ≠ 𝑔(𝑦) and there is 𝑥 (𝜆) such that 𝑔(𝑥 (𝜆)) ≤ min(𝑔(𝑥), 𝑔(𝑦)).
W.l.o.g. let 𝑔(𝑥) > 𝑔(𝑦) and hence 𝑔(𝑥 (𝜆)) ≤ 𝑔(𝑦) < 𝑔(𝑥). The pseudoconcavity of g then implies

∇𝑔(𝑥 (𝜆)) (𝑥 − 𝑥 (𝜆)) > 0.

It is easy to see that 𝑥 − 𝑥 (𝜆) = −(1 − 𝜆) (𝑦−𝑥 (𝜆) )
𝜆

which implies

∇𝑔(𝑥 (𝜆)) (𝑦 − 𝑥 (𝜆)) < 0.

Again by the pseudoconcavity of g it follows 𝑔(𝑦) ≤ 𝑔(𝑥 (𝜆)) and hence 𝑔(𝑦) = 𝑔(𝑥 (𝜆)).

∇𝑔(𝑥 (𝜆)) (𝑦 −𝑥 (𝜆)) < 0 implies the existence of a point 𝑥 (𝜇) on the line between 𝑥 (𝜆) and 𝑦 such that

𝑔(𝑥 (𝜇)) < 𝑔(𝑥 (𝜆)) = 𝑔(𝑦).

The pseudoconcavity of g implies

∇𝑔(𝑥 (𝜇)) (𝑦 − 𝑥 (𝜇)) > 0

and

∇𝑔(𝑥 (𝜇)) (𝑥 (𝜆) − 𝑥 (𝜇)) > 0.

It also holds 𝑦 − 𝑥 (𝜇) = 𝜇
𝑥 (𝜇 )−𝑥 (𝜆)

1−𝜇 which contradicts the above two inequalities.
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Case 2:

Suppose 𝑔(𝑥) = 𝑔(𝑦). Assume by contradiction that 𝑔(𝑥 (𝜆)) < 𝑔(𝑥). Then there exists a point 𝑥 (𝜎) on

the line between 𝑥 and 𝑥 (𝜆) such that

𝑔(𝑥 (𝜆)) < 𝑔(𝑥 (𝜎)) < 𝑔(𝑥) = 𝑔(𝑦) . (2.39)

We note that 𝑥 (𝜆) can be written as a convex combination of 𝑥 (𝜎) and 𝑦 . Observing 𝑔(𝑦) > 𝑔(𝑥 (𝜎))
and applying Case 1 implies 𝑔(𝑥 (𝜆)) > 𝑔(𝑥 (𝜎)). But this contradicts (2.39).

□

Figure 2.8: Visualization of the points occurring in the proof of Lemma 2.29

Hence, 𝑔(𝑥) = P(𝑇𝑥 ≥ 𝜉) is also quasiconcave and we can apply Algorithm 1. As shown above the

problem that the gradient vanishes in (2.34) does not occur due to the pseudoconcavity of P(𝑇𝑥 ≥ 𝜉)
and the existence of a point which is strictly feasible for the chance constraint. We will now consider

the problem of finding such a point.

Finding the initial interior point

Literature: Kall and Mayer 2010, section 4.3.2

In (2.30) in Algorithm 1 a point 𝑎 that strictly satisfies all nonlinear constraints is required. In the case

of (2.25) this simplifies to the existence of a point 𝑎 satisfying

P(𝑇𝑎 ≥ 𝜉) > 𝛼

as there is only exactly one nonlinear constraint. For this special case the following phase-I-problem

can be solved:

maximize P(𝑇𝑥 ≥ 𝜉) where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0.

We can write it equivalently as

maximize 𝑡 where 𝑥 ∈ R𝑛, 𝑡 ∈ R
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

log(P(𝑇𝑥 ≥ 𝜉)) − 𝑡 ≥ 0.

(2.40)

Here log(P(𝑇𝑥 ≥ 𝜉)) is concave and hence the entire constraint is concave. (2.40) can be solved with

Algorithm 1 as well:
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1. Find a feasible point 𝑥 for the linear constraints, i.e. 𝐴𝑥 = 𝑏, 𝑥 ≥ 0. This can be done by solving

a linear program.

2. Choose 𝑡 such that

log(P(𝑇𝑥 ≥ 𝜉)) − 𝑡 > 0.

Then (𝑥, 𝑡) can be used as a strictly feasible point to start Algorithm 1 for (2.40). We note that

the optimization needn’t be executed until convergence. It suffices to stop when a feasible point

(𝑥, 𝑡) is found that satisfies 𝑡 > log(𝛼) which implies

P(𝑇𝑥 ≥ 𝜉) > 𝛼.

Evaluating probability expressions

First, we consider the evaluation of the expression P(𝑇𝑥 ≥ 𝜉) for nondegenerate 𝜉 ∼ N(𝜇, Σ) and fixed

𝑥 . Using the normal density function it can be computed as

P(𝑇𝑥 ≥ 𝜉) = 1√︁
(2𝜋)𝑛 · det(Σ)

∫
{𝑦≤𝑇𝑥 }

𝑒−
1

2
(𝑦−𝜇 )⊤Σ−1 (𝑦−𝜇 ) 𝑑𝑥 . (2.41)

However, numerical methods for computing this expression become very inefficient in high dimensions.

A remedy is to use Monte-Carlo methods to approximate this expression. A detailed discussion of

these methods is far beyond the scope of this thesis. Hence, we give only a rough outline of the method.

We consider the integral ∫
𝐴

𝑓 (𝑥) 𝑑𝑥 (2.42)

and assume that 𝐴 ⊂ R𝑛 is bounded (in (2.41) this can be achieved by an integral transformation).

A Monte-Carlo method then works as follows:

1. Pick random elements 𝑥1, ..., 𝑥𝑁 ∈ 𝐴

2. For 𝜆(𝐴) being the Lebesgue measure of 𝐴 compute the average

𝜆(𝐴) 1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖)

as an approximation of (2.42).

Of course, there are several improvements available. Further details can be found in Kall and Mayer

2010, section 4.3.5.

Remark 2.30 (Bounds on probability functions)

Evaluating probability functions in high dimensions with Monte-Carlo simulation is computationally
expensive. However, in the bisection method of Algorithm 1 many evaluations of the probability function
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are necessary to find the boundary point 𝑏𝑘 with a reasonable accuracy. Therefore, one strives to reduce
the number of required function evaluations without losing accuracy.

This is accomplished by the use of bounds for probability functions. We set 𝐹 (𝑥) ≔ P(𝑇𝑥 ≥ 𝜉). Let 𝐹𝐿
and 𝐹𝑈 be lower and upper bounds for 𝐹 , respectively, i.e.

𝐹𝐿 (𝑥) ≤ 𝐹 (𝑥) ≤ 𝐹𝑈 (𝑥) ∀𝑥 ∈ R𝑛 .

We consider the first iteration (𝜆 = 1

2
) of the bisection method to illustrate the use of these bounds. We

know that
P(𝑇𝑎 ≥ 𝜉) > 𝛼,

P(𝑇𝑥∗
𝑘
≥ 𝜉) < 𝛼

and want to find a point 𝑏𝑘 = 𝑎 + 𝜆(𝑥∗
𝑘
− 𝑎) such that

P(𝑇𝑏𝑘 ≥ 𝜉) = 𝛼.

If

𝐹𝑈 (𝑎 + 1

2

(𝑥∗
𝑘
− 𝑎)) < 𝛼

holds, we can choose [ 1
2
, 1] as the next interval. If

𝐹𝐿 (𝑎 +
1

2

(𝑥∗
𝑘
− 𝑎)) > 𝛼

holds, we can choose [0, 1
2
] as the next interval.

If none of these two inequalities hold, we have to use Monte-Carlo simulation. But in the other two cases
it is possible to halve the interval without using computationally expensive Monte-Carlo simulation.
Fortunately, there are good lower and upper bounds available that are relatively easy to compute. For
further details see Kall and Mayer 2010, section 4.3.4, Prékopa 1995, sections 6.1-6.3, and Szántai 1988.

Finally, we briefly consider the computation of derivatives of probability expressions. One can show

that

∇P(𝑇𝑥 ≥ 𝜉)

is again multivariate normal distributed and consequently the same methods as for evaluating P(𝑇𝑥 ≥
𝜉) can be used. For details see Prékopa 1995, section 6.6.4

2.3.3 Example: Transport problem with random demands

We consider a transport network which is represented as a graph. There are nodes that supply a

commodity (”suppliers”) and there are nodes that demand the commodity (”customers”), see Figure 2.9.

The network structure is represented by a matrix 𝐴 = (𝐴supply, 𝐴demand), the supplies and demands

by a vector 𝑏 = (𝑏supply, 𝑏demand). The costs of transporting a unit of the commodity over an edge are

stored in the cost vector 𝑐 . The solution vector 𝑥 indicates which amount of the commodity should be

shipped over each edge. Furthermore, there are box constraints 0 ≤ 𝑥 ≤ 𝑢 that restrict the amount of
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the commodity that can be transported over each edge (compare Herzog 2023, §11).

In a deterministic framework this problem can be formulated as

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴supply𝑥 ≤ 𝑏supply

𝐴demand𝑥 ≥ 𝑏demand

0 ≤ 𝑥 ≤ 𝑢.

(2.44)

However, in reality the problem data is often not deterministic. Here we consider the case when the

customer demands are random, i.e.

𝑏demand = 𝑏 (𝜉) with 𝜉 ∼ N(𝜇, Σ) .

In practice, we usually cannot wait for the realization of the randomness (the actual demands) as there

might be a time delay between the start of transportation and the arrival at the customers. To deal

with this, we formulate (2.44) as a chance constraint problem of type (2.25):

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴supply𝑥 ≤ 𝑏supply

0 ≤ 𝑥 ≤ 𝑢

P(𝐴demand𝑥 ≥ 𝑏 (𝜉)) ≥ 𝛼

This problem ensures that all the customer demands as a whole are satisfied with a probability of at

least 𝛼 . It can be solved by the supporting hyperplane method of the previous section.

Figure 2.9: Transport network. The red nodes correspond to suppliers, the blue nodes to customers.

2.4 Joint chance constraints - The general case

In this section we consider the joint chance constraint

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) ≥ 𝛼
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in its full generality, i.e. 𝑇 and ℎ are both allowed to be random.

These constraints are very difficult to deal with. To the best of my knowledge there is only one special

case where the convexity of the feasible set can be ensured. However, this special case requires very

strong assumptions on the distribution and is consequently not of practical use to design algorithms.

Details can be found in Prékopa 1995, theorem 10.4.3 and 10.4.5

Therefore, we first consider the case when 𝜉 has a discrete distribution. Secondly, we introduce a

method to approximate joint chance constraints by single chance constraints.

2.4.1 Finite discrete distribution

Literature: Kall and Mayer 2010, section 2.2.2

We assume that 𝜉 has a finite discrete distribution. That is, it can attain only finitely many values

𝜉𝑖 , 𝑖 ∈ 𝐼 = {1, ..., 𝑁 } with corresponding positive probabilities 𝑝𝑖 , 𝑖 ∈ 𝐼 ,
∑

𝑖∈𝐼 𝑝𝑖 = 1.

Then for a given point 𝑥 it holds

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) ≥ 𝛼 ⇐⇒ 𝑥 ∈
⋃
𝐽 ⊂𝐼∑

𝑗 ∈ 𝐽 𝑝 𝑗 ≥𝛼

⋂
𝑗∈ 𝐽

{𝑥 | 𝑇 (𝜉 𝑗 )𝑥 ≥ ℎ(𝜉 𝑗 )}.

This means that 𝑥 is feasible for the joint chance constraint if and only if there is a set of indices 𝐽

such that 𝑥 satisfies the constraints in all scenarios in 𝐽 and the probability of this set of scenarios is at

least 𝛼 .

We observe that the sets ⋂
𝑗∈ 𝐽

{𝑥 | 𝑇 (𝜉 𝑗 )𝑥 ≥ ℎ(𝜉 𝑗 )}

are convex as intersections of convex polyhedral sets. However, the union of convex sets is in general

not convex and consequently the feasible set for 𝑥 is in general not convex. This is illustrated in

Figure 2.10.
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Figure 2.10: The feasible set is the union of the blue and the red polyhedron. This is not a convex set.

Problems of minimizing over a union of convex polyhedral sets are called disjunctive programming

problems. They can be converted into mixed-integer linear programs. Therefore, for each scenario

a binary variable 𝑧𝑖 , 𝑖 ∈ 𝐼 is introduced that indicates whether the constraints of this scenario are

satisfied or not. This leads to the following reformulation of (JCCP):

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

𝑇 (𝜉𝑖)𝑥 +𝑀 (1 − 𝑧𝑖)1 ≥ ℎ(𝜉𝑖) , 𝑖 ∈ 𝐼

𝑁∑︁
𝑖=1

𝑝𝑖𝑧𝑖 ≥ 𝛼

𝑧𝑖 ∈ {0, 1} , 𝑖 ∈ 𝐼

where 1 = (1, ..., 1)⊤ is the vector of all ones and 𝑀 is a ”big enough” constant. To be more precise, 𝑀

is chosen such that

𝑀 · 1 ≥ ℎ(𝜉𝑖) −𝑇 (𝜉𝑖)𝑥 ∀𝑥 ∈ {𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} ∀𝑖 ∈ 𝐼 .

If a scenario 𝜉𝑖 is ”active”, that is 𝑧𝑖 = 1, then

𝑇 (𝜉𝑖)𝑥 +𝑀 · (1 − 𝑧𝑖)1︸          ︷︷          ︸
=0

≥ ℎ(𝜉𝑖)

and the original constraint for scenario 𝑖 holds. On the other hand, if the scenario 𝑖 is ”inactive”, that is

𝑧𝑖 = 0, then

𝑇 (𝜉𝑖)𝑥 +𝑀 · (1 − 𝑧𝑖)︸       ︷︷       ︸
=𝑀

1 ≥ ℎ(𝜉𝑖)

holds independently of the choice of x. This means that the original constraint for this scenario is

deactivated.

Max Jungmann Bachelor Thesis 42



Convex Techniques in SLP 2.4 Joint chance constraints - The general case

𝑀 needn’t be chosen minimal. If possible, one can choose a value for 𝑀 by some problem specific

knowledge. Otherwise 𝑀 can be computed as follows:

1. For 𝑖 ∈ 𝐼 and 𝑗 ∈ {1, ..., 𝑠} let 𝑀𝑖 𝑗 be the optimal value of the linear program

maximize ℎ 𝑗 (𝜉𝑖) − 𝑡 𝑗 (𝜉𝑖)𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

where 𝑡 𝑗 (𝜉𝑖) denotes the j
th

row of 𝑇 (𝜉𝑖) and ℎ 𝑗 (𝜉𝑖) denotes the j
th

entry of ℎ(𝜉𝑖).

2. Setting

𝑀 ≔ max

𝑖∈𝐼
𝑗∈{𝑖=1,...,𝑠 }

𝑀𝑖 𝑗

provides a possible constant M.

Even though linear programs are efficiently solvable, this approach requires to solve 𝑁 · 𝑠 many linear

programs which can be computationally expensive for a huge number of scenarios 𝑁 and uncertain

constraints 𝑠 .

2.4.2 Approximation by discretization

Bearing in mind the previous section an obvious approach to approximate joint chance constraints with

an arbitrary distribution is by discretization. That is, a finite number of random samples 𝜉𝑖 , 𝑖 = 1, ..., 𝑁

of the distribution is drawn. Then the mixed-integer reformulation of the previous section can be

used. This is also called sample average approximation. For further information see Geng and Xi 2019,

chapter 6.

Another - more conservative - approach is to require that the uncertain constraints have to hold on all

the randomly drawn samples. This is also called the scenario approach. This leads to the problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

𝑇 (𝜉𝑖)𝑥 ≥ ℎ(𝜉𝑖) ∀𝑖 ∈ 𝐼 .

We observe that this is a linear program and hence way easier to solve than the mixed-integer linear

program before. For further information see Geng and Xi 2019, chapter 5.

Remark 2.31
Both approaches do not provide deterministic guarantees. It may happen that an optimal solution to one
of the approaches is not even feasible for the original problem. However, one can show that such a solution
is feasible for the original problem with a certain probability (depending on the number of samples N and
increasing for bigger N).
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2.4.3 Approximation by single chance constraints

As we saw in the previous section, discrete approximation strategies ensure feasibility of solutions

only with a certain probability. Contrary to that, in this section we present a way to ensure feasibility

in all cases. This approach makes use of single chance constraints.

Theorem 2.32 (Safe approximation of joint chance constraints)

The feasible set of the single chance constraints

P(𝑡𝑖 (𝜉)𝑥 ≥ ℎ𝑖 (𝜉)) ≥ 1 − 𝜖𝑖 , 𝑖 = 1, ..., 𝑠 (2.45)

with
𝑠∑︁
𝑖=1

𝜖𝑖 ≤ 𝜖

is a subset of the feasible set of the joint chance constraint

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) ≥ 1 − 𝜖. (2.46)

Proof. We show that if 𝑥 is feasible for (2.45), then it is also feasible for (2.46). Using the union bound

for probabilities leads to

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) = P(
𝑠⋂
𝑖=1

{𝑡𝑖 (𝜉)𝑥 ≥ ℎ𝑖 (𝜉)} )

= 1 − P(
𝑠⋃
𝑖=1

{𝑡𝑖 (𝜉)𝑥 < ℎ𝑖 (𝜉)} )

≥ 1 −
𝑠∑︁
𝑖=1

P(𝑡𝑖 (𝜉)𝑥 < ℎ𝑖 (𝜉))︸                ︷︷                ︸
≤𝜖𝑖

≥ 1 − 𝜖

□

To be more specific, for

∑𝑠
𝑖=1 𝜖𝑖 ≤ 𝜖 the optimal solution of the single chance constraint problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0 (2.47)

P(𝑡𝑖 (𝜉)⊤𝑥 ≥ ℎ𝑖 (𝜉)) ≥ 1 − 𝜖𝑖 for 𝑖 = 1, ..., 𝑠

is also feasible (though not necessarily optimal) for the joint chance constraint problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) ≥ 1 − 𝜖.
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This is also called a safe approximation. A typical choice for 𝜖𝑖 is 𝜖𝑖 = 𝜖
𝑠

for all 𝑖 and hence the

constraints

P(𝑡𝑖 (𝜉)𝑥 ≥ ℎ𝑖 (𝜉)) ≥ 1 − 𝜖

𝑠
for 𝑖 = 1, ..., 𝑠 .

It is quite difficult to determine good values for the 𝜖𝑖 . For further information see Geng and Xi 2019,

section 7.4.1.

If the single chance constraints are multivariate normal, then the techniques of Section 2.2 can be

used to solve (2.47). Otherwise approximation strategies for single chance constraints can be applied

(compare Remark 2.5).

2.4.4 Example: Production planning of wind energy

An example where general joint chance constraints occur are renewable energies, for instance wind

energy. Here the joint chance constraint

P(𝑇 (𝜉)𝑥 ≥ ℎ(𝜉)) ≥ 𝛼

has the following interpretation:

1. The right hand side vector ℎ(𝜉) represents varying electrical power demands of the customers.

2. The matrix 𝑇 (𝜉) represents uncertainties in the production process where wind is considered as

a random influence.

The joint chance constraint ensures that the random demands are satisfied with a probability of at

least 𝛼 while incorporating also the randomness in the production process. For details see Geng and

Xi 2019, section 8.1.2.
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3 Two-stage models

In this chapter we want to solve the optimization problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑇 (𝜉)𝑥 = ℎ(𝜉)
𝑥 ≥ 0.

(3.1)

Here 𝐴 ∈ R𝑚×𝑛
, 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 are assumed to be deterministic. 𝑇 (𝜉) ∈ R𝑠×𝑛 is a random matrix and

ℎ(𝜉) ∈ R𝑠 a random vector, both depending on the random vector 𝜉 ∈ R𝑟 with known probability

distribution. We assume that the distribution of 𝜉 does not depend on 𝑥 .

As (3.1) contains unknown parameters, we first have to assign a formal meaning to it. In situations like

the presence of a legal commitment it is important that the random constraints always hold. Therefore,

in this chapter we consider an approach where a recourse action is taken to ensure the satisfaction of

the uncertain constraints.

1. We make a first stage decision 𝑥 as the optimal solution of the first stage problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0.

(3.2)

2. Then the realization of the randomness 𝜉 occurs.

3. Afterwards, we make a second stage decision 𝑦 to compensate for the deficiency ℎ(𝜉) −𝑇 (𝜉)𝑥
with minimal cost. Therefore, we solve the problem

minimize 𝑞(𝜉)⊤𝑦 where 𝑦 ∈ R𝑘

subject to 𝑊 (𝜉)𝑦 = ℎ(𝜉) −𝑇 (𝜉)𝑥
𝑦 ≥ 0

(3.3)

for the fixed first stage solution 𝑥 and the fixed realization of the random vector 𝜉 . Here are

𝑊 ∈ R𝑠×𝑘 , 𝑞 ∈ R𝑘 . We denote the optimal value of (3.3) by 𝑄 (𝜉, 𝑥).

Two-stage models are used if a problem is solved many times, for instance in weekly production

planning. In these situations it is reasonable to consider the average recourse cost at a given first stage

solution 𝑥 , i.e.

E[𝑄 (𝜉, 𝑥)],
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as the metric to determine the quality of a first stage solution with respect to the uncertain constraints

𝑇 (𝜉)𝑥 = ℎ(𝜉). Accordingly, in this chapter we consider the following problem:

minimize 𝑐⊤𝑥 + E[𝑄 (𝜉, 𝑥)] where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0.

(3.4)

In this chapter we mainly deal with the case when 𝜉 has a finite discrete distribution. We briefly

consider the case of general distributions in Section 3.3.

3.1 Finite discrete distribution

In this section we assume that the random vector 𝜉 has only finitely many realizations 𝜉𝑖 , 𝑖 = 1, ..., 𝑁

with corresponding probabilities 𝑝𝑖 , 𝑖 = 1, ..., 𝑁 ,

∑𝑁
𝑖=1 𝑝𝑖 = 1. Then we can write problem (3.4) as

minimize 𝑐⊤𝑥 +
𝑁∑︁
𝑖=1

𝑝𝑖𝑞(𝜉𝑖)⊤𝑦𝑖 where 𝑥 ∈ R𝑛, 𝑦𝑖 ∈ R𝑘𝑖 , 𝑖 = 1, ..., 𝑁

subject to 𝐴𝑥 = 𝑏

𝑇 (𝜉𝑖)𝑥 +𝑊 (𝜉𝑖)𝑦𝑖 = ℎ(𝜉𝑖), 𝑖 = 1, ..., 𝑁

𝑥 ≥ 0

𝑦𝑖 ≥ 0, 𝑖 = 1, ...𝑁 ,

(3.5)

where 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛 and 𝑇 (𝜉𝑖) ∈ R𝑠𝑖×𝑛,𝑊 (𝜉𝑖) ∈ R𝑠𝑖×𝑘𝑖 , ℎ(𝜉𝑖) ∈ R𝑠𝑖 , 𝑞(𝜉𝑖) ∈ R𝑘𝑖 for

𝑖 = 1, ..., 𝑁 .

We observe that (3.5) is again a linear program and the constraint matrix (without the nonnegativity

constraints) has the following structure:

©­­­­­­­­­«

𝐴

𝑇 (𝜉1) 𝑊 (𝜉1)
𝑇 (𝜉2) 𝑊 (𝜉2)

...
. . .

𝑇 (𝜉𝑁 ) 𝑊 (𝜉𝑁 )

ª®®®®®®®®®¬
(3.6)

For many scenarios (i.e. big 𝑁 ) this matrix might be very large and and hence (3.5) is a large-scale

linear program. However, this matrix has a block structure that can be used in solution methods.

The main observation is the following: If 𝑥 was fixed, then (3.5) would decompose into the scenarios

𝑖 = 1, ..., 𝑁 and we could solve the subproblems

minimize 𝑞(𝜉𝑖)⊤𝑦𝑖 where 𝑦𝑖 ∈ R𝑘𝑖

subject to 𝑇 (𝜉𝑖)𝑥 +𝑊 (𝜉𝑖)𝑦𝑖 = ℎ(𝜉𝑖)
𝑦𝑖 ≥ 0

(3.7)
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independently of each other. As the complexity of solving linear programs grows more than linear,

this would be a big speed-up in computation time. Using this observation is the main ingredient of a

method called Benders decomposition which we introduce now.

3.2 Benders decomposition

3.2.1 Motivation of the method

Literature: Taskin 2010, section 1

To increase readability we derive the method for the case 𝑁 = 1. It generalizes straightforwardly to

arbitrary 𝑁 . We cover this in Section 3.2.4. We consider the following problem:

minimize 𝑐⊤𝑥 + 𝑞⊤𝑦 where 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑘

subject to 𝐴𝑥 = 𝑏

𝑇𝑥 +𝑊𝑦 = ℎ

𝑥 ≥ 0

𝑦 ≥ 0.

(3.8)

We assume that it is solvable. Additionally, we assume that the feasible set of the first stage problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

(3.9)

is bounded (which implies also solvability of (3.9)). For a given vector 𝑥 (e.g. an optimal first stage

solution), the second stage problem reads

minimize 𝑞⊤𝑦 where 𝑦 ∈ R𝑘

subject to 𝑊𝑦 = ℎ −𝑇𝑥

𝑦 ≥ 0.

(3.10)

Its dual problem is

maximize (ℎ −𝑇𝑥)⊤𝑢 where 𝑢 ∈ R𝑠

subject to 𝑊 ⊤𝑢 ≤ 𝑞.
(3.11)

The solvability of (3.8) implies that the feasible set of (3.11) is nonempty. A nonempty polyhedron has a

finite number of extreme points/vertices and extreme rays (see Nemhauser and Wolsey 1999, section

I.4.4). We denote the set of vertices by 𝑉 and the set of extreme rays by 𝑅. Then a linear program

over this nonempty polyhedron can be solved by first checking that the objective does not increase

along the extreme rays to ensure boundedness and if so selecting an optimal vertex. Due to linear

programming duality (3.11) has the same optimal value as

minimize 𝜃 where 𝜃 ∈ R
subject to (ℎ −𝑇𝑥)⊤𝑟 ≤ 0 ∀𝑟 ∈ 𝑅

(ℎ −𝑇𝑥)⊤𝑣 ≤ 𝜃 ∀𝑣 ∈ 𝑉 .

(3.12)
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We note that if (ℎ −𝑇𝑥)⊤𝑟 > 0 for some 𝑟 ∈ 𝑅, then the feasible set of (3.12) is empty and its optimal

value is ∞. In this case (3.11) is unbounded and hence its optimal value is also ∞.

Consequently, we can write (3.8) as

minimize 𝑐⊤𝑥 + 𝜃 where 𝑥 ∈ R𝑛, 𝜃 ∈ R
subject to 𝐴𝑥 = 𝑏

(ℎ −𝑇𝑥)⊤𝑟 ≤ 0 ∀𝑟 ∈ 𝑅

(ℎ −𝑇𝑥)⊤𝑣 ≤ 𝜃 ∀𝑣 ∈ 𝑉

𝑥 ≥ 0.

(3.13)

However, the size of 𝑉 and 𝑅 grows exponentially with the problem size. Hence, this formulation is

not directly useful to solve problem (3.8). Therefore, Benders decomposition uses only a subset of this

constraints and sequentially adds more constraints if they turn out to be necessary along the method.

In each iteration Benders decomposition fixes a value of 𝑥 by solving a master problem and then solves

the dual problem (3.11) of the second stage problem. Based on the solution of the dual problem a new

constraint is generated.

3.2.2 Formal derivation of the method

Literature: Kall and Mayer 2010, section 1.2.6

Now we formally derive the Benders decomposition method. It is summarized in Algorithm 2.

In iteration 𝑘 = 0 we only use the first stage constraints and the feasible set reads

𝑃0 ≔ {(𝑥, 𝜃 ) | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}.

Then we solve the first stage problem

minimize 𝑐⊤𝑥 + 𝜃 where 𝑥 ∈ R𝑛, 𝜃 ∈ R
subject to 𝑥 ∈ 𝑃𝑘

(3.14)

yielding the optimal solution (𝑥∗
𝑘
, 𝜃 ∗

𝑘
). If there is no constraint for 𝜃 available in 𝑃𝑘 (as it is the case

in 𝑘 = 0), then 𝜃 is ignored in the objective and we set 𝜃 ∗
𝑘
= −∞. We note that the solvability of (3.8)

implies the feasibility of (3.14). Moreover, the bounded feasible set of (3.9) implies also the boundedness

of (3.14) since: Assume that (3.14) is unbounded. This means there is an extreme ray (Δ𝑥,Δ𝜃 ) with

negative objective value for (3.14), i.e.

𝐴Δ𝑥 = 0,Δ𝑥 ≥ 0,

−(𝑇Δ𝑥)⊤𝑟 ≤ 0 ∀𝑟 ∈ 𝑅,

−(𝑇Δ𝑥)⊤𝑣 ≤ Δ𝜃 ∀𝑣 ∈ 𝑉 , (3.15a)

and

𝑐⊤Δ𝑥 + Δ𝜃 < 0. (3.15b)
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Here 𝑅 ⊂ 𝑅 and 𝑉 ⊂ 𝑉 correspond to the constraints that have been added to (3.14) until iteration 𝑘 .

As we assumed boundedness of the feasible set of (3.9), it holds Δ𝑥 = 0. Then (3.15b) implies Δ𝜃 < 0.

But this contradicts (3.15a). Hence, (3.14) is bounded.

With the optimal first stage solution 𝑥∗
𝑘

we solve the dual of the second stage problem, i.e.

maximize (ℎ −𝑇𝑥∗
𝑘
)⊤𝑢 where 𝑢 ∈ R𝑠

subject to 𝑊 ⊤𝑢 ≤ 𝑞.
(3.16)

We note that infeasibility cannot occur due to the solvability of (3.8). Accordingly, we distinguish two

cases regarding to the optimal value of (3.16).

1. If (3.16) is unbounded, then the primal second stage problem

minimize 𝑞⊤𝑦 where 𝑦 ∈ R𝑘

subject to 𝑊𝑦 = ℎ −𝑇𝑥∗
𝑘

𝑦 ≥ 0

(3.17)

is infeasible. This means that for the first stage solution 𝑥∗
𝑘

there is no 𝑦 ≥ 0 such that

𝑊𝑦 = ℎ −𝑇𝑥∗
𝑘
.

Hence, 𝑥∗
𝑘

is infeasible for (3.8) and should be cut off. As (3.16) was unbounded, the simplex

method detects a feasible direction 𝑟 of unbounded growth (an extreme ray), i.e.

𝑊 ⊤𝑟 ≤ 0

and

(ℎ −𝑇𝑥∗
𝑘
)⊤𝑟 > 0.

For any feasible 𝑥 for (3.8) there is a 𝑦 ≥ 0 such that𝑊𝑦 = ℎ −𝑇𝑥 and hence

(ℎ −𝑇𝑥)⊤𝑟 = 𝑦⊤(𝑊 ⊤𝑟 ) ≤ 0.

Thus, the constraint

(ℎ −𝑇𝑥)⊤𝑟 ≤ 0

cuts off the infeasible point 𝑥∗
𝑘
. This is called a feasibility cut. We observe that this is one of the

constraints of the formulation (3.13). We set

𝑃𝑘+1 ≔ 𝑃𝑘 ∩ {(𝑥, 𝜃 ) | (ℎ −𝑇𝑥)⊤𝑟 ≤ 0}

and solve (3.14) again.

2. If (3.16) turns out to be solvable with an optimal vertex 𝑣 and optimal value 𝑓 ∗
𝑘
≔ (ℎ −𝑇𝑥∗

𝑘
)⊤𝑣 ,

we check whether

𝑓 ∗
𝑘
= 𝜃 ∗

𝑘

holds. We note that 𝑓 ∗
𝑘
≥ 𝜃 ∗

𝑘
always holds.
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If so, then 𝑥∗
𝑘

and the corresponding primal solution 𝑦∗
𝑘

of (3.16) are optimal for (3.8) since:

(3.14) is a relaxation of (3.13) (it simply has less constraints). Hence, if (𝑥∗
𝑘
, 𝜃 ∗

𝑘
) is feasible for (3.13),

then it is also optimal. The finiteness of 𝑓 ∗
𝑘

implies that the constraints for the extreme rays

𝑟 ∈ 𝑅 in (3.13) hold. Moreover it implies that no vertex of the polyhedron of the dual problem

(3.16) has an objective value greater than 𝑓 ∗
𝑘

. As 𝑓 ∗
𝑘
= 𝜃 ∗

𝑘
, (𝑥∗

𝑘
, 𝜃 ∗

𝑘
) satisfies also the constraints

for the vertices in (3.13). This shows that (𝑥∗
𝑘
, 𝜃 ∗

𝑘
) is also feasible for (3.13) and hence optimal.

In any case,

𝜃 ≥ (ℎ −𝑇𝑥)⊤𝑣

has to hold. This is one of the constraints in (3.13). It holds 𝑓 ∗
𝑘
= (ℎ −𝑇𝑥∗)⊤𝑣 . But for 𝑓 ∗

𝑘
> 𝜃 ∗

𝑘

this constraint is violated for (𝑥∗
𝑘
, 𝜃 ∗

𝑘
). Therefore we set

𝑃𝑘+1 ≔ 𝑃𝑘 ∩ {(𝑥, 𝜃 ) | 𝜃 ≥ (ℎ −𝑇𝑥)⊤𝑣}

and cut off (𝑥∗
𝑘
, 𝜃 ∗

𝑘
). This is called an optimality cut. Then we solve (3.14) again.
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Algorithm 2 Benders decomposition

1: Input: A problem of type (3.8).

2: Output: Optimal solution (𝑥∗, 𝑦∗) for (3.8).

3: Initialization: Set 𝑘 = 0, 𝜃 ∗
0
≔ −∞, 𝑃0 ≔ {(𝑥, 𝜃 ) | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} and solve

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝑥 ∈ 𝑃0

yielding the optimal solution 𝑥∗
0
.

4: Solve the dual second stage problem

maximize (ℎ −𝑇𝑥∗
𝑘
)⊤𝑢 where 𝑢 ∈ R𝑠

subject to 𝑊 ⊤𝑢 ≤ 𝑞
(3.18)

and let 𝑓 ∗
𝑘

be its optimal value.

5: if 𝑓 ∗
𝑘
= ∞ then

6: The dual simplex method determined an unbounded growth direction 𝑟 .

7: Set 𝑃𝑘+1 ≔ 𝑃𝑘 ∩ {(𝑥, 𝜃 ) | (ℎ −𝑇𝑥)⊤𝑟 ≤ 0} (feasibility cut)
8: else
9: There is an optimal vertex 𝑣 such that 𝑓 ∗

𝑘
= (ℎ −𝑇𝑥∗

𝑘
)⊤𝑣 .

10: if 𝑓 ∗
𝑘
= 𝜃 ∗

𝑘
then

11: return 𝑥∗
𝑘

and the corresponding primal solution 𝑦∗
𝑘

to (3.18).

12: else
13: Set 𝑃𝑘+1 ≔ 𝑃𝑘 ∩ {(𝑥, 𝜃 ) | 𝜃 ≥ (ℎ −𝑇𝑥)⊤𝑣} (optimality cut)
14: end if
15: end if
16: Solve

minimize 𝑐⊤𝑥 + 𝜃 where 𝑥 ∈ R𝑛, 𝜃 ∈ R
subject to 𝑥 ∈ 𝑃𝑘+1

yielding optimal solutions (𝑥∗
𝑘+1, 𝜃

∗
𝑘+1). 𝜃 is neglected in the objective as long as there is no

constraint on 𝜃 and is set to 𝜃 ∗
𝑘+1 = −∞.

17: 𝑘 ≔ 𝑘 + 1, GOTO 3

Remark 3.1 (Solvability assumptions)

If the assumptions on (3.8) and (3.9) are not satisfied, the following holds:

1. If the first stage problem (3.9) is not solvable, this is detected in line 2. However, it might happen
that (3.9) is solvable but the feasible set is not bounded. If the feasible set of (3.9) is not bounded,
then it may happen that the relaxed problem (3.14) is unbounded in some iteration although (3.13) is
solvable. In this case, the method fails.

2. If the original problem (3.8) is not solvable, this is detected either by the infeasibility of the problem
in line 3, or by infeasibility or unboundedness of the problem in line 15.

Max Jungmann Bachelor Thesis 52



Convex Techniques in SLP 3.2 Benders decomposition

3.2.3 Convergence

Theorem 3.2 (Convergence of Benders decomposition)

Provided that (3.8) is solvable and the feasible set of (3.9) is bounded, Algorithm 2 yields an optimal
solution (𝑥∗, 𝑦∗) to (3.8) after finitely many iterations.

Proof. As a polyhedron has only finitely many extreme rays and extreme points and in each iteration

one of the missing constraints of (3.13) is added, the algorithm stops with an optimal solution after

finitely many iterations. □

Of course, finite convergence is a rather weak statement as the number of extreme points and extreme

rays of a polyhedron can grow exponentially with the problem size and hence in the worst case the

number of iterations grows exponentially with the problem size. However, similar to the simplex

algorithm which also has a exponential worst case runtime, in practice Benders decomposition works

pretty well.

To illustrate this, I implemented the Benders decomposition method. The arising linear programming

subproblems in Algorithm 2 were solved with the general purpose linear programming solver Gurobi.

As a comparison, randomized two-stage models with a varying number of scenarios 𝑁 were solved in

two ways:

1. With my own implementation of Benders decomposition where Gurobi is only used to solve the

subproblems.

2. Directly with Gurobi. That is, the typically large-scale matrix (3.6) was directly passed as an

argument and the block structure was not used.

The result is visualized in Figure 3.1. We can see that for a small number of scenarios Gurobi works

still better as my own implementation. However, as the number of scenarios increases Benders

decomposition performs way better than Gurobi.
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Figure 3.1: Numerical comparison of solving two-stage models with Benders decomposition and the

general purpose linear programming solver Gurobi.

Moreover, after iteration 𝑘 the optimal value 𝑐⊤𝑥∗
𝑘
+𝜃 ∗

𝑘
of (3.14) provides a lower bound for (3.8) whereas

𝑐⊤𝑥∗
𝑘
+ 𝑞⊤𝑦∗

𝑘
yields an upper bound for 𝑦∗

𝑘
being the corresponding primal optimal solution of (3.16)

(provided there is one).

3.2.4 Application to two-stage models

Literature: Prékopa 1995, section 12.4

Now we apply Benders decomposition to an arbitrary number of scenarios 𝑁 . The resulting method is

also called the L-shaped method. It is an immediate generalization of the method we introduced in the

previous section.

Therefore we denote the vertices and extreme rays of the dual feasible sets {𝑢𝑖 |𝑊 (𝜉𝑖)⊤𝑢𝑖 ≤ 𝑞(𝜉𝑖)}, 𝑖 =
1, ..., 𝑁 by 𝑉𝑖 and 𝑅𝑖 , 𝑖 = 1, ..., 𝑁 , respectively.

Similar as in (3.13) we can write the general discrete two-stage problem (3.5) as

minimize 𝑐⊤𝑥 + 𝜃 where 𝑥 ∈ R𝑛, 𝜃 ∈ R
subject to 𝐴𝑥 = 𝑏

(ℎ(𝜉𝑖) −𝑇 (𝜉𝑖)𝑥)⊤𝑟 ≤ 0 ∀𝑟 ∈ 𝑅𝑖 ∀𝑖 = 1, ..., 𝑁

𝑁∑︁
𝑖=1

𝑝𝑖 · (ℎ(𝜉𝑖) −𝑇 (𝜉𝑖)𝑥)⊤𝑣𝑖 ≤ 𝜃 ∀𝑣𝑖 ∈ 𝑉𝑖 ∀𝑖 = 1, ..., 𝑁

𝑥 ≥ 0.

(3.19)
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Under the assumption that (3.19) is solvable and the first stage problem

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

has a bounded feasible set, Algorithm 2 generalizes to Algorithm 3.

Algorithm 3 L-shaped method

1: Input: A problem of type (3.5)

2: Output: Optimal solution (𝑥∗, 𝑦∗
1
, ..., 𝑦∗

𝑁
) for (3.5).

3: Initialization: Set 𝑘 = 0, 𝜃 ∗
0
≔ −∞, 𝑃0 ≔ {(𝑥, 𝜃 ) | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} and solve

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝑥 ∈ 𝑃0
(3.20)

yielding the optimal solution 𝑥∗
0
.

4: For 𝑖 = 1, ..., 𝑁 solve the dual second stage problem

maximize (ℎ(𝜉𝑖) −𝑇 (𝜉𝑖)𝑥∗𝑘 )
⊤𝑢𝑖 where 𝑢𝑖 ∈ R𝑠𝑖

subject to 𝑊 (𝜉𝑖)⊤𝑢𝑖 ≤ 𝑞(𝜉𝑖)
(3.21)

and let 𝑓 ∗
𝑘𝑖

be its optimal value.

5: if 𝑓 ∗
𝑘𝑖

= ∞ for some 𝑖 = 1, ..., 𝑁 then
6: Let 𝑖 be the first index such that 𝑓 ∗

𝑘𝑖
= ∞.

7: The dual simplex method determined an unbounded growth direction 𝑟 for subproblem 𝑖 .

8: Set 𝑃𝑘+1 ≔ 𝑃𝑘 ∩ {(𝑥, 𝜃 ) | (ℎ(𝜉𝑖) −𝑇 (𝜉𝑖)𝑥)⊤𝑟 ≤ 0} (feasibility cut)
9: else

10: There is an optimal vertex 𝑣𝑖 such that 𝑓 ∗
𝑘𝑖

= (ℎ(𝜉𝑖) −𝑇 (𝜉𝑖)𝑥∗𝑘 )
⊤𝑣𝑖 ∀𝑖 = 1, ..., 𝑁 .

11: if
∑𝑁

𝑖=1 𝑝𝑖 · (ℎ(𝜉𝑖) −𝑇 (𝜉𝑖)𝑥)⊤𝑣𝑖 = 𝜃 ∗
𝑘
then

12: return 𝑥∗
𝑘

and the corresponding primal optimal solutions 𝑦∗
𝑘𝑖
, 𝑖 = 1, ..., 𝑁 of (3.21)

13: else
14: Set 𝑃𝑘+1 ≔ 𝑃𝑘 ∩ {(𝑥, 𝜃 ) | 𝜃 ≥ ∑𝑁

𝑖=1 𝑝𝑖 · (ℎ(𝜉𝑖) −𝑇 (𝜉𝑖)𝑥)⊤𝑣𝑖} (optimality cut)
15: end if
16: end if
17: Solve

minimize 𝑐⊤𝑥 + 𝜃 where 𝑥 ∈ R𝑛, 𝜃 ∈ R
subject to 𝑥 ∈ 𝑃𝑘+1

(3.22)

yielding optimal solutions (𝑥∗
𝑘+1, 𝜃

∗
𝑘+1). 𝜃 is neglected in the objective as long as there is no

constraint on 𝜃 and is set to 𝜃 ∗
𝑘+1 = −∞.

18: 𝑘 ≔ 𝑘 + 1, GOTO 3

Remark 3.3

1. The only difference between Algorithm 3 and Algorithm 2 is that in each step 𝑁 subproblems
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are considered instead of only one. In particular, an optimality cut is added in line 13 only if all
subproblems have finite optimal values.

2. The same convergence results as for 𝑁 = 1 hold: The algorithm terminates with an optimal solution
for (3.5) (provided there is one) after a finite number of iterations as there are finitely many
subproblems and each subproblem has only a finite number of vertices and extreme rays. In practice
the convergence is typically quite fast.
Again 𝑐⊤𝑥∗

𝑘
+𝜃 ∗

𝑘
is available as a lower bound in iteration 𝑘 whereas 𝑐⊤𝑥∗

𝑘
+∑𝑁

𝑖=1 𝑝𝑖 ·𝑞⊤𝑖 𝑦∗𝑘𝑖 yields an
upper bound for 𝑦∗

𝑘𝑖
being the optimal primal solutions (provided they exist) for the dual problems

(3.21).

3.3 The general case

In this section we consider the general two-stage model (3.4), i.e.

minimize 𝑐⊤𝑥 + E[𝑄 (𝜉, 𝑥)] where 𝑥 ∈ R𝑛

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

where 𝜉 has an arbitrary probability distribution. We only give a rough overview over an approximation

procedure. For further details see Kall and Mayer 2010, section 3.2.1.

Solution methods for those problems are based on successive discretization strategies. Under some

extra assumptions (e.g. that𝑊 is deterministic) convexity properties for E[𝑄 (𝜉, 𝑥)] can be proven.

They can be used to construct two-stage models with finite discrete distributions that lead to lower

and upper bounds for (3.4). Jensens inequality is used to get a lower bound 𝐿, i.e.

𝐿(𝑥) ≤ E[𝑄 (𝜉, 𝑥)],
and the so called Edmundson-Madansky inequality leads to an upper bound 𝑈 , i.e.

E[𝑄 (𝜉, 𝑥)] ≤ 𝑈 (𝑥) .
In each iteration two-stage models with finite discrete distribution are solved. This can be done by the

L-shaped method we presented in the previous section. Moreover, refining the discretization leads

to increasing lower and decreasing upper bounds. Moreover one can show that 𝐿 and 𝑈 converge to

E[𝑄 (𝜉, 𝑥)] as the discretization gets finer.

3.4 Example: Transport problem with random demands revisited

Similar to Section 2.3.3 we consider a transport problem of the form

minimize 𝑐⊤𝑥 where 𝑥 ∈ R𝑛

subject to 𝐴supply𝑥 = 𝑏supply

𝐴demand𝑥 = 𝑏demand(𝜉)
0 ≤ 𝑥 ≤ 𝑢.
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We again assume that the customer demands are random. However, contrary to Section 2.3.3 we

now want to satisfy the customer demands in any case. Therefore, we formulate the corresponding

two-stage problem

minimize 𝑐⊤𝑥 + E[𝑄 (𝜉, 𝑥)] where 𝑥 ∈ R𝑛

subject to 𝐴supply𝑥 = 𝑏supply

0 ≤ 𝑥 ≤ 𝑢.

(3.23)

where 𝑄 (𝜉, 𝑥) is the optimal value of

minimize 𝑞(𝜉)⊤𝑦 where 𝑦 ∈ R𝑘

subject to 𝑊 (𝜉)𝑦 = 𝑏demand(𝜉) −𝐴demand𝑥

𝑦 ≥ 0

for fixed 𝜉 and 𝑥 .

We can interpret𝑊 as the structure of an emergency transport network. The first stage network given

by the matrix 𝐴 = (𝐴supply, 𝐴demand) may describe the structure of a ship network. As ships need a lot

of time to cover long distances, there is a big time delay between the start of the transportation and

the arrival at the customers. Therefore,𝑊 may describe a transport network consisting of warehouses

to compensate for an excess of the commodity, and airplanes to quickly compensate for a deficiency of

the commodity. Evidently, warehouses as well as airplanes are way more flexible than ships. However,

they also entail costs 𝑞(𝜉) that might be random as well as the structure of the recourse network𝑊 (𝜉)
itself. Therefore, (3.23) finds a balance between the flexibility of the recourse network and the rather

small costs of ship transport compared to airplane transport.
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