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Abstract

A well-known classic chess problem is the so-called n-queens problem, where n queens
have to be placed on a n × n chessboard such that no two queens attack each other
according to the classical chess rules. Such a placement of queens is called an n-queens
configuration. This problem motivated countless other questions. This thesis focuses on
the n-queens completion problem, which asks whether a set of non-attacking queens on
the n×n chessboard can be extended to an n-queens configuration. More precisely, what
is the maximum integer qc(n), such that any arrangement of at most qc(n) non-attacking
queens is always completable? Progress on this question was obtained by Glock, Correia,
and Sudakov in 2022 using graph theoretic arguments. In this work, I was able to improve
their lower bound of qc(n) ≥ n

60 to qc(n) ≥ n
52 .
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1 Introduction

Almost everyone has heard of chess, a classic strategic board game with over a thousand
years of history. In the Middle Ages, mastering chess was one of the seven skills of
a knight. And to this day, interest in the game has not waned. The game structure
offers various points of contact with mathematics. Several combinatorial and topological
problems have emerged from chess. One example is the knight’s tour. In this problem,
a route is searched for the knight on an empty chess board so that the knight visits each
square exactly once, moving according to the classical chess rules. Another example is
the n-queens problem, which will be discussed in more detail. And do not worry, being
a good chess player is no requirement for this thesis.

The n-queens problem is the task of placing n-queens on an n × n chessboard. It
is a generalization from the 8-queens problem published in 1848 by the chess composer
Bezzel [1]. The challenge here is that the queens should not be placed anywhere on the
chessboard, but in such a way that they do not attack each other. This extended to the
n-queens completion problem. In August 2017 a group of three mathematicians proved
that the n-queens completion problem is NP -complete [2]. And in 2018 Mikhailovskii
conjectured that it is solvable in polynomial time [3]. If this proves to be true this would
solve one of the remaining Millenium Problems stated by the Clay Mathematics Institute
in 2000.

Overall, this problem is classically viewed as a theoretical one, however, not only is
it a simple but also a nontrivial problem. And therefore very well suited as a basis
for a benchmark problem in various programming techniques, artificial intelligence, and
combinatorial optimization.

After the first appearance of the n-queens problem, initial approaches were made by
Nauck in 1850 [1]. Since then a lot of great mathematicians, including Carl Friedrich
Gauss, have worked in this field. The first question that arises in this context is whether
it is always possible to place n non-attacking queens on an n × n chessboard, called
n-queens configuration. And indeed this is true for all natural numbers except 2 and 3
[4].

The n-queens problem provokes numerous other questions. Let us start with the ques-
tion of how many different solutions there are. You can think of a trivially upper bound
by considering, that every n-queens configuration is also an n-rooks configuration. And
the rook arrangments correspond to permutation matrices, and here the exact number
is known, actually n!. So this is an upper bound for the solutions by considering queens.
But the precise number is also known for all n ≤ 27. To determine the accurate number
of solutions backtracking algorithms are used, though they are very inefficient. So the
computing power is too big for higher numbers. In 2022 Simkin [5] proved that there
is a constant 1, 94 < α < 1, 9449 such that the number of solutions of the n-queens
problem is ((1 ± o(1))ne−α)n. Thus inconceivably large. For n = 8 there are precisely
92 different n-queens configurations whereas there are over 39 billion distinct solutions
for n = 20. Consequently the linear increase in n corresponds to an exponential growth
of the number of different n-queens configurations. The fact that the precise number of
solutions is not known for arbitrary n is also consistent with the result of Hsiang, Hsu
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and Shieh [1]. Finding all the solutions for the n-queens problem is beyond the #P -class.
But what happens if we consider other pieces besides the queen? Does the problem

get easier? We have already taken a brief look at the situation with rooks. Since rooks
can only move along rows and columns, a maximum of n rooks can be placed. And as
already discussed, there are n! possibilities for such configurations. So let us continue
with kings. For them, we divide the board into 2 × 2 squares and place the kings at

equivalent positions in each block. In this way, we are able to place (2·⌈n
2
⌉)

2

4 kings on
an n × n chessboard. Next, have a quick look at the knights. First, we consider an
8 × 8 chessboard. Here we can place 32 knights. We can place one on each square of
a given colour since they move only to the opposite colour. And so in general, on an
n × n chessboard we are able to place ⌈n2

2 ⌉ non-attacking knights. With odd numbers,
one should choose the more frequent colour to place them on. In particular, we have two
possibilities to place them if n is even and only one if n is odd.

To make this situation on the other hand more complicated we can study the problem
in higher dimensional chess spaces. In 2006 Barr and Rao [6] established a first lower
bound of how many queens are at least necessary to attack all positions in a d-dimensional
chess space of size n, where d ≥ 3, n ≥ 4. Furthermore, they showed that there are
higher-dimensional chess spaces in which not all positions can be attacked by nk queens.
For a 3-dimensional chessboard Chakiat, Sudhakaran, Nair, and Venkatesh establish
a backtracking algorithm to find maximal 3d-solutions by using the solutions from 2-
dimensions [7]. There is a fundamental difference between the two models because in Barr
and Rao’s approach queens can also attack each other through different 2d-chessboard
levels, while in the second model, they can only block if they are in the same chessboard
level or right on top of each other.

Last but not least, let us look at toroidal chessboards. The toroidal chessboard arises
from the standard board by gluing the first and last column together and the first and last
row. This construction is mainly in use in the study of chess compositions. For example,
on the toroidal chessboard, it is impossible to checkmate the king with a queen and a
king. In 1918 Pólya [8] showed that one could place n queens on the chess torus of size
n× n exactly when n is relatively prime to 6. In 2021 Bowtell and Keevash [9] extended
this by specifying the number of solutions. They proved that if n is relatively prime to 6,
then the number of different solutions on the toroidal chessboard is

(
(1 + o(1)) n

e3

)n. The
structure of this expression is quite similiar to the number of n-queens configurations on
the standard chessboard stated by Simkin.

That connects to our main point, namely the n-queens completion problem. It dis-
cusses the question, given a set of each wise non-attacking queens, can we extend it to
an n-queens configuration? The n-queens completion problem is NP -complete and #P -
complete [2]. However, Mikhailovskii conjectured in 2021 that this problem is solvable
in polynomial time. And this is the link to the Millenium P versus NP problem. So if it
turns out that Mikhailovskii is right, this would solve the problem. But so far, no algo-
rithms are solving the n-queens completion problem in polynomial time. Its simplicity
but not triviality is why it has become a benchmark problem in artificial intelligence and
other programming techniques.
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My subsequent work is based on the paper from Glock, Correia, and Sudakov from
2022 [10]. Precisely I will focus on the following problem:

How many queens can always be placed on the chessboard
such that they can be completed to an n-queens configuration?

To work on this issue more formally, we will translate it into a graph problem. Because
then we can apply a lot of different tools. But first we need a few basic definitions.

Definition 1. An n-queens configuration is a set of n queens on an n×n chessboard
such that no two are in the same row, column, or diagonal.

A partial n-queens configuration is a set Q′ of k queens, where k ≤ n, such that
every row, column, and diagonal contains at most one element of Q′. Especially an
n-queens configuration is a partial n-queens configuration of size n.

A partial n-queens configuration Q′ is completable if there is an n-queens configura-
tion Q with Q′ ⊂ Q.

Now the n-queens completion problem asks if a given partial n-queens configura-
tion is completable.

More precisely as stated before, we want to determine the number of non-attacking
queens one can always place on the chessboard such that we can extend it to an n-queens
configuration. For that, let us introduce the following parameter.

Definition 2. Define qc(n) as the maximum integer with the property that any partial
n-queens configuration of size at most qc(n) is completable. qc(n) is called the n-queens
completion threshold.

Now we can formulate the main theorem bounding the n-queens completion threshold
stated by Correia, Glock and Sudakov in 2022.

Theorem 3 (Correia, Glock and Sudakov [10]). For all sufficiently large n, we have
n
60 ≤ qc(n) ≤ n

4 .

In this thesis I was able to improve the lower bound to n
52 ≤ qc(n) by generalising

their approach.
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2 Sketch of the proof of the lower bound

We want to establish a lower bound for the number of queens you can always place on
an n × n chessboard such that you can extend them to an n-queens configuration. In
this section I sketch the proof for the lower bound of Theorem 3 and discuss my main
contribution in Section 2.4.

2.1 Translation into a graph theory problem

Construction 4. To formulate the problem more formally, we represent the chessboard
by the 2-dimensional grid [n]× [n]. For each i ∈ [n], define

Ri = {(i, j) : j ∈ [n]}
Ci = {(j, i) : i ∈ [n]}.

Let R = {Ri : i ∈ [n]} denote the set of all rows and C = {Ci : i ∈ [n]} the set of all
columns. For k ∈ {−(n− 1), ..., n− 1}, define

D+
k = {(i, j) ∈ [n]× [n] : i+ j − (n+ 1) = k},

D−
k = {(i, j) ∈ [n]× [n] : i− j = k}.

Observe that D+
0 and D−

0 are the two main diagonals of size n. Let D = {D+
k , D

−
k : k ∈

{−(n− 1), ..., n− 1}} denote the set of all diagonals. Finally, let Ln = R∪ C ∪D be the
set of all lines.

To prove the lower bound of Theorem 3, we translate the problem into a graph problem.
For that we need the notion of a complete bipartite graph.

Definition 5. A bipartite graph is a graph whose vertex set partitions into two disjoint
and independent partition classes. Thus every edge has a vertex in each partition class.

A bipartite graph is complete if all possible edges, that is all edges between the two
partition classes are present.

Let G be the complete bipartite graph on the vertex partition classes R and C. Observe
one vertex represents a row or column and one edge represents a square of our n × n
chessboard.

With this reformulation, an n-queens configuration corresponds to a particular set of
edges. Because these represented squares cannot be in the same row or column, this
transfers to the condition that no two edges share an endpoint because those represent
a row or a column in G. We also want the configuration to have maximal size n, which
means each row and each column must contain one queen, and this corresponds to every
vertex in our graph should be incident to exactly one edge. Now this leads to the concept
of perfect matchings.

Definition 6. A matching of a graph G is a set of pairwise non-adjacent edges, which
means no two edges share a common vertex.

A matching is perfect if every vertex is incident to an edge of the matching.
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With that, the problem transfers to finding a perfect matching.
Finally, we also have to consider the diagonals. Therefore we assign two colours to

each edge, representing the two diagonals containing this edge. In the language of perfect
matchings, we do not accept edges sharing the same colour because this would mean we
put two queens in the same diagonal on the chessboard. Now we are at the concept of
perfect rainbow matchings.

Definition 7. A rainbow matching of an edge-coloured graph G is a matching of G
such that all the edges in the matching have distinct colours.

Especially a partial n-queens configuration on our chessboard corresponds to a rainbow
matching in G and an n-queens configuration on our chessboard corresponds to a perfect
rainbow matching in G.

Now the question of whether we can complete a partial n-queens configuration trans-
lates to whether we are able to find a perfect rainbow matching in G which contains the
edges fixed by our partial n-queens configuration. This perfect rainbow matching cor-
responds to an n-queens configuration, where we can embed the given partial n-queens
configuration.

2.2 The rainbow matching lemma

We will now state a lemma that gives us sufficient conditions for the existence of a perfect
rainbow matching.

For this, we need the notion of a proper, linear 2-fold edge colouring.

Definition 8. A 2-fold edge colouring assigns two colours to each edge of a graph G.
Such a colouring is proper, if all edges at a given vertex have pairwise disjoint colour

pairs. And it is linear if every colour pair belongs to at most one edge.

Lemma 9 (rainbow matching lemma [10]). For any α > 0, there exists ϵ > 0 and n0

such that the following is true for any n ≥ n0. Let G be a bipartite graph with parts
A,B of size n with a proper, linear 2-fold edge colouring. Assume that the following
conditions are satisfied for some d:

(i) every vertex has degree (1± ϵ)d

(ii) every colour has degree at most (1− α)d

(iii) any two sets A′ ⊂ A and B′ ⊂ B of size at least (1− α)d have at least αn2 edges
between them.

Then G has a perfect rainbow matching.

Here the first condition means that all vertices in our graph should have roughly the
same degree d. So our graph should be almost d-regular. Condition (ii) restricts the
number of edges coloured with one colour. With that the number of edges of each
colour is bounded from above by d. This way, we ensure that using one colour does not
ban too many other edges. The last condition states that we have a certain amount of
edges between sufficiently large subsets. Thus it guarantees that we have enough edges
available.
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2.3 Application of the rainbow matching lemma

With this model established, we are now well-equipped to prove the lower bound of
Theorem 3. We start with a partial n-queens configuration Q′ and define the graph G
as the complete bipartite graph missing all edges attacked by one of the queens from
Q′. It remains to show that Q′ is completable. And this is equivalent to showing that G
has a perfect rainbow matching. Because perfect rainbow matchings of G correspond to
placements of queens who do not attack each other and do not affect the queens from Q′.
To apply Lemma 9 to our graph G, we need to ensure that it satisfies all the conditions.
Now G might be irregular, and the degrees of some colours might be significantly larger
than those of the vertices. Therefore we consider an appropriate spanning subgraph
G′ ⊆ G. Note that a perfect rainbow matching of G′ is also a perfect rainbow matching
of G. Because only edges already contained in G will be used (it is a subgraph), and
all vertices in G′ will be incident to some edge (it is spanning). We obtain this graph
by choosing each edge from G independent with a certain probability. So we need some
probabilistic arguments and tools like this inequality.

Lemma 10 (Chernoff-Hoeffding bound). Let X be the sum of n independent Bernoulli
random variables. Then for any λ ≥ 0, we have

P[|X − E[X]| ≥ λ] ≤ 2 exp

(
−2λ2

n

)

To define a suitable probability we will use edge-weightings. With that we will be able
to regularise the number of edges of one colour.

Definition 11. An edge-weighting is a function ω : E(G) → X, where X ⊂ R.

But to fulfill condition (i), the edge-weighting needs to be adjusted, such that all
vertices have roughly the same degree. Therefore we will use the following technical
proposition.

Proposition 12 ([10]). Let c, d′ > 0 and let G be a bipartite graph with parts A,B of
size n where any two vertices in the same part have at least c common neighbors. Let
ω0 : E(G) → [0, 1] be an edge weighting such that

∑
e∋u ω0(e) = d± d′ for all vertices u,

where d = 1
n

∑
e∈E(G) ω0(e). Then there exists an edge weighting ω : E(G) → R such that

the total weight of edges at every vertex is d, and |ω(e)− ω0(e)| ≤ 2d′

c for all e ∈ E(G).

Now we can check all conditions from Lemma 9. We will show that G′ fulfills all con-
ditions with high probability. And therefore, we can conclude that G′ contains a perfect
rainbow matching corresponding to the completion of Q′ to an n-queens configuration
with positive probability.
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2.4 Generalisations and the resulting conditions for β

To adapt G′ appropriately, we need to define an edge-weighting. In [10] they work with
a fixed weighting. Whereas I will use the following refined definition of edge-weightings
in my improved version of the proof.

Definition 13. Let 0 < t0 ≤ m ≤ s ≤ t1 ≤ 1. An (s,m, t0, t1)-edge-weighting is a
function

ω : [n]× [n] → [t0, t1], (1)

such that

ω(Ri) = ω(Ci) = sn+O(1) ∀i ∈ [n]

ω(D+
k ), ω(D

−
k ) ≤ mn+O(1) ∀k ∈ {−(n− 1), ..., n− 1}.

We need the following inequality during the proof that the second condition of Lemma 9
holds,

m+ µ < s− 3β.

Note that βn with 0 ≤ β < 1 will be the size of our partial n-queens configuration. We
are interested in upper bounds on β.

This inequality is equivalent to

β2 +

(
m

3
− t1

3
+

t0
9
− s

3
− 1

6

)
β +

s−m

18
> 0

by using the weighting of Definition 13. Which especially gives an upper bound for β.

β <

(
−m

6
+

t1
6
− t0

18
+

s

6
+

1

12

)
−

√(
m

6
− t1

6
+

t0
18

− s

6
− 1

12

)2

− s−m

18
. (2)

Observe that this equation is only increasing in terms of s − m. We get one more
constraint such that our probability is well-defined.

β <
t0

6t1 + 4t0
. (3)

And by checking the third condition of Lemma 9 we also need that β is small in terms
of s.

β ≤ s

10
. (4)

Note that this third upper bound is a very rough one. But optimising it would not bring
any improvment since (2) is the main limiting bound.
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3 Detailed and generalized version of the proof of the lower
bound

Theorem 14. Given 0 < t0 ≤ m ≤ s ≤ t1 ≤ 1, let β > 0 such that β satisfies (2), (3)
and (4). Then there exists an n0 ∈ N such that

βn ≤ qc(n) ∀n ≥ n0.

Proof. Given 0 < t0 ≤ m ≤ s ≤ t1 ≤ 1 and β as in the statement, let α be small in terms
of t0, s,m, t1 and β. Let ϵ be small in terms of t0, s,m, t1, β and α and let then n−1

0 be
small in terms of all these parameters. Now let n ≥ n0.

We use the notation from Construction 4. In particular, recall R denotes the set of
all rows and C of all columns. Now consider the complete bipartite graph Gn on the
vertex set R ∪ C, consisting of the n rows and n columns from the chess board. Define
a 2-fold edge colouring by colouring each edge (Ri, Cj) ∈ R × C with the two colours
representing the two diagonals containing the square of the chessboard corresponding to
(Ri, Cj). That is, define

φ : E(Gn) = R× C → D2
n,

(Ri, Cj) 7→ (D+
i+j−(n+1), D

−
i−j).

This colouring should be proper, and linear. Since each row or column intersects with
every diagonal at most once it is proper, and because any two diagonals intersect in at
most one square, it is linear.

Let Q′ ⊆ [n]×[n] be an arbitrary partial n-queens configuration of size βn. Let R′ ⊆ R
be the rows, and C′ ⊆ C be the columns not containing a queen from Q′. Let G be the
subgraph of Gn induced by R′ and C′ after deleting all edges (Ri, Cj) for which Q′ has
a queen on D+

i+j−(n+1) or D−
i−j . So now we are only left with edges not attacked by a

queen of Q′.
Let ω0 be an (s,m, t0, t1)-edge-weighting. Note that the weight of a line is just the

sum of the weights of all squares on that line. Now, we restrict ω0 to the edges of G.
Slightly abusing notation, this restricted weighting will still be called ω0. Note that it is
still true that

ω0(Ri) = ω0(Ci) ≤ sn+O(1) ∀i ∈ [n]

ω0(D
+
k ), ω0(D

−
k ) ≤ mn+O(1) ∀k ∈ {−(n− 1), ..., n− 1}

by definition.
For applying Lemma 9 the vertex degrees need to be regularized by maintaining a

slight gap between the degrees of vertices and colours. The average weight of a vertex is

d :=
1

(1− β)n

∑
(Ri,Cj)∈E(G)

ω0((Ri, Cj)).

12



Indeed, recall that (1− β)n is the number of rows and columns in G, respectively. So, in
particular, it has the size of the perfect matching which we need to construct. Note that
every queen attacks at most 3 squares in each row or column, and the maximum weight
of these squares is t1. This gives the lower bound on the remaining weighting in a row or
column. Otherwise each queen attacks at least one square with weight at least t0. This
is because each of the queens block a unique square belonging to the row or column their
in, and each row intersects with each column at least once and vice versa. And thus each
of the βn queens blocks at least one field in each row and column. Consequently we get
the following bounds:

sn+O(1)− 3t1βn ≤ d ≤ sn+O(1)− t0βn. (5)

For the same reason, any two vertices of G in the same part have at least n−6βn common
neighbors. So by applying Proposition 12 with d′ = (3t1−t0)βn+O(1) and c = (1−6β)n,
there is a weighting ω : E(G) −→ R such that every vertex has total weight d, that is

∀u ∈ V (G) : ω(u) =
∑

uv∈E(G)

ω(uv) = d (6)

and the weight of ω0 is changed by at most

µ :=
2d′

c
=

2 · (3t1 − t0)β

(1− 6β)
+O

(
1

n

)
(3)
< t0 − ϵ. (7)

Where the inequality holds since (3) is equivalent to

2 · (3t1 − t0)β

(1− 6β)
< t0,

and n is large in terms of ϵ.
Now, we randomly sparsify the graph G to obtain a subgraph G′ which is approximately

regular. For this, define

pe :=
ω(e)

1 + µ
(8)

for each edge e ∈ E(G). Note that 1 ≥ pe ≥ ϵ
2 > 0. Because

pe =
ω(e)

1 + µ
≤ ω0(e) + µ

1 + µ

ω0(e)∈[t0,t1]
≤ t1 + µ

1 + µ
≤ 1 + µ

1 + µ
= 1

and

pe =
ω(e)

1 + µ
≥ ω0(e)− µ

1 + µ

ω0(e)∈[t0,t1]
≥ t0 − µ

1 + µ

(7)
≥ ϵ

2
. (9)

Now include every edge in G with probability pe. We will now show that G′ satisfies the
properties (i)-(iii) of Lemma 9.
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Let u ∈ V (G). The expected degree of u in G′ is

d := E[d(u)] =
∑

uv∈E(G′)

puv

(8)
=

1

1 + µ

∑
uv∈E(G′)

ω(e)
(6)
=

d

1 + µ

(5)
≥ sn+O(1)− 3t1βn

1 + µ
(10)

≥ (s− 3β)n

2
+O(1)

(4)
≥ ϵn.

Therefore, Lemma 10 implies that

P[|dG′(u)− d| ≥ ϵd] ≤ P
[
|dG′(u)− d| ≥ α

2
ϵn
]
≤ 2 exp

(
−2 · α

2

4
ϵ2
n2

n

)
≤ 1

n2
.

Thus, a union bound over at most 2n vertices gives

P
[
∃u ∈ V (G′) : (|dG′(u)− d| ≥ ϵd)

]
≤

∑
u∈V (G′)

P [|dG′(u)− d| ≥ ϵd] ≤ 2n · 1

n2
= o(1).

So with high probability, all vertices have degree (1±ϵ)d and therefore condition (i) from
Lemma 9 holds with high probability.

To check the second condition, consider any colour c. Since the weight of each edge
has increased by at most µ and c appears on at most n edges (the longest diagonal has
size n) and due to our probability pe, the expected degree d(c) in G′ is

E[d(c)] =
∑

e∈E(G′),e is coloured c

pe =
∑

e∈E(G′),e is coloured c

w(e)

1 + µ

≤ mn+O(1) + µn

1 + µ

Note that (2) is equivalent to
m+ µ < s− 3β. (11)

And because ϵ and α are chosen sufficiently small they fulfill

0 < 2ϵ+ (s− 3β − ϵ)α ≤ s− 3β − (m+ µ).

So, in particular, that means that ϵ and α are sufficiently small to close the gap given by
the strict inequality (11) but not conflict with it. And with that, the following holds

m+ µ+ ϵ ≤ (1− α) (s− 3β − ϵ)

≤ (1− α) (s− 3t1β − ϵ) .
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And therefore

mn+ µn+ ϵn

1 + µ
≤ 1− α

1 + µ
(sn− 3t1βn −n · ϵ︸ ︷︷ ︸

≤O(1)(1+µ)

)
(10)
≤ (1− α)d. (12)

Furthermore

mn+ µn+ ϵn

1 + µ
− E[d(c)] ≥ mn+ µn+ ϵn

1 + µ
− mn+O(1) + µn

1 + µ

=
ϵn

1 + µ
− O(1)

1 + µ
(7)
>

ϵn

2
− ϵn

4
=

ϵn

4
.

So Lemma 10 implies

P[d(c) ≥ (1− α)d]
(12)
≤ P

[
d(c) ≥ m+ µ+ ϵ

1 + µ
· n
]

≤ P
[
|d(c)− E[d(c)]| ≥ m+ µ+ ϵ

1 + µ
· n− E[d(c)]

]
≤ P

[
|d(c)− E[d(c)]| ≥ ϵn

4

]
≤ 2 exp

(
−2

(
ϵn
4

)2
2n

)

= 2 exp

(
− 1

16
ϵ2n

)
≤ 1

n2
.

Due to a union bound over the at most 2n colours

P
[
∃c ∈ D2

n : d(c) ≥ (1− α)d
]
≤
∑
c

P[d(c) ≥ (1− α)d] ≤ 2n · 1

n2
= o(1).

And therefore, with high probability, all colours have a degree lower than (1 − α)d, so
condition (ii) holds with high probability.

Last, but not least, it remains to show that the third condition of Lemma 9 holds.
Therefore consider a set of rows R′′ ⊆ R′ and a set of columns C ′′ ⊆ C′ each of size at
least (1− α)d. Note that each of the βn queens attacks at most 2 squares of each of the
remaining (1− β)n rows in the subchessboard induced by R′′ and C ′′.
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So there are at least

|R′′||C ′′| − 2(1− β)n · βn ≥ (1− α)2d2 − 2(1− β)βn2

≥
(
1− α

1 + µ

)2

(sn+O(1)− 3βn)2 − 2β2n2

≥ 1

16
(s− 4β)2n2 − 2β2n2

(4)
≥ 1

400
s2n2

≥ ϵn2

edges between R′′ and C ′′. Since pe
(9)
≥ ϵ

2 > 0 for all e ∈ G, it follows that

E[eG′(R′′, C ′′)] ≥ ϵ

2
· ϵn2 > 2αn2.

And thus Lemma 10 implies

P
[
eG′(R′′, C ′′) ≤ αn2

]
≤ P

[
|eG′(R′′, C ′′)− E[eG′(R′′, C ′′)]| ≥ αn2

]
≤ 2 exp

(
−2

(αn2)2

n2

)
≤ 2 exp

(
−2α2n2

)
.

Note that there are at most 2n choices for R′′ ⊆ R′ and similarly for C ′′ ⊆ C′. Thus, a
union bound over the at most 4n choices for R′′ and C ′′ yields that the probability, that
there are sets R′′ ⊆ R′, C ′′ ⊆ C′ with |R′′|, |C ′′| ≥ (1 − α)d and less or equal αn2 edges
between them, is less or equal to

4n · 2 exp
(
−2α2n2

)
≤ o(1).

And so with high probability there are at least αn2 edges between R′′ and C ′′ ∀R′′ ⊆
R′, C ′′ ⊆ C′ of size at least (1− α)d, satisfying (iii) with high probability.

Hence by choosing each edge with probability pe, we obtain a subgraph G′ ⊂ G, which
satisfies each of the required properties with high probability. Due to a union bound over
the three conditions, G′ satisfies (i), (ii), and (iii) simultaneously with positive probability.
Finally, Lemma 9 can be applied to conclude that G′ has a perfect rainbow matching
corresponding to a completion of Q′.
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4 Main results

Proposition 15 ([10]). For all n ∈ N, there exists a weighting ω : [n]× [n] → [12 , 1] with
the property that every row and column has total weight 5n

6 +O(1), but every diagonal
has weight at most 2n

3 +O(1).

Figure 2: The weight function for n = 3.

Corollary 16. For n sufficiently large, we have qc(n) ≥ 0.01926 ≥ 1
52n.

Remark. We get an even better bound than in Theorem 3 basically because of our
adaptation in equation (5).

Proof. Apply Theorem 14 with Proposition 15.

Construction 17. Another approach for improving the bound for β was to adjust the
weight function. In my generalized version of the proof, the direct dependence of the lower
bound - more precisely β - on the weighting becomes clear by equation (2). Therefore
I thought I try to improve these weighting in terms of improving the distance between
the weighting of the diagonals to the weight of the columns and rows. Because (2) is
increasing with s−m. For this, I want to introduce a weighting on an n× n board with
n > 3. Because, for n = 3, we can not improve the distance anymore. Consider for this

ω(D+
0 ) = 2 =

2

3
· 3

the highest weighting of a diagonal and

ω(R1) = 2.5 =
5

6
· 3

17



the weighting of all rows and columns. As soon as we change some weight on the diagonal
to make the total weighting smaller, the weight of a row or column would decrease with
the same amount. Therefore I decided to try higher values for n. My goal was to get a
weighting such that

ω(D+
i ), ω(D

−
j ) ≤ m · n <

2

3
· n

ω(Ri), ω(Ci) = s · n ≥ 5

6
· n.

I have reached this goal with linear optimization in Python for n = 9. With this, I got
the following weighting.

Figure 3: The optimized weight function for n = 9.
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With this weighting, we obtain the following weights for the diagonals, rows, and
columns

ω(D+
i ), ω(D

−
j ) ≤ 5.96 =

149

225︸︷︷︸
m

·9 ∀i, j ∈ {−8, ..., 8}

ω(Ri), ω(Cj) = 7.5 =
5

6︸︷︷︸
s

·9 ∀i, j ∈ {1, ..., 9}.

Therefore the distance between s and m has been slightly improved

s−m =
77

450
>

1

6
=

5

6
− 2

3
.

Proposition 18. For all n ∈ N, there exists a weighting ω : [n] × [n] → [0, 412, 1] with
the property that every row and column has total weight 5n

6 +O(1), but every diagonal
has weight at most 149n

225 +O(1).

Proof. Define a weight function ω : [n]× [n] → [0.412, 1] by defining a partition of [0, 1]
in nine subintervalls as follows

Ii =

[
i− 1

9
,
i

9

)
∀i ∈ {1, ..., 8}

I9 =

[
8

9
, 1

]
.

This partition in subintervals gives a checkered division of our [n] × [n] grid. And now
assign the values given in Fig. 3 to each square in a corresponding area.

Then we have

ω(R), ω(C) = 7.5 · n
9
+O(1) =

5

6
· n+O(1) ∀C ∈ C, R ∈ R.

By symmetry it suffices now to consider D−
k for fixed k ∈ {0, ..., n−1}. By the definition

of ω, the weight of any such diagonal with k ≥ n
3 is dominated by the one with k = ⌈n3 ⌉,

since for larger k, the size of the diagonals and the weight of the diagonals are non-
increasing as k increases. Finally, for k ≤ ⌈n9 ⌉, we have

ω(D−
k ) = 2 ·

(n
9
− k
)
· 0.778 + 2 · k · 0.472 + 2 ·

(n
9
− k
)
· 0.778 + 2 · k · 1

+ 2 ·
(n
9
− k
)
· 0.412 + 2 · k · 0.977 + 2 ·

(n
9
− k
)
· 0.509 + 2 · k · 0.528

+
(n
9
− k
)
· 1 +O(1)

=
2977

4500
n+O(1)

≤ 149

225
n+O(1)
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Analogous calculations are obtained for n
9 ≤ k ≤ 2n

9 and 2n
9 ≤ k ≤ ⌈n3 ⌉. And this proves

the claim.

Corollary 19. For n sufficiently large, we have qc(n) ≥ 0.019324n.

Proof. Apply Theorem 14 with Proposition 18.

Remark. Maybe we can find an even better weighting considering higher n. However,
the resulting improvement compared to Corollary 16 is so minimal that the cost is con-
siderably high compared to. And the finer the weighting, the more complex it gets.
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5 A special placement of the partial n-queens configuration

Another idea to achieve a better lower bound was to be more restrictive in the placement
of our partial n-queens configuration on the chessboard. So in other words be more
precise on where the partial n-queens configuration is placed. Since where a queen is
placed, affects the amount of weights it is going to block. If we have another look at
the proof, the main bound on β is determined by (11), which significantly depends on
µ. In particular, if µ decreases the bound for β will increase. µ depends on d′ which is
the difference between the lower and upper bound on the average vertex weighting, see
(5). And here we can be more precise if we know where our queens are placed on the
chessboard. And that would decrease d′, and so µ and finally this would lead to a higher
upper bound on β.

5.1 The corner placement

To formulate this approach let us adapt our n-queens completion threshold.

Definition 20. Fix an n ∈ N and let k ≤ n. Now q̂c(n) is the maximum integer with
the property that any partial n-queens configuration which is a k-queens configuration
placed in the corner of the chessboard is completable. q̂c(n) is the n-queens corner
completion threshold.

Figure 4: A partial n-queens configuration that is a βn-queens configuration placed in
the corner of the chessboard.
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Theorem 21. For n sufficiently large, we have q̂c(n) ≥ 0.0277778n > n
36 .

Proof. Let Q′ be a partial n-queens configuration of size βn that is a βn-queens con-
figuration. Wlog we place Q′ in the bottom left corner of our chessboard. We use the
weighting given by Proposition 15. Now we can be more precise on the lower and upper
bounds for the remaining weighting of a row or column. So instead of (5)

sn+O(1)− 3t1βn ≤ d ≤ sn+O(1)− t0βn

we get
5

6
n+O(1)− 2βn ≤ d ≤ 5

6
n+O(1)− 3

4
βn. (13)

Indeed, first note for the lower bound that by placing our complete partial n-queens
configuration in one corner, all queens of Q′ can block at most two squares per row and
column instead of three (Fig. 4). As seen in Fig. 2, we can easily divide our chessboard in
n
3 fractions. So let us have a look at each of these parts separately. It suffices to consider
the rows because for the columns symmetric arguments hold. In the first and last thirds,
each queen can attack at most two squares with weight 3

4 or a square with weight 1 and
a square with weight 3

4 . And in the middle, each queen can attack at most two squares
with weight 1. So the maximum weight that is blocked is 2βn.

If we now look for the minimum weight blocked by Q′, observe that each queen blocks
a column in the first third. And therefore each queen blocks at least one square of weight
at least 3

4 .
With these new bounds on d, we get

µ =
5
2βn

(1− 6β)n
+O

(
1

n

)
<

1

2
− ϵ

which is equivalent to

β <
1

11
.

And to fulfill
2

3
+ µ <

5

6
− 3β,

β needs to satisfy

β2 − 13

36
β +

1

108
> 0.

And this gives us the bound

β ≤ 1

36
< 0.02778.

Note that these bounds imply that β ≤
5
6
10 ≈ 0.083, so (4) is also satisfied.

Now all other steps are analoguous to the proof of Theorem 3. And therefore our
partial n-queens configuration of size βn that is a βn-queens configuration in the corner
of the chessboard is completable.

Thus, Theorem 21 shows that it is possible to get better bounds by restricting the
placement of the partial n-queens configuration.
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5.2 Further work

We could get even better bounds for the n-queens corner completion number, if we had
tighter bounds than (13). And we could get them, if we knew more about the arrangement
itself. As seen in Fig. 4 the weight blocked by a queen via the diagonal depends on where
the queen is placed. For example, in the top third of the rows, a queen in the bottom
corner can either block a square of weight 3

4 or a square of weight 1 via the diagonal. In
particular, I could not be precise on the weighting blocked by the diagonals.

To get more knowledge of the weight blocked via diagonals, it could be interesting to
look at how the queens are allocated within an n-queens configuration. In particular,
which amount of queens is on one side if we divide our chessboard on one of the main
diagonals? With this, we might make the bound in (13) more accurate because we could
also use the knowledge from diagonals.

For example, if it turns out that the queens are evenly distributed, say we have between
n
2 and n

2 + 1 many queens on one side including the main diagonal. (This is motivated
by analysing n-queens configurations for n = 8, 9, 10.) Then we would have q̂c(n) ≥
0.03411n, which is notably bigger than the result of Theorem 21.

Another direction for further work is to study other special placements of the partial
n-queens configuration. The approach will be the same as in Theorem 21. So it suffices
to study the difference in weights blocked and then use the arguments of Theorem 3.
This Theorem thus provides a good framework for studying this type of problems.
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