Global Surfaces of Section and the Hopf Fibration Heidelberg University

Anna Ziegler

17 September 2021

Contents

1	Introduction								
	1.1Fibre Bundles1.1.1What's a Fibre Bundle?1.1.2The Hopf Fibration1.1.3The Hopf Flow as a Reeb Flow1.1.4Projecting the Hopf Fibration into \mathbb{R}^3 1.2D-Sections1.2.1A Disc-Like 1-Section	3 4 4 5 8							
2	Visualizing the Hopf Fibration 11								
	2.0.1 Libraries	11							
3	Visualizing d-Sections	15							
	3.1 Disc-Like 1-Sections	155 177 188 200 211 222 244 246 260 277							
	4.1 The Riemann Sphere								
A	A Appendix: Code								
В	3 Class CxComplex								
\mathbf{C}	C Mathematics Library								
D	D-Section Library								
${f E}$	Rotation Library								

CONTENTS

\mathbf{F}	Graphics library	5 4
\mathbf{G}	Class HScrollbar	61
н	Rec Library	63

Chapter 1

Introduction

This bachelor project builds on the paper 'A Symplectic Dynamics Proof of the Degree-Genus Formula' by Peter Albers, Hansjörg Geiges and Kai Zehmisch [1]. Our focus will be on the first part of the paper, which deals with classifying global surfaces of section for the Hopf fibration. We will start by covering the basic mathematical concepts to then visualize the Hopf fibration using the programming language Processing, and finally identify and visualize various d-sections.

1.1 Fibre Bundles

1.1.1 What's a Fibre Bundle?

First, let us investigate what a fibre bundle is. Because, unlike its name, the Hopf fibration is not only a fibration, but a fibre bundle, which is more constrained.

DEFINITION 1. A **fibre bundle** is a structure (E, B, π, F) . Here E,B,F are topological spaces and $\pi: E \to B$ is a continuous surjection. E is called the total space, B the base space and F the fibre. π is the bundle projection satisfying the local triviality condition: For every $x \in B$, there is an open neighbourhood $U \subset B$ of x such that there is a homeomorphism $\varphi: \pi^{-1}(U) \to U \times F$ so that the following diagram should commute:

That means that a fibre bundle is a space that locally looks like a product, but globally it can look differently. Thus, a Cartesian Product of two spaces is the easiest example of a fibre bundle, since it also globally is a product. A more sophisticated example is the Möbius Strip: locally it looks like a Cartesian Product of a circle with a line, but it has a global twist. Both are depicted in figure 1.1.

Figure 1.1: The Cartesian Product and the Möbius strip

1.1.2 The Hopf Fibration

For the Hopf Fibration, we have the total space being $E = S^3 \subset \mathbb{C}^2$. Interestingly, we can obtain that sphere by a twisted product of S^1 with S^2 .

DEFINITION 2. The **Hopf Fibration** is a fibre bundle given by: (S^3, S^2, H, S^1) with the Hopf Map H defined as

$$H: S^3 \subset \mathbb{C}^2 \to \mathbb{C} \cup \{\infty\} \cong S^2$$

$$(z_1, z_2) \mapsto \frac{z_1}{z_2}$$

or, alternatively:

$$H: S^3 \subset \mathbb{C}^2 \to \mathbb{C}P^1$$

 $(z_1, z_2) \mapsto z_1: z_2$

In this thesis, we will refer to the Hopf Map as the first of the two definitions, and identify $\mathbb{C} \cup \{\infty\}$ with the Riemann Sphere as defined below.

DEFINITION 3. The **Riemann Sphere** is the compactification of the complex plane, which is achieved by adding the point ∞ to the complex plane. The mapping consists of the identity on \mathbb{C} and the second map on $(\mathbb{C} \cup \infty) \setminus \{0\}$

$$z \mapsto \begin{cases} \frac{1}{z} & \text{for } z \in \mathbb{C} \\ 0 & \text{for } z = \infty \end{cases}$$

1.1.3 The Hopf Flow as a Reeb Flow

Another way of obtaining the Hopf Fibration is using the Reeb flow of the standard contact form α_{st} on $S^3 \subset \mathbb{R}^4$ given by

$$\alpha_{st} = (x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2)|_{TS^3}$$

DEFINITION 4. In a contact Manifold, given a contact-1-form α , the **Reeb Vector-field** R is the vector field satisfying

$$R \in ker(d\alpha)$$

$$\alpha(R) = 1$$

The Reeb vector field of α_{st} is thus given by:

$$R_{st} = x_1 \partial_{y_1} - y_1 \partial_{x_1} + x_2 \partial_{y_2} - y_2 \partial_{x_2}$$

The Hopf Flow being the Reeb flow of α_{st} implies lemma 5. For more information about contact forms, Reeb vector fields and everything related, see [2].

LEMMA 5. The **Hopf Flow** is defined as $\Phi_R^t(p) = e^{it} \cdot p$

Intuitively, this means that both copies of \mathbb{C} get rotated simultaneously. The orbits of the Hopf flow are the fibres of the Hopf fibration. Using the Hopf map from definition 2, we can verify this claim, since points on the same orbit map to the same point on the Riemann sphere:

$$H(\Phi_R^t(z_1, z_2)) = H((e^{it}z_1, e^{it}z_2)) = \frac{e^{it} \cdot z_1}{e^{it} \cdot z_2} = \frac{z_1}{z_2} = H((z_1, z_2))$$

REMARK 6. An interesting property of the Hopf fibration is that any two Hopf fibres are linked by a so called Hopf link. This means, they are linked like two parts of a chain, as you can see in figure (1.2).

Figure 1.2: The Hopf link

1.1.4 Projecting the Hopf Fibration into \mathbb{R}^3

To get an intuition about how the Hopf fibration behaves, it is useful to project it into three dimensions. This can be done using the stereographic projection. Fortunately,

Figure 1.4: The circle-preserving 2D stereographic projection

Figure 1.3: The Riemann Sphere

this map is circle-preserving, which means that circles will be mapped onto circles. This property is very handy for our purpose since we want to look at the S^1 -fibres of the Hopf fibration. Just like in the 2D-case (figure 1.4), the only circles that are not mapped to circles are those which go through the north pole of the projection.

They are mapped to straight lines, which we can interpret as 'infinitely big' circles. In the diagram below, you can see how the projection works: On the left you can see $S^3 \subset \mathbb{C}^2$. The Hopf map projects fibres of S^3 to points on the Riemann Sphere on the top right. Whereas, the stereographic projection maps S^3 to $\mathbb{R}^3 \cup \infty$, which you can see on the bottom right.

Let us go through the diagram, to get a closer look at how the projection works.

Figure 1.5: Projecting the Hopf Fibration into 3 Dimensions

We start by choosing a point on the Riemann Sphere, in this case the south pole, indicated in blue, and the north pole drawn in pink. Now we want to 'reverse' the Hopf map, to find the fibre that is projected onto these points by the map. For the north pole we compute:

$$\frac{z_1}{z_2} = \infty \implies z_2 = 0, |z_1| = 1$$

And analogously for the south pole:

$$\frac{z_1}{z_2} = 0 \implies z_1 = 0, |z_2| = 1$$

Thus, the north pole fibre is given by:

$$C_2 = \{ (e^{i\theta}, 0) : \theta \in \mathbb{R}/2\pi\mathbb{Z} \}$$

and the south pole fibre respectively:

$$C_1 = \{(0, e^{i\theta}) : \theta \in \mathbb{R}/2\pi\mathbb{Z}\}$$

The reason for the names C_1 and C_2 will become clear in 1.2.1. Keep in mind that the sum of the absolute values of z_1 and z_2 have to equal 1, since we want to stay on S^3 . You can see the fibres in S^3 in diagram 1.5 indicated in the matching colours. Having identified the fibres in \mathbb{C}^2 , we use the stereographic projection σ with north pole $N_{\sigma} = (0, 0, 0, 1)$ to map them to $\mathbb{R}^3 \cup \infty$.

DEFINITION 7. The stereographic projection σ with north pole $N_{\sigma} = (0, 0, 0, 1)$ is defined as:

$$\sigma: S^3 \subset \mathbb{C}^2 \to \mathbb{R}^3 \cup \infty$$
$$(x_1 + iy_1, x_2 + iy_2) \mapsto (\frac{x_1}{1 - y_2}, \frac{y_1}{1 - y_2}, \frac{x_2}{1 - y_2})$$

Using this projection, we obtain for $\theta \in \mathbb{R}/2\pi\mathbb{Z}$:

$$\sigma(C_1) = \left(\frac{0}{1 - \sin(\theta)}, \frac{0}{1 - \sin(\theta)}, \frac{\cos(\theta)}{1 - \sin(\theta)}\right) = \left(0, 0, \frac{\cos(\theta)}{1 - \sin(\theta)}\right)$$
$$\sigma(C_2) = \left(\frac{\cos(\theta)}{1}, \frac{\sin(\theta)}{1}, \frac{0}{1}\right) = \left(\cos(\theta), \sin(\theta), 0\right)$$

Thus, we see that the two fibres we chose are projected onto the z-axis and onto a unit circle in the x-y-plane respectively. We can see this illustrated in figure 1.5: C_2 intersects the N_{σ} and thus gets projected onto a line.

This concludes the process. We will implement what we have learned in our code and choose the points on the Riemann Sphere systematically to study the behaviour of the Hopf fibration.

1.2 D-Sections

A valuable tool for studying the Hopf fibration is the concept of global surfaces of section, or d-sections. Intuitively speaking, we are searching for a surface bounded by a fibre or a union of fibres that will intersect all other fibres in our bundle exactly d times.

DEFINITION 8. A global surface of section, or d-section, for the flow of a non-singular vector field X on a three-manifold M is an embedded compact surface $\Sigma \subset M$ that has to meet three conditions:

- i) the boundary $\partial \Sigma(M)$ is a union of orbits
- ii) the interior $Int(\Sigma)$ is transverse to X
- iii) the orbit of X through any point in $M \setminus \partial \Sigma$ intersects $Int(\Sigma)$ in exactly d points (in forward and backward time) (from [1])

1.2.1 A Disc-Like 1-Section

Now we want to look at an example of a disc-like 1-section for the Hopf flow. Before we go on, we will introduce the concept of the soul of a solid torus.

DEFINITION 9. Given a Torus $T = S^1 \times D^2$, the **soul** C_T **of V** is given by $C_T = S^1 \times \{0\}$

That means that the soul is the circle in the 'middle' of the torus as depicted in figure 1.6.

Figure 1.6: Soul C_T of a torus T

REMARK 10. Notice that we can build up a solid torus using a union of nested tori. We define them as $T_r = S^1 \times r * D^2$ with $0 < r \le 1$. To obtain a solid torus, we need to add the soul to this union of tori:

$$T = \bigcup_{0 < r \le 1} T_r \cup C_T$$

LEMMA 11. S^3 can be obtained by glueing two solid tori together.

Proof. We define two tori $V_1, V_2 \subset S^3$ given by

$$V_1 := \{|z_1| \le \frac{1}{\sqrt{2}}\} = \{|z_2| \ge \frac{1}{\sqrt{2}}\}$$

$$V_2 := \{|z_2| \le \frac{1}{\sqrt{2}}\} = \{|z_1| \ge \frac{1}{\sqrt{2}}\}$$

The identification with $S^1 \times D^2$ is given by:

$$V_1 := \{ (z, \sqrt{1 - |z|^2 e^{i\theta}}) : |z| \le \frac{\sqrt{2}}{2}, \theta \in \mathbb{R} \setminus 2\pi\mathbb{Z} \}$$

$$V_2 := \{ (\sqrt{1 - |z|^2 e^{i\theta}}, z) : |z| \le \frac{\sqrt{2}}{2}, \theta \in \mathbb{R} \setminus 2\pi\mathbb{Z} \}$$

Clearly, the union of these two shapes form the whole of S^3 . The souls C_1 of V_1 and C_2 of V_2 are given by the fibres mapping to the respective poles of the Riemann Sphere by the Hopf map. They are indicated in diagram 1.5 in pink and blue.

$$C_1 = \{(0, e^{i\theta}) : \theta \in \mathbb{R}/2\pi\mathbb{Z}\}$$

$$C_2 = \{ (e^{i\theta}, 0) : \theta \in \mathbb{R}/2\pi\mathbb{Z} \}$$

In picture 1.7 you can see \mathbb{R}^3 , with the two projected fibres in it. The sketch is

Figure 1.7: Two fibres of the Hopf Fibration being mapped into \mathbb{R}^3

symmetric under rotation, so the two blue points actually represent a circle and the grey circles indicate tori. Note that the total space $\mathbb{R}^3 \cup \{\infty\} \cong S^3$ without the two fibres can be obtained by a union of nested tori, like the ones indicated in grey. As we investigated in Remark 10, a solid torus can be obtained by a union of its soul and nested tori around this soul. This is precisely what we construct now: We take the blue soul C_1 and the pink soul C_2 and unite them with nested tori around them to obtain V_1 and V_2 . This is illustrated in figure 1.8.

Although the blue fibre maps to a line in \mathbb{R}^3 using the stereographic projection, it is a circle in \mathbb{C}^2 . If we chose a different north pole in the stereographic projection, for example $\tilde{N} = (1,0,0,0)$, then we would get the same result, but with switched colours. In this case the pink fibre would be infinitely long and the blue fibre would be the circle in the x-y-plane. This shows the distortions to be only an artifact of the projection.

From this we can conclude that S^3 can be viewed as two solid tori glued together. S^3 is obtained by gluing the meridian of one torus onto the longitude of the other. \square

EXAMPLE 12. The disc-like surface Σ_N bounded by C_2 is a 1-section for the Hopf flow.

$$\Sigma_N = \{(re^{i\theta}, \sqrt{1-r^2}) : r \in [0, 1], \theta \in \mathbb{R}/2\pi\mathbb{Z}\} \subset S^3$$

Figure 1.8: Mapping of S^3 with the two solid tori, V_1 indicated in blue, V_2 indicated in pink

Proof. Since the boundary is given by C_2 , we can clearly see that it consists of one fibre, proving (i) in definition 8. As we discussed in remark 6, we know that each two Hopf fibres are linked by a Hopf link. Thus, we can infer that all other fibres also interlink with C_2 in a Hopf link. This implies that they must intersect $Int(\Sigma_N)$ exactly once, satisfying (ii) and (iii). In other words, it forms a 1-section for the Hopf fibration.

We provide a more rigorous proof in lemma 13.

Chapter 2

Visualizing the Hopf Fibration

Now we want to implement the above in computer code in order to visualise the Hopf Fibration. The programming language of our choice is Processing, a visually oriented language based on Java.

NOTATION. To refer to the number stored in the variable 'Amount' we use the notation n_{Amount} . Variables will be indicated in italic: Variable.

To indicate the size of an $m \times k$ array with name ArrayName, we will use the notation ArrayName[m][k].

2.0.1 Libraries

We import the library QScript [3], which includes a class for complex numbers and 3-dimensional vectors. For the points in \mathbb{C}^2 we include a custom class called Cx-Complex (Appendix B). All functions related to the projection of the Hopf fibration you can find in Appendix C. Furthermore, all functions related to d-sections are collected in Appendix D. We use the class Shapes3D [4] for the tube object, which we use to show the Hopf flow. In Appendix E you find everything related to the rotations of S^3 . For the graphical functions that organize our window and create the graphical user interface, see Appendix F. Another class that we use for this purpose is called HScrollbar [5] (Appendix G), it provides the scrollbars. Finally, the class rec() [6] (Appendix H) is included to be able to record videos directly from the code.

2.1 Choosing Points on the Riemann Sphere

We implement various methods of choosing points on the Riemann Sphere. Firstly,

Figure 2.1: Angles of the Riemann Sphere, φ indicated in pink, θ in blue

we include functions for varying φ or θ for a given contrary angle. These input

Figure 2.2: Choosing points on the sphere using VaryTheta(), VaryPhi() and Spiral()

angles are changeable with scrollbars. Additionally, we include a 'Spiral'- Function that generates points in a spiral on the Riemann Sphere. This function also has a scrollbar which can be used to rotate the spiral around the z-axis of the Riemann Sphere, e.g. to vary θ .

2.2 The Projection

For this process, we will follow diagram 1.5. We start at the Riemann sphere, follow the Hopf Map back to $S^3 \subset \mathbb{C}^2$ and project this fibre to $\mathbb{R}^3 \cup \infty$ using the stereographic projection. We plot $n_{noCircles}$ different fibres, and this value will be changeable in real-time. The detail of the plot depends on noPoints, a variable that sets the number of points we compute per circle.

NOTATION. We will structure this part using the functions in the code. Their syntax is encoded as Outputtype FunctionName(Inputtype).

CxComplex findFiberPoint(Complex)

In the first step, we take a complex number z and find one point on the corresponding fibre in S^3 . This can be interpreted as a 'reverse Hopf map', but instead of giving us the whole preimage - that is, the whole fibre - we get only one point on it. To achieve this, we set the imaginary part of the second complex coordinate to 0. The computation of the remaining coordinates then looks as follows.

We take:
$$z = (z_1, z_2) \in \mathbb{C}$$
, $p = (p_1, p_2) = (x_1, y_1, x_2, y_2) \in \mathbb{C} \times \mathbb{C}$
Set $y_2 = 0$. We know that

$$\frac{p_1}{p_2} = z$$

and also

$$(x_1)^2 + (y_1)^2 + (x_2)^2 + (y_2)^2 = 1$$

since $p \in S^3$. Thus we can infer:

$$x_2 = \sqrt{\frac{1}{1 + (z_1)^2 + (z_2)^2}}$$
$$x_1 = z_1 \cdot x_2$$
$$y_1 = z_2 \cdot x_2$$

The function returns this point in \mathbb{C}^2 .

CxComplex getNewPoint(CxComplex)

Now, using the point $p \in \mathbb{C}^2$ that we obtained in the previous step, we follow the Hopf flow to acquire a new point on the fibre.

As a reminder, the Hopf Flow for $p \in \mathbb{C}^2$ is defined as:

$$\Phi_p^t = e^{it} \cdot p$$

The function returns Φ_p^t for $t = \frac{2\pi}{noPoints}$, where noPoints defines how many points per circle we want to compute. We use this function recursively to obtain $n_{noPoints}$ equidistant points on the fibre.

Vector projectPoint(CxComplex)

Having obtained points on the fibre we want to visualize, we now use the stereographic projection σ to map them to $\mathbb{R}^3 \cup \infty$.

$$\sigma: (x_1, y_1, x_2, y_2) \mapsto (\frac{x_1}{1 - y_2}, \frac{y_1}{1 - y_2}, \frac{x_2}{1 - y_2})$$

This function returns the points' coordinates in \mathbb{R}^3 . There is a distortion of the circles that can appear especially when the circles get larger and for small *noPoints*. This is explained by the fact that the projection does not preserve the equidistance of the points - most points get mapped close to the origin, and thus only to one side of the circle.

void fillArray()

This function combines all of the above to create one array holding all the points in \mathbb{R}^3 that we need to visualize the fibres. First, we choose $n_{noCircles}$ points on the Riemann Sphere. Then it creates an array of points in \mathbb{C}^2 and fills it with one point on each fibre using findFibrePoint(). Next it fills up the array circle-Points/noCircles/[noPoints] like this:

Let us call the points on the Riemann Sphere $z_1, z_2, ..., z_{noCircles}$ and findFibrePoint(z_i) = c_i , and we shorten the functions' names to project() and getNew(). Then the matrix is filled in the following manner.

	1	2	3		noPoints
1	$project(c_1)$	$project(getNew(c_1))$	$project(getNew(getNew(c_1))$		$project(getNew(getNew(c_1))$
2	$\mathtt{project}(c_2)$	$project(getNew(c_2))$	$\mathtt{project}(\mathtt{getNew}(\mathtt{getNew}(c_2))$		$project(getNew(getNew(c_2))$
3	$project(c_3)$	$project(getNew(c_3))$	$project(getNew(getNew(c_3))$:	$project(getNew(getNew(c_3))$
noCircles	$project(c_{noCircles})$	$project(getNew(c_{noCircles}))$	$project(getNew(getNew(c_{noCircles}))$		$project(getNew(getNew(c_{noCircles}))$

Table 2.1: fillArray() filling up circlePoints/noCircles/[noPoints]

drawColCircle()

For visualizing the projected fibres, we use the array that we received using fillArray(). The image is obtained by plotting an arc through the points in each row. Additionally, we colour the circle and the corresponding point on the Riemann Sphere in the same shade, so we can identify the connections easily. The colour scheme for the j-th circle, whose points are stored in circlePoints[j][0], circlePoints[j][1],...,circlePoints[j][

```
R = circlePoints[j][0].x*105+150,
G = circlePoints[j][0].y*85+150,
B = circlePoints[j][0].z*70+160,
```

The RGB values we compute build on the x,y and z coordinates of the first projected point of the circle. Because of the black background, we add an integer, so the resulting colours are bright enough to be visible. Additionally, we multiply the values by a factor, to change how much the colour varies with the changing coordinate. Since these are the points with $y_2 = 0$ and $x_2 \ge 0$ (due to the function findFibrePoint()), we find that the projected x,y and z-values will lie on the unit sphere in \mathbb{R}^3 , resulting in $x \in [-1,1]$, $y \in [-1,1]$, $z \in [0,1]$. With this knowledge, we infer that the RGB values resulting from this scheme will be $R \in [45,255]$, $G \in [65,235]$ and $B \in [160,250]$. As you can see in figure 2.2 and in the following chapters, the colours are well visible and vary enough to point out the connection between the points on the Riemann Sphere and the fibres.

Chapter 3

Visualizing d-Sections

First, we want to focus on visualizing disc-like 1-sections, and later also 2-sections. In both cases, we will first find a specific d-section and then create various other d-sections by using rotations on S^3 and the Hopf flow. To implement this, we add functions to our Processing sketch collected in D-Section library (Appendix D).

3.1 Disc-Like 1-Sections

To visualize disc-like 1-sections, we first investigate the 1-sections Σ_N and Σ_S . Then we will implement Σ_N .

3.1.1 The Disc-Like North Pole 1-Section

This surface is called the north pole 1-section because its boundary is given by the fibre C_2 . As we investigated before (figure 1.5), this circle gets mapped to the north pole of the Riemann Sphere by the Hopf map. To put this into formulas:

$$C_2 = \{ (e^{i\theta}, 0) : \theta \in \mathbb{R}/2\pi\mathbb{Z} \}$$

$$\Sigma_N = \{ (re^{i\theta}, \sqrt{1 - r^2}) : r \le 1, \theta \in \mathbb{R}/2\pi\mathbb{Z} \}$$

LEMMA 13. Σ_N is a 1-section for the Hopf fibration.

Proof. We can obtain Σ_N as a meridional disc $D_{\frac{\sqrt{2}}{2}}$ in V_1 glued together with a helicoidal surface A in V_2 . Firstly, we want to show that the meridional disc in V_1 intersects all Hopf fibres in that solid torus exactly once. The Hopf fibres in V_1 lie on the nested tori T_r as defined in Remark 9. They are rotating once around the longitude λ and once around the meridian μ of the torus that they lay on. To get an intuition, we depict one of these tori in figure 3.1 as a rectangle whose opposite edges are identified. The Hopf fibres are then given by the pink fibre h and by all possible shifted fibres, like the one indicated in blue. Since all Hopf fibres rotate once around the meridian and longitude at the same time, they intersect a meridional disc exactly once. An example of a meridional disc intersecting the torus in figure 3.1 is given as the left vertical edge of the rectangle. We can see clearly that this disc intersects each fibre exactly once, and that this is also true if we move the vertical line horizontally. Consequently, every meridional disc has this property. Thus, the

Figure 3.1: The Hopf fibres on an unfolded torus

meridional disc $D_{\frac{\sqrt{2}}{2}} = \{re^{i\theta} : r \leq \frac{\sqrt{2}}{2}, \theta \in \mathbb{R}/2\pi\mathbb{Z}\}$ intersects each Hopf fibre in V_1 exactly once. The boundary of this disc is given by $\mu_1 = \lambda_2$. We can embed it into V_1 as follows:

$$D_{\frac{\sqrt{2}}{2}} \rightarrow V_1 = D^2 \times S^1$$

$$re^{i\theta} \mapsto (re^{i\theta}, \sqrt{1-r^2})$$

Next, we proof that $A \in V_2$ is also intersecting all Hopf fibres in that solid torus exactly once. We define the helicoidal surface A with oriented boundary $C_2 \cup -(h - \mu_2) = C_2 \cup \lambda_2$. First we cut V_2 open at a meridonal disc and then we apply a Dehn Twist, so that the Hopf fibres in this torus correspond to $h = S^1 \times \{*\}$. The whole process is depicted in 3.2. λ_2 is now twisted once around the torus. Since the Hopf fibres in V_2 correspond to straight lines now, we can clearly see that they all intersect the surface exactly once. A can be described as $A = \{(re^{i\theta}, \theta) : r \in [0, 1], \theta \in [0, 2\pi]\}$,

Figure 3.2: The yellow Helicoidal surface A in V_2

as you can see in figure 3.3. We embed A into V_2 as follows:

Figure 3.3: Embedding A into V_2

$$A = [0, 1] \times [0, 2\pi] \to V_2 = S^1 \times D^2$$
$$(r, \theta) \mapsto (\sqrt{1 - \frac{1}{2}r^2}e^{i\theta}, \frac{\sqrt{2}}{2}r)$$

Hence these two surfaces glued together intersect each Hopf fibre in $S^3 = V_1 \cup V_2$ exactly once, proving (ii) and (iii) in definition 8. That means we only need to show (i) still. We glue the two surfaces together at λ_2 , so that the glued surface has C_2 as a boundary, proving (i). This concludes our proof.

3.1.2 The Disc-Like South Pole 1-Section

Similarly to the last section, we also investigate the special case of the disc-like 1-section bounded by the fibre $C_1 = \{(0, e^{it}) : t \in \mathbb{R}/2\pi\mathbb{Z}\}$. Since C_1 maps to the south pole of the Riemann Sphere by the Hopf map (the blue fibre in figure 1.5), we call this 1-section the south pole 1-section. Using the stereographic projection, the fibre gets mapped onto the z-axis in \mathbb{R}^3 . Thus, the 1-section it "surrounds" is a half-plane. We include a special function void drawSouthernDSectionBoundary() for this case, in which we chose one half-plane for the visualization (see figure 3.4).

Figure 3.4: The South Pole 1-Section Σ_S

3.1.3 Implementing the North Pole 1-Section

For visualizing Σ_N , we first need to initialize a grid of points on the 1-section. We implement two different methods for this task.

The first method is using CxComplex[][] getDSectionGrid(int noColumns, int noRows, CxComplex p). In figure 3.5 you can see how we set up the grid. First, we choose one point on the boundary fibre, p, as a starting point. This point will be stored at [0][0] in our array. Since the boundary is one fibre, we can add the other points on the boundary fibre using the Hopf flow (Lemma 5). We vary our angle from $\alpha=0$ to $\alpha=\frac{3}{4}\pi$ to fill the first row of the array with equidistant points, pink in the picture. Just in the same way, the interval $\alpha\in[\frac{3}{4}\pi,\pi]$ will fill the last column of the matrix with the blue points, and $\alpha\in[\pi,\frac{7}{4}\pi]$ provides us with the last row indicated in pink, and the points on the rest of the boundary will fill in the first column.

Figure 3.5: Setting up a Grid of the d-Section

After filling in the boundary, we compute the points in the interior of the surface. In figure 3.5 we find them coloured orange. Going through the columns, we fill in equidistant points on the line between the first and last entry. Additionally, we normalize the points in such a way that they lie again on our d-section. Since the boundary points all lay on C_2 , the second complex coordinate is always 0, and that is also true for the points on the line between them. Therefore the function normalize2ndCoordinate() normalizes the point to be of length 1 (and thus to be in S^3) by adapting the second complex coordinate.

After creating this grid-array, we use void displayGrid(CxComplex[][] grid) to plot lines connecting the rows and columns. You can see the results in figure 3.6.

Looking at the results that this grid yields, we notice that the way to obtain it is not very elegant and that the surface also does not look as symmetric as we expected. We suspect the problem to be in the normalization of the points. But instead of solving this issue, we decide to implement a second, more elegant way to obtain the grid. We call it circular grid. Instead of aiming for equidistance, we now aim for better visualization of the flowing grid. Since the fibres closer to the origin seem to flow away faster than the fibres closer to the boundary of the disc-like 1-section when we apply the Hopf flow in 3.4, it makes sense to have a higher

Figure 3.6: Visualizing the d-Section using a 6x6 grid

density of points closer to the origin. This is taken into account in the second way of obtaining a grid, implemented in getDSectionGridCircular(). Here we vary r and θ to obtain points on concentric circles. You can see a sketch of the process in figure 3.7.

Figure 3.7: Setting up the circular grid, on the right you can see how the points are stored in the array

The results that this grid yields are more aesthetic, as you can see in 3.8.

Additionally, we include a function called void displayGrids(CxComplex[][] V_1, CxComplex[][] V_2) which visualizes the intuition in 3.1.1 of glueing two surfaces together to obtain a d-section, colouring the two parts in different colours. You can see the results in figure 3.9.

Figure 3.8: Visualizing Σ_N using a circular grid

Figure 3.9: Visualizing Σ_N as a glueing of two surfaces

3.2 An Annular 2-Section

Now we construct a 2-section for the Hopf flow.

LEMMA 14. We can obtain a 2-section A for the Hopf fibration by glueing two helicoidal annuli $A_1 \subset V_1$ and $A_2 \subset V_2$ together.

Proof. Let us define the helicoidal annulus A_1 in V_1 with boundary $\partial A_1 = C_1 \cup -(h-2\mu_1)$ with $Int(A_1)$. Intuitively, this helicoidal annulus is a surface connecting two Hopf-linked circles. To show that A_1 intersects each Hopf fibre in V_1 exactly twice, we use a similar approach as in Lemma 13. As you can see in figure 3.10, we again cut the torus open. As we can see, the Hopf fibre h and the boundary

Figure 3.10: heliocoidal annulus A_1 in V_1

 $-(h-2\mu_1)$ are both twisted around the torus, but in different directions. When we now apply the Dehn-twist, we obtain straightened Hopf fibres and the orange boundary is twisted around the torus twice. This shows clearly that this surface intersects the Hopf fibres in V_1 exactly twice.

Analogously, we have a helicoidal annulus A_2 in V_2 with $\partial A_2 = C_2 \cup -(h - \mu_2)$. For

this annulus, we can go through the same procedure to prove that it intersects the Hopf fibres in V_2 exactly twice. And since

$$h - 2\mu_1 = \lambda_1 - \mu_1 = -(\lambda_2 - \mu_2) = -(h - 2\mu_2)$$

we can glue A_1 to A_2 at $-(h-2\mu_1)=h-2\mu_2$. The boundary of A is then given by $\partial A=C_1\cup C_2$, which is clearly a union of orbits, proving (i) in definition 8. And since the two parts intersect each Hopf fibre in their solid torus exactly twice, the union will intersect all Hopf fibres exactly twice, satisfying (ii) and (iii). Thus we can conclude that A forms a 2-section for the Hopf flow.

3.2.1 Implementing the Annular 2-Section

In the visualization of this 2-section, we colour the two parts A_1 and A_2 differently, to get a better intuition about the two tori. The functions CxComplex[][] getV_1part_2Section(float varyR, float varyTheta) and CxComplex[][] getV_2part_2SectivaryR, float varyTheta) obtain the two parts of the grid. For this purpose, we vary θ and r in these expressions:

$$A_1 = (\frac{\sqrt{2}}{2} \cdot re^{-i\theta}, \sqrt{1 - \frac{1}{2}r^2} \cdot e^{i\theta})$$

$$A_2 = (\sqrt{1 - \frac{1}{2}r^2} \cdot e^{i\theta}, \frac{\sqrt{2}}{2} \cdot re^{-i\theta})$$

The grids we obtain here are visualized using the function void displayGrids() that plots the grid with distinct colours for the two parts. The standard colour scheme is yellow for A_1 and green for A_2 , as you can see in figure 3.11.

Figure 3.11: Implementation of the 2-section in two different colours

3.3 Rotating d-Sections

To study the d-sections of the Hopf fibration, we implemented two d-sections. Now we will use Matrices $M \in SU(2) \subset SO(4)$ to rotate them around the 3-sphere to create numerous d-sections. We use the matrix group SU(2) since it is compatible with the complex structure of our \mathbb{C}^2 space. All the necessary functions can be found in Appendix E.

LEMMA 15. For a d-section Σ of the Hopf flow, the surface $\Sigma_{rot} = A \cdot \Sigma$ with $A \in SU(2)$ is also a d-section for the Hopf flow.

Proof. We define the Hopf flow $\Phi_R^t(p)$ as in lemma 5 and the matrix $A \in SU(2)$. First, we note that any matrix $A \in SU(2)$ has the following property: A is commutative with the complex multiplication and scalar multiplication, thus

$$A \cdot e^{it} = A \cdot (cos(t) + isin(t)) = (cos(t) + isin(t)) \cdot A = e^{it} \cdot A$$
 I)

Now, we prove the first statement of the definition. Let us write down the orbit like this: For $x \in S^3$ the orbit is given as $\Phi_R^t(x) = e^{it} \cdot x$ for $t \in [0, 2\pi]$. The boundary of Σ_{rot} using $y \in \partial \Sigma$ is thus given by:

$$A\Phi_R^t(y) = A \cdot e^{it} \cdot y \stackrel{\text{I}}{=} e^{it} \cdot A \cdot y = e^{it} \cdot (Ay) \text{ with } Ay \in S^3$$

Thus, the boundary of Σ_{rot} is given by an orbit of the Hopf flow. Now, we want to look at properties (ii) and (iii). For the d-section Σ these properties hold. For the rotated surface $A \cdot \Sigma = \Sigma_{rot}$, the properties (ii) and (iii) hold for the rotated flow $A \cdot \Phi_R^t$. But again, since

$$A \cdot \Phi_R^t = A \cdot e^{it} \stackrel{\text{I}}{=} e^{it} \cdot A = \Phi_R^t \cdot A$$

the rotated flow is the Hopf flow. Thus, we can conclude that Σ_{rot} is indeed a d-section for the Hopf flow.

To implement this way of obtaining new d-sections, we first need to choose various matrices $M_i \in SU(2)$ that are of the following form:

$$SU(2) = \left\{ \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} | \alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1 \right\}$$

This complex matrix can be converted to a real matrix as follows. Given a complex 2-by-2 matrix

$$\begin{pmatrix} a_{11} + ib_{11} & a_{12} + ib_{12} \\ a_{21} + ib_{21} & a_{22} + ib_{22} \end{pmatrix}$$

we derive the real matrix

$$\begin{pmatrix} a_{11} & -b_{11} & a_{12} & -b_{12} \\ b_{11} & a_{11} & b_{12} & a_{12} \\ a_{21} & -b_{21} & a_{22} & -b_{22} \\ b_{21} & a_{21} & b_{22} & a_{22} \end{pmatrix}$$

We include the functions PMatrix3D giveRotationMatrix1(float angle_1), PMatrix3D giveRotationMatrix2(float angle_2) and

PMatrix3D giveRotationMatrix3(float angle_3). Each function returns a rotation matrix M_i that is obtained in the following ways:

Correponding to $M_1: \alpha = e^{i\gamma_1}, \beta = 0$ Correponding to $M_2: \alpha = \beta = \frac{1}{\sqrt{2}}e^{i\gamma_2}$

Correponding to $M_3: \alpha = isin(\mathring{\gamma}_3), \beta = cos(\gamma_3)$

Yielding the real matrices

$$M_{1} = \begin{pmatrix} \cos(\gamma_{1}) & -\sin(\gamma_{1}) & 0 & 0\\ \sin(\gamma_{1}) & \cos(\gamma_{1}) & 0 & 0\\ 0 & 0 & \cos(\gamma_{1}) & \sin(\gamma_{1})\\ 0 & 0 & -\sin(\gamma_{1}) & \cos(\gamma_{1}) \end{pmatrix}$$

$$M_{2} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 0 & 0 & -\cos(\gamma_{2}) & -\sin(\gamma_{2})\\ 0 & 0 & \sin(\gamma_{2}) & -\cos(\gamma_{2})\\ \cos(\gamma_{2}) & -\sin(\gamma_{2}) & 0 & 0\\ \sin(\gamma_{2}) & \cos(\gamma_{2}) & 0 & 0 \end{pmatrix}$$

$$M_{3} = \begin{pmatrix} 0 & -\sin(\gamma_{3}) & -\cos(\gamma_{3}) & 0\\ \sin(\gamma_{3}) & 0 & 0 & -\cos(\gamma_{3})\\ \cos(\gamma_{3}) & 0 & 0 & \sin(\gamma_{3})\\ 0 & \cos(\gamma_{3}) & -\sin(\gamma_{3}) & 0 \end{pmatrix}$$

Applying these matrices, we can rotate our d-section grid using the function CxComplex[][] rotateDSection(CxComplex[][] grid, float angle, int kindOfRotation). The kind of rotation $i \in \{1,2,3\}$ determines which M_i will be used as a rotation matrix. The function returns a new grid by multiplying it with a rotation matrix. With these functions, we can now rotate our d-sections on the sphere to other d-sections we want to investigate. We also include a slightly different colour scheme which is used to visualize the rotated grid of the two-coloured d-sections. In this scheme, the yellow part is indicated in orange and the green part in blue (figure 3.12).

Figure 3.12: The rotated 2-section using M_3

3.4 Letting D-Sections Flow

LEMMA 16. Using a d-section Σ of a non-singular vector field X, we can obtain a second d-section Σ_{flow} for X by letting it flow with the flow of the vector field.

Proof. Firstly, if we let the surface go with the flow of the vector field, it is still compact. Furthermore, the boundary of Σ - being a union of orbits - will stay the same, since the flow moves along the orbits. Moreover, the interior will still be transverse to X, since it gets moved along the orbits of the points. Also, the orbits will intersect $Int(\Sigma_{flow})$ in exactly d points, since the d points in which $Int(\Sigma)$ intersects all orbits simply move along them. Thus we can conclude that Σ_{flow} is a d-section for the vector field X.

3.4.1 The Flowing Disc-like North Pole 1-Section

We focus on this specific d-section to investigate in formulas how it flows with the Hopf flow. The 1-section is given by:

$$\Sigma_N = \{ (re^{i\theta}, \sqrt{1 - r^2}) : 0 \le r \le 1, \theta \in \mathbb{R}/2\pi\mathbb{Z} \}$$

And the Hopf flow is defined as:

$$\Phi_R^t(p) = e^{it} \cdot p$$

Now we take a point p in the interior of the 1-section: $p = (r \cdot e^{i\theta}, \sqrt{1-r^2})$ with fixed $\theta \in [0, 2\pi)$ and $0 \le r < 1$.

$$\Phi_R^t(p) = e^{it} \cdot (r \cdot e^{i\theta}, \sqrt{1-r}) = (r \cdot e^{i\theta}e^{it}, \sqrt{1-r}e^{it})$$

When we project $\Phi_R^t(p)$ to \mathbb{R}^3 using the stereographic projection σ we introduced before, we find:

$$\begin{split} \sigma(\Phi_R^t(p)) &= \sigma(r \cdot e^{i\theta} e^{it}, \sqrt{1-r} e^{it}) \\ &= \frac{1}{1-\sqrt{1-r} sin(t)} (rcos(\theta) cos(t), rsin(\theta) sin(t), \sqrt{1-r} cos(t)) \end{split}$$

Since all orbits are circles, we should flow back to the original Σ_N when we go with the flow for $t = 2\pi$. Interestingly, the point $\hat{N} = (0,0,1,0) \in \Sigma_N$ lies on C_1 , which maps onto the z-axis. That means, to flow once around its fibre, this point has to go through the north pole of σ . As a result, the projected point has to pass ∞ .

$$\Phi_R^t(\hat{N}) = e^{it} \cdot (0,1) = (0,e^{it})$$

Applying the stereographic projection yields:

$$\sigma(\Phi_R^t(\hat{N})) = \sigma((0, e^{it})) = (0, 0, \frac{\cos(t)}{1 - \sin(t)})$$

implying:

$$\sigma(\Phi_R^0(\hat{N})) = (0, 0, 1)$$

$$\lim_{t \nearrow \frac{\pi}{2}} \sigma(\Phi_R^t(\hat{N})) = \lim_{t \nearrow \frac{\pi}{2}} (0, 0, \frac{\cos(t)}{1 - \sin(t)}) \longrightarrow +\infty$$

Figure 3.13: The pink grid visualizes Σ_N (indicated in white) flowing with the Hopf flow Φ_R^t for $t=0,\,t=\frac{\pi}{4},\,t=\frac{\pi}{2}$ $t=\frac{3\pi}{4}$ and $t=2\pi$

$$\lim_{t \searrow \frac{\pi}{2}} \sigma(\Phi_R^t(\hat{N})) = \lim_{t \nearrow \frac{\pi}{2}} (0, 0, \frac{\cos(t)}{1 - \sin(t)}) \longrightarrow -\infty$$
$$\sigma(\Phi_R^\pi(\hat{N})) = (0, 0, -1)$$
$$\sigma(\Phi_R^{2\pi}(\hat{N})) = (0, 0, 1)$$

The flip from $+\infty$ to $-\infty$ is nicely visible in our implementation, as you can see in figure 3.13.

3.4.2 Letting the Grid Flow

To implement this feature, we include a scrollbar to enable the user to change t in real-time. Using this value, the function CxComplex[][] letGridFlow(CxComplex[][] grid, float t) goes through the grid and lets each point go with the Hopf flow.

We also implement a second way of visualizing the flow by drawing lines along the flow of the grid. Therefore, we can not only visualize the new position but also the movement of the grid. To achieve this, we implement so-called tubes provided by the library Shapes3D [4] for each point on the grid.

Since this procedure is computationally costly, we first compute the tubes in the setup() function. This function runs before the application starts. Using the function Tube[][] setupTubes (CxComplex[][] grid, float t), we set up tubes of various lengths, that we only have to refer to later. When the application is running, we use drawTubeCoord() to display the tubes. These functions are not included in the final state of the code, because of their computational effort and the cost of crowding most of the screen. But if the user wants to enable them, it is possible to un-comment the needed lines (Appendix A, lines 91, 160, 202).

Figure 3.14: Tubes

Chapter 4

The Graphical User Interface

For a more intuitive and real-time changeable exploration of the Hopf fibration, we include a graphical user interface in the programme. All related functions are included in Appendix F. The GUI consists of an overlay that visualizes the points on the Riemann sphere and numerous scrollbars and buttons to change the way we obtain the points on the sphere and to enable the visualization of d-sections. We also enable the user to explore different d-sections using rotational matrices and the Hopf flow.

Figure 4.1: Overview of the GUI

4.1 The Riemann Sphere

The sphere in the top left corner visualizes the points on the Riemann Sphere that we choose. We colour them like the projected fibres, to make the connection visible.

Clicking on the sphere, it will start or stop rotating, so we can always get a good perspective at the points.

4.2 Scrollbars and Buttons

We use the class HScrollbars [5] (Appendix G) to set up the scrollbars for varying the different variables.

We go through the scrollbars and buttons from top to bottom. In the top right corner, we find the scrollbars to change the way the points on the Riemann Sphere are obtained. Here, the functions VaryTheta(), VaryPhi() and Spiral() are covered, as discussed in 2.1. With a click on the button, we enable the function, and with the scrollbars we can change the input angle. In the special case of VaryTheta(), there are two scrollbars, which means we can give two different input angles if we wish to. If we want to choose only one angle, we can click on one scrollbar and then hover over the second while we move our mouse to change the value. The second scrollbar will then follow the movement as well. Below that, there are three buttons to enable the visualization of d-sections. The first one is the standard Σ_N , the second one is Σ_N coloured in two different colours, and the third one is the annular 2-section. The three scrollbars tagged with γ_i , $i \in 1, 2, 3$ rotate the d-sections with the rotational matrices M_i , as discussed in 3.3. To enable a rotation, we click on the button on the left side of the scrollbar. Then we are able to change the input angle. On the bottom of the window, there are two more scrollbars. The first one is to let the grid flow with the Hopf flow. Again, a click on the button enables it. This feature can also be used additionally to a rotation. That means we can first rotate the d-section and then let this new d-section flow with the Hopf flow. The last scrollbar is used for changing the number of circles that are plotted. To reset the rotations or flow, we can click on the d-section button again.

Camera Modes

Using the 'UP' button on the keyboard, we can switch between two camera modes: The first one is static, and the second one is rotating your view with the horizontal movement of your mouse.

Recording the Screen

It is possible to record a video of your exploration, therefore it is only necessary to un-comment lines 2,3 and 268 in the main code (Hopffibration.pde). Then a video of the window will be recorded from the start of the application until you stop it using the key 'Q' or Processings stop-button. This file saves to where your 'HopfFibration'-folder is located.

Conclusion

For exploring the Hopf Fibration on your device, you can download Processing at https://processing.org/download. Next, add the attached folder 'HopfFibration' to your processing directory and 'QScript', 'Shapes3D', 'video' and 'VideoExport' to the library folder. Alternatively, you can also download the code from https://github.com/JeBentMooi/HopfFibration.git and import the libraries manually. Using the Processing application, you can open the project 'HopfFibration' and press the play button. Unfortunately, it is not possible to export the code as a standalone application, due to problems with the 3D renderer.

To conclude this thesis, we have gained a basic understanding of the mathematical concepts around the Hopf Fibration. Furthermore, we developed code to visualise the implications of its mathematical properties. Using the program, it is now possible to explore the Hopf Fibration and numerous of its d-sections to develop intuitions about its behaviour. This tool will aid future inquiries into the properties of the Hopf Fibration. Such as the study of more complex d-sections, like the pair of pants 1-section, as investigated in [1]. Also, using the method of the annular 2-section, it is possible to construct annular d-sections for any $d \in \mathbb{N}$. We look forward to any creative application of the program in the future, both in educational as well as research contexts.

Appendix A

Appendix: Code

//SETUP SCROLLBARS & BUTTONS

```
The code can also be found at: https://github.com/JeBentMooi/HopfFibration.git
1 //library for recording the screen
2 import processing.video.*;
3 import com.hamoid.*;
5 //library for extrusions: Shapes 3D
6 import shapes3d.*;
7 import shapes3d.contour.*;
8 import shapes3d.org.apache.commons.math.*;
9 import shapes3d.org.apache.commons.math.geometry.*;
10 import shapes3d.path.*;
import shapes3d.utils.*;
13 //library for complex numbers: QScript
14 import org.qscript.*;
15 import org.qscript.editor.*;
16 import org.qscript.errors.*;
17 import org.qscript.events.*;
18 import org.qscript.eventsonfire.*;
19 import org.qscript.operator.*;
20
21
22
24 //
     ______
25 //
26
    Complex i = new Complex(0,1); //i
27
    //SETUP HOPF FIBRES
29
    int noPoints = 150; //how many points will be used to draw 1
    circle; must be >=3
    int noCircles = 30; //how many circles do you want to plot? - can
31
     be changed with scrollbar
32
    Vector[][]circlePoints;
   Complex[] startingPoints;
33
34
```

```
HScrollbar s_VaryPhi, s_VaryTheta, s_VaryTheta2, s_Spiral;
36
    HScrollbar s_gamma_1, s_gamma_2, s_gamma_3, s_gamma_4;
37
    HScrollbar s_Flow, s_noCircles;
38
    boolean VaryThetaMode = true;
39
40
    boolean VaryPhiMode = false;
    boolean SpiralMode = false;
41
    boolean RotationMode = true;
42
    boolean zoomMode = false;
43
    float rot = 0;
44
    int camMode = 0;
    boolean Mode1sectStd = false;
46
    boolean Mode1sect = false;
47
    boolean Mode2sect = false;
48
49
    //SETUP D SECTION GRIDS
50
    int varyR = 8;
51
    int varyTheta = 15;
52
    CxComplex[][] circularGrid = new CxComplex[varyR][varyTheta];
53
    CxComplex[][] circularGrid_flow = new CxComplex[varyR][varyTheta
54
    CxComplex[][] circularGrid_rot = new CxComplex[varyR][varyTheta];
55
    PVector[][] tubes;
56
57
    //2.2.1
58
    CxComplex[][] V_1grid_1 = getV_1part(13,20);
    CxComplex[][] V_2grid_1 = getV_2part(13,20);
60
    CxComplex[][] V_1grid_1_rot = getV_1part(13,20);
61
    CxComplex[][] V_2grid_1_rot = getV_2part(13,20);
62
    CxComplex[][] V_1grid_1_flow = getV_1part(13,20);
63
    CxComplex[][] V_2grid_1_flow = getV_2part(13,20);
64
65
66
    //2.2.2
    CxComplex[][] V_1grid_2 = getV_1part_2Section(13,20);
68
    CxComplex[][] V_2grid_2 = getV_2part_2Section(13,20);
69
70
    CxComplex[][] V_1grid_2_rot = getV_1part_2Section(13,20);
    CxComplex[][] V_2grid_2_rot = getV_2part_2Section(13,20);
71
    CxComplex[][] V_1grid_2_flow = getV_1part_2Section(13,20);
72
    CxComplex[][] V_2grid_2_flow = getV_2part_2Section(13,20);
73
74
    //rotation modes & flow mode
76
    boolean rotMode1 = false;
    boolean rotMode2 = false;
77
    boolean rotMode3 = false;
78
    boolean flowMode = false;
79
80
81 void setup() {
    size(900, 800, P3D);
    frameRate(10); //fix-bug-thing, do not delete
83
    setupScrollbars();
84
    //grid
85
    circularGrid = getDSectionGridCircular(varyR, varyTheta);
    circularGrid_flow = getDSectionGridCircular(varyR, varyTheta);
87
    circularGrid_rot = getDSectionGridCircular(varyR, varyTheta);
88
    //SETUP TUBES
    //tubes = setupTubes(circularGrid, 2*PI);
91
92 }
```

```
93
  void draw(){
    background(0);
96
97
     //CHOOSE CAMERAMODE
     if(camMode%3 == 1){
99
       camera(mouseX*2, height/2, (height/2) / tan(PI/6), width/2,
100
      height/2, 0, 0, 1, 0); //camera which rotates objects with
      MouseX
    } else if(camMode%3 == 0){
101
       camera(width/2, height/2, (height/2) / tan(PI/6), width/2,
102
      height/2, 0, 0, 1, 0); //centered camera
103
104
    //UPDATE NoCircles
105
    noCircles = 2*(int)scrollbarValue(s_noCircles, 50); //always even
106
    //get everything in order to plot
107
    circlePoints = new Vector[noCircles][noPoints];
108
    //setup array of points of interest in C, whose fibres we want to
109
    startingPoints = new Complex[noCircles];
110
111
112
    //SETUP STARTING POINTS
113
    if (VaryThetaMode == true){
114
    addPointsVaryTheta(noCircles/2, scrollbarValue(s_VaryTheta, PI));
115
    addPointsVaryTheta(noCircles/2, noCircles/2, scrollbarValue(
116
      s_VaryTheta2, PI));
    } else if(VaryPhiMode == true){
117
    addPointsVaryPhi(noCircles, scrollbarValue(s_VaryPhi, PI));
118
    } else if (SpiralMode == true){
    addPointsSpiral(noCircles);
120
121
122
    //SETUP COORDINATE SYSTEM
123
    centerCoordinatesystem();
124
    drawAxes (300);
125
    nameAxes (300);
126
    //DRAW D SECTION
128
    if (Mode1sectStd == true){ //Std grids
129
       if(rotMode1 == true){
130
         circularGrid_rot = rotateDSection(circularGrid,
131
      scrollbarValue(s_gamma_1,2*PI),1);
         displayGrid(circularGrid_rot, true, 250,250,0);
132
         displayGrid(circularGrid, true);
133
         if (flowMode == true){
134
           circularGrid_flow = letGridFlow(circularGrid_rot,
135
      scrollbarValue(s_Flow,2*PI));
136
           displayGrid(circularGrid_flow, true, 200,0,200);
137
      } else if (rotMode2 == true){
138
         circularGrid_rot = rotateDSection(circularGrid,
139
      scrollbarValue(s_gamma_2,2*PI),2);
         displayGrid(circularGrid_rot, true, 250,250,0);
140
         displayGrid(circularGrid, true);
141
```

```
if (flowMode == true){
142
           circularGrid_flow = letGridFlow(circularGrid_rot,
      scrollbarValue(s_Flow,2*PI));
           displayGrid(circularGrid_flow, true, 200,0,200);
144
145
      } else if (rotMode3 == true){
146
         circularGrid_rot = rotateDSection(circularGrid,
147
      scrollbarValue(s_gamma_3,2*PI),3);
148
         displayGrid(circularGrid_rot, true, 250,250,0);
         displayGrid(circularGrid, true);
149
         if (flowMode == true){
150
           circularGrid_flow = letGridFlow(circularGrid_rot,
151
      scrollbarValue(s_Flow,2*PI));
           displayGrid(circularGrid_flow, true, 200,0,200);
152
153
      } else { //no rotation mode == true
154
         displayGrid(circularGrid, true);
         if (flowMode == true){
156
           circularGrid_flow = letGridFlow(circularGrid,
157
      scrollbarValue(s_Flow,2*PI));
           displayGrid(circularGrid_flow, true, 200,0,200);
158
           //TUBES
159
           //drawTubeCoord(tubes, scrollbarValue(s_Flow, 50));
160
         }
161
      }
162
163
    } else if (Mode1sect == true) { //2.2.1 - glue meridonal disc to
164
      annulus
       if(rotMode1 == true){
165
166
         V_1grid_1_rot = rotateDSection(V_1grid_1, scrollbarValue(
      s_gamma_1,2*PI),1);
         V_2grid_1_rot = rotateDSection(V_2grid_1, scrollbarValue(
167
      s_gamma_1,2*PI),1);
         displayGridsColoured(V_1grid_1_rot, V_2grid_1_rot);
168
         displayGrids(V_1grid_1, V_2grid_1);
169
         if (flowMode == true){
170
           V_1grid_1_flow = letGridFlow(V_1grid_1_rot, scrollbarValue(
171
      s_Flow,2*PI));
           V_2grid_1_flow = letGridFlow(V_2grid_1_rot, scrollbarValue(
172
      s_Flow,2*PI));
173
           displayGridsColoured(V_1grid_1_flow, V_2grid_1_flow);
174
      } else if(rotMode2 == true){
175
         V_1grid_1_rot = rotateDSection(V_1grid_1, scrollbarValue(
176
      s_gamma_2,2*PI),2);
         V_2grid_1_rot = rotateDSection(V_2grid_1, scrollbarValue(
177
      s_gamma_2,2*PI),2);
         displayGridsColoured(V_1grid_1_rot, V_2grid_1_rot);
         displayGrids(V_1grid_1, V_2grid_1);
179
         if (flowMode == true){
180
           V_1grid_1_flow = letGridFlow(V_1grid_1_rot, scrollbarValue(
181
      s_Flow,2*PI));
           V_2grid_1_flow = letGridFlow(V_2grid_1_rot, scrollbarValue(
182
      s_Flow,2*PI));
           displayGridsColoured(V_1grid_1_flow, V_2grid_1_flow);
183
      } else if(rotMode3 == true){
185
```

33

```
V_1grid_1_rot = rotateDSection(V_1grid_1, scrollbarValue(
186
      s_gamma_3,2*PI),3);
         V_2grid_1_rot = rotateDSection(V_2grid_1, scrollbarValue(
187
      s_gamma_3,2*PI), 3);
         displayGridsColoured(V_1grid_1_rot, V_2grid_1_rot);
188
         displayGrids(V_1grid_1, V_2grid_1);
189
         if (flowMode == true){
190
           V_1grid_1_flow = letGridFlow(V_1grid_1_rot, scrollbarValue(
191
      s_Flow, 2*PI));
192
           V_2grid_1_flow = letGridFlow(V_2grid_1_rot, scrollbarValue(
      s_Flow,2*PI));
           displayGridsColoured(V_1grid_1_flow, V_2grid_1_flow);
193
194
       } else {
195
         displayGrids(V_1grid_1, V_2grid_1);
196
         if (flowMode == true){
197
           V_1grid_1_flow = letGridFlow(V_1grid_1, scrollbarValue(
      s_{Flow}, 2*PI));
           V_2grid_1_flow = letGridFlow(V_2grid_1, scrollbarValue(
199
      s_Flow,2*PI));
           displayGridsColoured(V_1grid_1_flow, V_2grid_1_flow);
200
         //TUBES
201
         //drawTubeCoord(tubes, scrollbarValue(s_Flow, 50));
202
         }
203
       }
204
205
     } else if(Mode2sect == true){ //2.2.2 - glue two annuli
206
       if(rotMode1 == true){
207
         V_1grid_2_rot = rotateDSection(V_1grid_2, scrollbarValue(
208
      s_gamma_1,2*PI),1);
         V_2grid_2_rot = rotateDSection(V_2grid_2, scrollbarValue(
209
      s_gamma_1,2*PI),1);
         displayGridsColoured(V_1grid_2_rot, V_2grid_2_rot);
210
         displayGrids(V_1grid_2, V_2grid_2);
211
         if(flowMode == true){
212
           V_1grid_2_flow = letGridFlow(V_1grid_2_rot, scrollbarValue(
213
      s_Flow,2*PI));
           V_2grid_2_flow = letGridFlow(V_2grid_2_rot, scrollbarValue(
214
      s_Flow,2*PI));
           displayGridsColoured(V_1grid_2_flow,V_2grid_2_flow);
215
216
       } else if(rotMode2 == true){
217
         V_1grid_2_rot = rotateDSection(V_1grid_2, scrollbarValue(
218
      s_{gamma_2}, 2*PI), 2);
         V_2grid_2_rot = rotateDSection(V_2grid_2, scrollbarValue(
219
      s_gamma_2,2*PI),2);
         displayGridsColoured(V_1grid_2_rot, V_2grid_2_rot);
220
         displayGrids(V_1grid_2, V_2grid_2);
         if(flowMode == true){
222
           V_1grid_2_flow = letGridFlow(V_1grid_2_rot, scrollbarValue(
223
      s_Flow,2*PI));
224
           V_2grid_2_flow = letGridFlow(V_2grid_2_rot, scrollbarValue(
      s_Flow,2*PI));
           displayGridsColoured(V_1grid_2_flow, V_2grid_2_flow);
225
226
       } else if(rotMode3 == true){
227
         V_1grid_2_rot = rotateDSection(V_1grid_2, scrollbarValue(
228
      s_gamma_3,2*PI),3);
```

34

```
V_2grid_2_rot = rotateDSection(V_2grid_2, scrollbarValue(
229
      s_gamma_3,2*PI),3);
         displayGridsColoured(V_1grid_2_rot, V_2grid_2_rot);
230
         displayGrids(V_1grid_2, V_2grid_2);
231
         if(flowMode == true){
232
            V_1grid_2_flow = letGridFlow(V_1grid_2_rot, scrollbarValue(
233
      s_Flow,2*PI));
           V_2grid_2_flow = letGridFlow(V_2grid_2_rot, scrollbarValue(
234
      s_Flow,2*PI));
235
           displayGridsColoured(V_1grid_2_flow, V_2grid_2_flow);
236
       } else {
237
         displayGrids(V_1grid_2, V_2grid_2);
238
         if(flowMode == true){
239
           V_1grid_2_flow = letGridFlow(V_1grid_2, scrollbarValue(
240
      s_Flow,2*PI));
            V_2grid_2_flow = letGridFlow(V_2grid_2, scrollbarValue(
241
      s_Flow, 2*PI));
           displayGridsColoured(V_1grid_2_flow,V_2grid_2_flow);
242
243
244
    } else { }
245
246
     //DRAW FIBRES
247
     fillArray(); //compute
248
     drawColCircle(); //draw fibres
249
250
     // - GUI -
251
     //DRAW SPHERE IN CORNER
252
     camera(); //back to normal camera settings for the overlay
253
     centerCoordinatesystemOverlay();
254
     if(RotationMode == true){
255
       rot = getRotation(rot);
     }
257
     rotateSphere(rot);
258
     drawAxes (80,3);
259
     drawSphere();
260
     drawPointsOnSphere(startingPoints);
261
262
     //DRAW SLIDERS
263
     camera(); //back to normal camera settings for second overlay
     updateScrollbars();
265
     displayScrollbars();
266
     drawButtons();
267
268
     //enable to record screen:
269
     rec();
270
271 }
272
273 void mousePressed() {
     if (overVaryThetaButton() == true) {
274
275
       VaryThetaMode = true;
276
       VaryPhiMode = false;
       SpiralMode = false;
277
     }
278
     if (overVaryPhiButton() == true) {
279
       VaryThetaMode = false;
280
       VaryPhiMode = true;
281
```

```
SpiralMode = false;
282
     }
283
     if(overSpiralButton() == true){
284
       VaryThetaMode = false;
285
       VaryPhiMode = false;
286
       SpiralMode = true;
287
288
     if(overSphere() == true && RotationMode == true){
289
       RotationMode = false;
290
291
     } else if(overSphere() == true && RotationMode == false){
       RotationMode = true;
292
293
     if (over1sectionStd() == true) {
294
       Mode1sectStd = true;
295
       Mode1sect = false;
296
       Mode2sect = false;
297
298
       rotMode1 = false;
299
       rotMode2 = false;
300
       rotMode3 = false;
301
302
       flowMode = false;
     }
303
     if (over1section() == true) {
304
       Mode1sectStd = false;
305
       Mode1sect = true;
306
307
       Mode2sect = false;
308
       rotMode1 = false;
309
       rotMode2 = false;
310
       rotMode3 = false;
311
       flowMode = false;
312
     }
313
     if (over2section() == true) {
314
       Mode1sectStd = false;
315
       Mode1sect = false;
316
       Mode2sect = true;
317
318
       rotMode1 = false;
319
       rotMode2 = false;
320
       rotMode3 = false;
321
322
       flowMode = false;
323
     }
     if (overGamma1() == true) {
324
       rotMode1 = true;
325
       rotMode2 = false;
326
       rotMode3 = false;
327
     }
328
     if (overGamma2() == true) {
329
       rotMode1 = false;
330
       rotMode2 = true;
331
       rotMode3 = false;
332
333
     }
334
     if (overGamma3() == true) {
       rotMode1 = false;
335
       rotMode2 = false;
336
       rotMode3 = true;
337
     }
338
     if (overFlow() == true) {
339
```

```
flowMode = true;
340
     }
341
342 }
343
344 void keyPressed(){
     if (key == CODED) {
       if (keyCode == UP) {
346
         camMode++;
347
348
     } else if (key == 'q') {
349
       videoExport.endMovie();
350
351
       exit();
     }
352
353 }
```

Appendix B

Class CxComplex

I coded this class to have an object for the 4-dimensional points in $\mathbb{C} \times \mathbb{C}$

```
class CxComplex { //Complex x Complex
   Complex z_1;
   Complex z_2;
4
   //__CONSTRUCTOR__
     CxComplex(){
8
     this.z_1 = new Complex();
9
     this.z_1 = new Complex();
10
11
12
     CxComplex(CxComplex z){
13
       this.z_1 = z.z_1;
14
15
       this.z_2 = z.z_2;
16
17
     CxComplex(Complex x, Complex y) {
      this.z_1 = x;
19
      this.z_2 = y;
20
21
     CxComplex(double x_1, double y_1, double x_2, double y_2) {
23
      this.z_1 = new Complex(x_1, y_1);
24
      this.z_2 = new Complex(x_2, y_2);
25
26
27
     {\tt CxComplex(float x\_1, float y\_1, float x\_2, float y\_2) \{}
28
      this.z_1 = new Complex((double)x_1, (double)y_1);
29
      this.z_2 = new Complex((double)x_2, (double)y_2);
30
31
32
   //__FUNCTIONS__
   double x_1(){
34
   return this.z_1.real;
35
36
  double y_1(){
  return this.z_1.imag;
39 }
40 double x_2() {
41 return this.z_2.real;
```

```
42
   double y_2(){
   return this.z_2.imag;
45
46
   CxComplex normalize(){
   float len = sqrt(pow((float)this.x_1(),2)+pow((float)this.y_1(),2)
48
     +pow((float)this.x_2(),2)+pow((float)this.y_2(),2));
   float x_1 = (float)this.x_1() / len;
49
   float y_1 = (float)this.y_1() / len;
   float x_2 = (float)this.x_2() / len;
51
   float y_2 = (float)this.y_2() / len;
   return new CxComplex(x_1,y_1,x_2,y_2);
53
54
55
   CxComplex goWithFlow(float t){ //goes with the Hopf flow
56
     Complex new_z_1 = this.z_1.mult(Complex.exp(i.mult(t)));
57
     Complex new_z_2 = this.z_2.mult(Complex.exp(i.mult(t)));
58
     return new CxComplex(new_z_1,new_z_2);
59
60
   }
61
    CxComplex normalize2ndCoordinate(){
62
      float len = sqrt(pow((float)this.x_1(),2)+pow((float)this.y_1())
63
      ,2)+pow((float)this.x_2(),2)+pow((float)this.y_2(),2)); //length
      of vector
      float x_1 = (float)this.x_1();
64
      float y_1 = (float)this.y_1();
65
      float x_2 = 1-len;
66
      float y_2= (float)this.y_2();
67
      return new CxComplex(x_1,y_1,x_2,y_2);
68
69
70
    CxComplex applyRotMatrix(PMatrix3D rot){
71
      float a = rot.multX((float)this.z_1.real, (float)this.z_1.imag,
      (float)this.z_2.real, (float)this.z_2.imag);
      float b =rot.multY((float)this.z_1.real, (float)this.z_1.imag,
73
     (float)this.z_2.real, (float)this.z_2.imag);
      float c =rot.multZ((float)this.z_1.real, (float)this.z_1.imag,
74
     (float)this.z_2.real, (float)this.z_2.imag);
      float d =rot.multW((float)this.z_1.real, (float)this.z_1.imag,
75
     (float)this.z_2.real, (float)this.z_2.imag);
76
      return new CxComplex(a,b,c,d);
77
    }
78
79
80 }
  //__more functions__
   CxComplex subtract(CxComplex x, CxComplex y){
83
     Complex a = x.z_1.sub(y.z_1);
84
     Complex b = x.z_2.sub(y.z_2);
85
86
      return new CxComplex(a,b);
87
88
   CxComplex mult(double scalar, CxComplex z){
89
     Complex a = z.z_1;
90
91
     Complex b = z.z_2;
     a = new Complex(a.real*scalar, a.imag*scalar);
92
```

```
b = new Complex(b.real*scalar, b.imag*scalar);
   return new CxComplex(a,b);
94
   }
95
96
   CxComplex add(CxComplex x, CxComplex y){
97
     Complex a = x.z_1;
     Complex b = x.z_2;
99
     Complex c = y.z_1;
100
     Complex d = y.z_2;
101
102
     a = a.add(c);
103
104
     b = b.add(d);
     return new CxComplex(a,b);
105
   }
106
```

Appendix C

Mathematics Library

```
//__MATHEMATICAL ALGORITHM FUNCTIONS__
3 void fillArray(){ //gives #noPoints points on the circle in R3, (
     evenly spaced on the circle in C2)
    CxComplex[] PointsInC2 = new CxComplex[noCircles]; //array of
     points in C2
    for(int i=0; i<noCircles; i++){</pre>
      PointsInC2[i] = findFibrePoint(startingPoints[i]); //fill that
     array up:
    for (int j=0; j<noCircles; j++){</pre>
      circlePoints[j][0] = projectPoint(PointsInC2[j]); //put starting
      points' projections in first entry
      for(int i=1; i< noPoints; i++){</pre>
10
        circlePoints[j][i] = projectPoint(getNewPoint(PointsInC2[j]))
        PointsInC2[j] = getNewPoint(PointsInC2[j]);
12
      }
13
    }
14
15 }
16
17 CxComplex findFibrePoint(Complex p){ //put in complex number p and
     get one point on circle in S^3
      (x_1,y_2,x_2,y_2) is coordinate in C^2
19 // trick: set y_2 =0.
20 float x_1;
21 float x_2;
22 float y_1;
x_2 = \sqrt{(1/(1+ pow((float)p.real,2)+ pow((float)p.imag,2)))};
24 x_1 = (float)p.real*x_2;
y_1 = (float)p.imag*x_2;
26 CxComplex p_Fibre = new CxComplex(x_1,y_1,x_2,0);
27 return p_Fibre;
28 }
30 CxComplex getNewPoint (CxComplex p){ //generate new point on same
     Fibre
    //go fourth of orbit to find next point
31
    Complex t= new Complex(2*PI/noPoints);
    Complex z_1_second = p.z_1.mult(Complex.exp(i.mult(t)));
33
    Complex z_2_second = p.z_2.mult(Complex.exp(i.mult(t)));
35
```

```
CxComplex p_2 = new CxComplex(z_1_second, z_2_second);
37
    return p_2;
38 }
30
40 CxComplex getNewPoint (CxComplex p, int noPoints){ //generate new
     point on same Fibre
    //go fourth of orbit to find next point
41
    Complex t = new Complex(2*PI/noPoints);
42
    Complex z_1_second = p.z_1.mult(Complex.exp(i.mult(t)));
43
    Complex z_2_second = p.z_2.mult(Complex.exp(i.mult(t)));
45
    CxComplex p_2 = new CxComplex(z_1_second, z_2_second);
46
    return p_2;
47
48 }
49
50 Vector goWithFlowAndProject(CxComplex p, float t){
    //generate new point on same Fibre //go fourth of orbit to find
     next point
    Complex z_1_second = p.z_1.mult(Complex.exp(i.mult(t)));
52
53
    Complex z_2_second = p.z_2.mult(Complex.exp(i.mult(t)));
    CxComplex p_2 = new CxComplex(z_1_second, z_2_second);
54
    Vector v = projectPoint(p_2);
    //println(v.x, v.y, v.z);
56
    return v;
57
58 }
60 Vector projectPoint(CxComplex p){//put in point in 4D get it
     projected into R^3 via stereographic projection with N=(0,0,0,1)
                                    //for projecting p, p', M
62 Vector p_projected = new Vector(p.z_1.real/(1-p.z_2.imag),p.z_1.
     imag/(1-p.z_2.imag),p.z_2.real/(1-p.z_2.imag));
63 return p_projected;
64 }
66 Complex SphericalToComplex(float theta, float phi){ //converts
     spherical coordinates to cartesian and projects them down
                                                        //theta is
     angle from x-axis in x/y plane, phi is from z-axis in z/y plane
    //convert from spherical to cartesian
68
    double x = sin(phi)*cos(theta);
    double y = sin(phi)*sin(theta);
    double z =cos(phi);
71
    //stereographicProjection
72
    double Re = x/(1-z);
73
    double Im = y/(1-z);
    return new Complex(Re, Im);
75
<sub>76</sub> }
78 Vector ComplexToCartesian(Complex cplx){ //converts complex number
     into cartesian coordinate on the riemann sphere
    //stereographic projection
79
    float x=2*(float)cplx.real /(1+pow((float)cplx.real,2)+pow((float
     )cplx.imag,2));
    float y=2*(float)cplx.imag /(1+pow((float)cplx.real,2)+pow((float
81
     )cplx.imag,2));
    double z=(-1+pow((float)cplx.real,2)+pow((float)cplx.imag,2))/(1+
     pow((float)cplx.real,2)+pow((float)cplx.imag,2));
    return new Vector(x,y,z);
83
```

```
84 }
86 float distance(Vector vector_1, Vector vector_2){
     return (float)(Vector.sub(vector_1, vector_2)).mag();
87
88 }
  void drawColCircle(){ //draw coloured circle
90
     strokeWeight (0.05);
91
     noFill();
93
     curveTightness(0.5);
     for(int j=0; j<noCircles; j++){</pre>
94
       beginShape();
95
       stroke((float)circlePoints[j][0].x*105+150,(float)circlePoints[
96
      j][0].y*85+150,(float)circlePoints[j][0].z*70+160); //
      colorscheme 01
       for(int i=0; i<noPoints-1; i++){</pre>
97
         if(i>0 && distance(circlePoints[j][i],circlePoints[j][i-1])>
      noPoints/2+10) {//distance too big - end shape and start new
      shape for rest of circle.
         endShape();
99
         beginShape();
100
         } else {
101
         curveVertex((float)circlePoints[j][i].x,(float)circlePoints[j
102
      [i].y,(float)circlePoints[j][i].z);
103
       }
104
       curveVertex((float)circlePoints[j][0].x,(float)circlePoints[j
105
      ][0].y,(float)circlePoints[j][0].z); //1
       curveVertex((float)circlePoints[j][1].x,(float)circlePoints[j
106
      [1].y,(float)circlePoints[j][1].z); //2
       curveVertex((float)circlePoints[j][2].x,(float)circlePoints[j
107
      [2].y,(float)circlePoints[j][2].z); //3 - need those three for
      anchor point in beginning and end
       endShape();
108
109
110 }
  //_STARTING POINTS ON RIEMANN SPHERE__
112
113
114 void addPointsVaryTheta(int amount, float phi){ //look how theta
      changes fibres, constant phi
     for(int j=0; j<amount; j++){</pre>
115
       startingPoints[j]=SphericalToComplex(j*2*PI/amount, phi);
116
     }
117
118 }
119
120 void addPointsVaryTheta(int array_entry, int amount, float phi){ //
      gives #amount equidistant points on horizontal circle on S2, phi
       gives "height" in circle.
                                                             //starts in
121
      array_entry-th entry of the array
122
     for(int j=0; j < amount; j++){
       startingPoints[array_entry+j]=SphericalToComplex(j*2*PI/amount,
123
       phi);
     }
124
125 }
127 void addPointsVaryThetaAndPhi(int amount, float alpha){ //gives "
```

```
vertical" circle
     for(int j=0; j<amount; j++){</pre>
128
       startingPoints[j]=SphericalToComplex(alpha*sin(j*PI/amount),
129
      alpha*cos(j*PI/amount));
130
131 }
132
133 void addFewPointsVaryTheta(int amountHeights, float[] phi){//makes
      equidistant points on #amountHeights different Heights
134
     for(int j=0;j<amountHeights; j++){</pre>
     addPointsVaryTheta((noCircles/amountHeights)*j, noCircles/
135
      amountHeights, phi[j]);
     }
136
137 }
138
139 void addPointsVaryPhi(int amount, float theta){ //look how phi
      changes fibres, constant theta
     for(int j=0; j < amount; j++){
140
       startingPoints[j]=SphericalToComplex(theta, j*(2*PI/amount));
141
142
143 }
_{145} void addPointsVaryPhi(int array_entry, int amount, float theta){ //
      look how phi changes fibres, constant theta
     for(int j=0; j<amount; j++){</pre>
146
       startingPoints[array_entry+j]=SphericalToComplex(theta, j*(2*PI
147
      /amount));
     }
148
149 }
150
151 void addFewPointsVaryPhi(int amountHeights, float[] theta){
     for(int j=0;j<amountHeights; j++){</pre>
152
     addPointsVaryPhi((noCircles/amountHeights)*j, noCircles/
      amountHeights, theta[j]);
154
155 }
157 void addPointsSpiral(int amount){ //gives #amount points in a
      spiral around the sphere
     for(int j=0; j<amount; j++){</pre>
158
       startingPoints[j]=SphericalToComplex(j*(2*PI/amount)+
159
      scrollbarValue(s_Spiral, 2*PI), j*(PI/amount));
160
161 }
```

44

Appendix D

D-Section Library

```
1 int dSectionNoPoints = 20;
3 void SetupDisplaySettingsDSection(){
    strokeWeight(0.02);
    fill(150,200,150,130);
    stroke(255);
7 }
9 //_SOUTHERN 1-SECTION__
void drawSouthernDSectionBoundary(){
    SetupDisplaySettingsDSection();
    pushMatrix();
13
    rotateX(PI/2);
14
    rotateZ(PI);
    rect(0,-200,400,400);
    popMatrix();
17
18 }
19
20 //__GRID 1-SECTION__
22 CxComplex[][] setupDSectionGrid(CxComplex[][] grid, int noCol, int
     noRow, CxComplex z){
    CxComplex p = new CxComplex(z.normalize());
23
    grid = getDSectionGrid(noCol, noRow, p);
25
    return grid;
26 }
28 CxComplex[][] getDSectionGrid(int noColumns, int noRows, CxComplex
    CxComplex[][] grid= new CxComplex[noColumns][noRows];
29
    //fill the first & last row of the grid, [0][0]=p and [0][noRows
30
     -1]=p_opposite
    for(int i=0; i<noColumns; i++){</pre>
31
     grid[i][0] = p.goWithFlow(3*PI*i/(4*noColumns));
     grid[noColumns-1-i][noRows-1] = p.goWithFlow(PI + 3*PI*i/(4*
33
     noColumns));
34
35
    //fill the first & last column of the grid
    CxComplex startHereFirst = grid[0][0].goWithFlow(7*PI/4); //start
36
      at p_tilde
    CxComplex startHereLast = grid[0][0].goWithFlow(3*PI/4); //start
```

```
at p_opposite
    for (int i=0; i < noRows -1; i++) {
38
     grid[0][noRows-1-i] = startHereFirst.goWithFlow(i*PI/(4*noRows))
     ; //first col
     grid[noRows-1][i]= startHereLast.goWithFlow(i*PI/(4*noRows)); //
40
     last col
41
    //fill the middle column for column
42
43
    for(int i = 1; i < noColumns-1; i++){ //go through cols
44
      for (double j = 1; j < noRows - 1; j++) { //go through rows
        double rows = noRows;
45
        double multi = j/rows;
46
        CxComplex diff = new CxComplex(subtract(grid[i][noRows-1],
47
     grid[i][0]));
        diff = add(grid[i][0], mult(multi, diff));
48
        grid[i][(int)j] = diff.normalize2ndCoordinate();
49
      7
50
    }
51
52
    return grid;
53 }
54
  CxComplex[][] getDSectionGridCircular(float varyR, float varyTheta)
     { //gives us north pole d-section
    CxComplex[][]circularGrid = new CxComplex[(int)varyR][(int)
56
     varyTheta];
    for(int i=0; i<varyR; i++){</pre>
57
      for(int j=0; j<varyTheta; j++){</pre>
58
        Complex Im = new Complex(0,1); //i
59
        Complex r = new Complex(i/varyR-1);
        Complex Theta = new Complex(j*2*PI/varyTheta-1);
61
        Complex c_2 = new Complex(Complex.sqrt(Complex.sub(1,Complex.
62
     pow(r,2)));
        Complex c_1 = new Complex(r.mult(Complex.exp(Im.mult(Theta)))
        circularGrid[i][j] = new CxComplex(c_1, c_2);
64
65
66
    return circularGrid;
67
68 }
69
  CxComplex[][] letGridFlow(CxComplex[][] grid, float t){
71
    CxComplex[][] newGrid = new CxComplex[grid.length][grid[0].length
72
    for(int i = 0; i < grid.length; i++){
73
      for(int j = 0; j < grid[0].length; <math>j++){
74
      newGrid[i][j] = grid[i][j].goWithFlow(t);
75
76
    }
77
    return newGrid;
78
79 }
81 void displayGrid(CxComplex[][] grid){
    strokeWeight(0.02);
82
    noFill();
83
    stroke (255);
    //make lines connecting each column
85
    for(int i = 0; i < grid[0].length; i++){ //go through rows
```

```
for(int j = 1; j < grid.length; j++){ //go through cols</pre>
87
        Vector x = new Vector(projectPoint(grid[j-1][i]));
        Vector y = new Vector(projectPoint(grid[j][i]));
        line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
90
      float)y.z);
       }
91
92
     //make lines connecting each row
93
94
     for(int i = 0; i < grid.length; i++){ //go through cols
       for(int j = 1; j < grid[0].length; j++){ //go through rows
        Vector x = new Vector(projectPoint(grid[i][j-1]));
96
        Vector y = new Vector(projectPoint(grid[i][j]));
97
        line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
98
      float)y.z);
99
     }
100
101 }
102
  void displayGrid(CxComplex[][] grid, boolean circular){
103
104
     strokeWeight(0.02);
     noFill();
105
     stroke (52,165,218);
106
     //make lines connecting each column
107
     for(int i = 0; i < grid[0].length; i++){ //go through rows
108
       for(int j = 1; j < grid.length; j++){ //go through cols</pre>
        Vector x = new Vector(projectPoint(grid[j-1][i]));
110
        Vector y = new Vector(projectPoint(grid[j][i]));
111
        line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
112
      float)y.z);
113
       }
     }
114
     //make lines connecting each row
115
     for(int i = 0; i < grid.length; i++){ //go through cols</pre>
       for(int j = 1; j < grid[0].length; j++){ //go through rows
117
        Vector x = new Vector(projectPoint(grid[i][j-1]));
118
119
        Vector y = new Vector(projectPoint(grid[i][j]));
        line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
120
      float)y.z);
       }
121
     }
122
123
     if (circular == true) { //if circular grid, then connect first and
       last column
       for(int i= 0; i<grid.length; i++){</pre>
124
         Vector x = new Vector(projectPoint(grid[i][0]));
125
         Vector y = new Vector(projectPoint(grid[i][grid[0].length-1])
126
         line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
127
      float)y.z);
128
129
130 }
  void displayGrid(CxComplex[][] grid, int r, int g, int b){
132
     strokeWeight(0.02);
133
     noFill();
134
     stroke(r, g, b);
135
     //make lines connecting each column
136
     for(int i = 0; i < grid[0].length; i++){ //go through rows
137
```

```
for(int j = 1; j < grid.length; j++){ //go through cols</pre>
138
        Vector x = new Vector(projectPoint(grid[j-1][i]));
139
        Vector y = new Vector(projectPoint(grid[j][i]));
140
        line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
141
      float)y.z);
       }
142
143
     //make lines connecting each row
144
145
     for(int i = 0; i < grid.length; i++){ //go through cols
       for(int j = 1; j < grid[0].length; j++){ //go through rows
146
        Vector x = new Vector(projectPoint(grid[i][j-1]));
147
        Vector y = new Vector(projectPoint(grid[i][j]));
148
        line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
149
      float)y.z);
150
     }
151
152 }
153
154 void displayGrid(CxComplex[][] grid, boolean circular, int r, int g
      , int b){
     strokeWeight(0.02);
155
     noFill();
156
     stroke(r, g, b);
157
     //make lines connecting each column
158
     for(int i = 0; i < grid[0].length; i++){ //go through rows
       for(int j = 1; j < grid.length; j++){ //go through cols
160
        Vector x = new Vector(projectPoint(grid[j-1][i]));
161
        Vector y = new Vector(projectPoint(grid[j][i]));
162
        line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
163
      float)y.z);
164
    }
165
     //make lines connecting each row
166
     for(int i = 0; i < grid.length; i++){ //go through cols</pre>
167
       for(int j = 1; j < grid[0].length; j++){ //go through rows
168
        Vector x = new Vector(projectPoint(grid[i][j-1]));
169
        Vector y = new Vector(projectPoint(grid[i][j]));
170
        line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
171
      float)y.z);
       }
172
     }
173
     if (circular == true){ //if circular grid, then connect first and
174
       last column
       for(int i= 0; i<grid.length; i++){</pre>
175
         Vector x = new Vector(projectPoint(grid[i][0]));
176
         Vector y = new Vector(projectPoint(grid[i][grid[0].length-1])
177
         line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
178
      float)y.z);
       }
179
180
181 }
182
  //_A HELICOIDAL ANNULUS__
183
185 //set up V_1 and V_2 parts seperately:
186 CxComplex[][] getV_1part(float varyR, float varyTheta){
     CxComplex[][]V_1_circularGrid = new CxComplex[(int)varyR][(int)
```

```
varyTheta];
     for(int k=0; k<varyR; k++){</pre>
188
       for(int j=0; j<varyTheta; j++){</pre>
189
         Complex Im = new Complex(0,1); //i
190
         Complex r = new Complex(k/(varyR-1));
191
         println("r", k, j, " : ", r.real, r.imag);
         Complex Theta = new Complex(j*2*PI/varyTheta-1);
193
         Complex c_1 = new Complex(r.mult(sqrt(2)/2));
194
         Complex c_2 = new Complex(Complex.sqrt(Complex.sub(1,Complex.
195
      pow(r,2).mult(0.5))).mult(Complex.exp(Im.mult(Theta))));
         V_1_circularGrid[k][j] = new CxComplex(c_2, c_1);
196
197
198
     return V_1_circularGrid;
199
200 }
201
   CxComplex[][] getV_2part(float varyR, float varyTheta){
     CxComplex[][]V_2_circularGrid = new CxComplex[(int)varyR][(int)
203
      varyTheta];
204
     for(int k=0; k<varyR; k++){</pre>
       for(int j=0; j<varyTheta; j++){</pre>
205
         Complex Im = new Complex(0,1); //i
206
         Complex r = \text{new Complex}(k*(\text{sqrt}(2)/2)/(\text{vary}R-1));
207
         println("r", k, j, " : ", r.real, r.imag);
208
         Complex Theta = new Complex(j*2*PI/varyTheta-1);
209
         Complex c_1 = new Complex(Complex.sqrt(Complex.sub(1,Complex.
210
      pow(r,2)));
         Complex c_2 = new Complex(r.mult(Complex.exp(Im.mult(Theta)))
211
212
         V_2_circularGrid[k][j] = new CxComplex(c_2, c_1);
213
     }
214
     return V_2_circularGrid;
215
216 }
217
  //__AN ANNULAR 2-SECTION__
218
   CxComplex[][] getV_1part2(float varyR, float varyTheta){
220
     CxComplex[][]V_1_circularGrid = new CxComplex[(int)varyR][(int)
221
      varyTheta];
222
     for(int k=0; k<varyR; k++){</pre>
       for(int j=0; j<varyTheta; j++){</pre>
223
         Complex Im = new Complex(0,1); //i
224
         Complex MinIm = new Complex(0,-1);
225
         Complex r = new Complex(k/(varyR-1));
226
         println("r", k, j, " : ", r.real, r.imag);
227
         Complex Theta = new Complex(j*2*PI/varyTheta-1);
228
         Complex c_1 = new Complex(r.mult(sqrt(2)/2).mult(Complex.exp(
      MinIm.mult(Theta)));
         Complex c_2 = new Complex(Complex.sqrt(Complex.sub(1,Complex.
230
      pow(r,2).mult(0.5))).mult(Complex.exp(Im.mult(Theta))));
231
         V_1_circularGrid[k][j] = new CxComplex(c_1, c_2);
232
233
     return V_1_circularGrid;
234
235 }
236
237 CxComplex[][] getV_2part2(float varyR, float varyTheta){
```

```
CxComplex[][]V_2_circularGrid = new CxComplex[(int)varyR][(int)
238
      varyTheta];
     for(int k=0; k<varyR; k++){</pre>
239
       for(int j=0; j<varyTheta; j++){</pre>
240
         Complex Im = new Complex(0,1); //i
241
         Complex MinIm = new Complex(0,-1);
         Complex r = \text{new Complex}(k*(\text{sqrt}(2)/2)/(\text{vary}R-1));
243
         println("r", k, j, " : ", r.real, r.imag);
244
         Complex Theta = new Complex(j*2*PI/varyTheta-1);
245
246
         Complex c_1 = new Complex(Complex.sqrt(Complex.sub(1,Complex.
      pow(r,2))).mult(Complex.exp(MinIm.mult(Theta))));
         Complex c_2 = new Complex(r.mult(Complex.exp(Im.mult(Theta)))
247
         V_2_circularGrid[k][j] = new CxComplex(c_1, c_2);
248
       }
249
     }
250
     return V_2_circularGrid;
251
252
253
254
  // for the last 2 sections we need this function to visualize the
      grids:
255
  void displayGrids(CxComplex[][] V_1, CxComplex[][] V_2){
256
     displayGrid(V_2, true, 0, 150, 120);
257
     displayGrid(V_1, true, 205, 200, 0);
259
260
261 void displayGridsColoured(CxComplex[][] V_1, CxComplex[][] V_2){
     displayGrid(V_2, true, 0, 150, 170);
263
     displayGrid(V_1, true, 240, 160, 5);
264 }
265
266 //__TUBES__
268 PVector[][] setupTubes(CxComplex[][] grid, float t){// t is the
      time that it will flow in the Hopf flow
     int noTotalCoord = 50; //noCoord is how many coordinates will be
269
      passed into the curve
270
     //get an array of vectors out of that array of points from that
271
      grid
     PVector[][] tubeVectors = new PVector[grid.length * grid[0].length
272
      ][noTotalCoord];
     for(int i=0; i<grid.length; i++){//go through cols of grid
273
       for(int j=0; j<grid[0].length; j++){//go through rows of grid
274
         for(int k=0; k<noTotalCoord; k++){ //go through coordinates
275
         tubeVectors[i*grid[0].length +j][k] = new PVector((float)
276
      goWithFlowAndProject(grid[i][j], k*t/noTotalCoord).x, (float)
      goWithFlowAndProject(grid[i][j],k*t/noTotalCoord).y, (float)
      goWithFlowAndProject(grid[i][j],k*t/noTotalCoord).z);
277
278
279
     return tubeVectors;
280
281 }
283 void drawTubeCoord(PVector[][]tubeCoord, float NumCoord){ //
      NumCoord tells us how many coordinates we should draw
```

```
float radius = 0.01; //radius of cross section
284
       for (int j=0; j<tubeCoord.length; j++){</pre>
285
         PVector[] coordinates;
286
          if(NumCoord >3){
287
           coordinates = new PVector[(int)NumCoord+1];
288
              for(int i=0; i<(int)NumCoord+1; i++){</pre>
                coordinates[i]=tubeCoord[j][i];
290
291
           BSpline3D path = new BSpline3D(coordinates,20); //create
292
      path for these coordinates
           Oval oval = new Oval(radius, 10); //create cross section
293
           Tube tube = new Tube(path,oval); //create tube
294
           tube.drawMode(S3D.SOLID);
295
           tube.fill(color(150,150,255));
296
           tube.draw(getGraphics());
297
          }
298
       }
299
300 }
301
   void drawTubes(Tube[][] tubes){ //draws all tubes completely
302
303
     for(int i=0; i<tubes.length; i++){//go through cols</pre>
       for(int j=0; j<tubes[0].length; j++){//go through rows
304
         tubes[i][j].drawMode(S3D.SOLID);
305
         tubes[i][j].fill(color(150,150,255));
306
         tubes[i][j].draw(getGraphics());
307
308
     }
309
310 }
```

Appendix E

Rotation Library

the implementation of the rotation matrices in 3.2.4????

```
//Here you will find everything about using the SO4 Matrices
     for rotating the d-section around.
3 PMatrix3D giveRotationMatrix1(float angle_1){
    PMatrix3D rot_1 = new PMatrix3D(cos(angle_1),-sin(angle_1),0,0,
5
                                      sin(angle_1),cos(angle_1),0,0,
                                      0,0,cos(angle_1),sin(angle_1),
                                      0,0,-sin(angle_1),cos(angle_1));
    return rot_1;
8
9
10
11 PMatrix3D giveRotationMatrix2(float angle_2){
12
13
14
    PMatrix3D rot_2 = new PMatrix3D(0,0,-cos(angle_2),-sin(angle_2),
                                      0,0,sin(angle_2),-cos(angle_2),
15
                                      cos(angle_2),-sin(angle_2),0,0 ,
16
                                      sin(angle_2), cos(angle_2),0,0);
18
    return rot_2;
19
20 }
21 PMatrix3D giveRotationMatrix3(float angle_3){
    PMatrix3D rot_3 = new PMatrix3D(0,-sin(angle_3),-cos(angle_3),0,
                                      sin(angle_3),0,0,-cos(angle_3),
23
                                      cos(angle_3),0,0,sin(angle_3),
24
                                      0, cos(angle_3), -sin(angle_3),0 );
26
27
28
    return rot_3;
29 }
31 CxComplex[][] rotateDSection(CxComplex[][] grid, float angle, int
     kindOfRotation){
    CxComplex[][] rotGrid = new CxComplex[grid.length][grid[0].length
32
     ];
    PMatrix3D rot;
33
    if(kindOfRotation == 1){
      rot = new PMatrix3D(giveRotationMatrix1(angle));
35
    } else if (kindOfRotation == 2){
36
      rot = new PMatrix3D(giveRotationMatrix2(angle));
37
    } else { //(kindOfRotation ==3) or faulty int
```

```
rot = new PMatrix3D(giveRotationMatrix3(angle));
for(int i=0; i<grid.length; i++){
  for(int j=0; j<grid[0].length; j++){
   rotGrid[i][j] = grid[i][j].applyRotMatrix(rot);
}
return rotGrid;
return rotGrid;</pre>
```

Appendix F

Graphics library

```
1 //__GRAPHICS FUNCTIONS__
2 //__SETUP COORDINATE SYSTEM__
3 void centerCoordinatesystem(){
    {\tt translate(width/2-50, height/2+50, -100);}
    scale(100);
    rotateX(3*PI/8);
    rotateZ(PI/8);
9 void drawAxes(float size){
   //X - red
    stroke(192,0,0);
    strokeWeight(0.07);
    line(0,0,0,size,0,0);
    //length indicator
    //line(10,0,-20,10,0,20);
    //Y - green
17
    stroke(0,192,0);
    line(0,0,0,0,size,0);
    //Z - blue
    stroke(0,0,192);
21
    line(0,0,0,0,0,size);
23 }
25 void drawAxes(float size, float weight){
    //X - red
    stroke(192,0,0);
    strokeWeight(weight);
28
    line(0,0,0,size,0,0);
    //length indicator
    //line(10,0,-20,10,0,20);
    //Y - green
32
    stroke(0,192,0);
    line(0,0,0,0,size,0);
    //Z - blue
    stroke(0,0,192);
36
    line(0,0,0,0,0,size);
37
38 }
40 void nameAxes(float size){
    textSize(20);
    fill(200);
```

```
text("x", size+2,0,0);
    text("y",0,size+2,0);
44
    text("z",0,0,size+2);
45
46 }
47
48 // overlay coordinate system
49 void centerCoordinatesystemOverlay(){
    translate(width/7, height/7,0);
    rotateX(3*PI/10);
    rotateY(PI/20);
    rotateZ(PI/10);
53
54 }
55
56 //__GUI__
57
58 int sphere_size = 80;
60 void drawSphere(){
    strokeWeight(1);
61
62
    stroke(255, 70);
63
    noFill();
    sphere(sphere_size);
    text("N",0,0,83);
65
    text("x",83,0,0);
    text("y",0,83,0);
67
68 }
69
70 float getRotation(float rot){
    float currentRot = rot+PI/100;
72
    return currentRot;
73 }
75 void rotateSphere(float rot){
  rotateZ(rot);
76
77 }
78
79 void drawPointsOnSphere(Complex[]points){
    Vector p = new Vector();
80
    for (int i=0; i<points.length; i++){</pre>
81
      //get coordinates on sphere
82
      p = (ComplexToCartesian(points[i]));
      //draw them
84
      strokeWeight(5);
85
      stroke((float)projectPoint(findFibrePoint(points[i])).x
     *105+150,(float)projectPoint(findFibrePoint(points[i])).y
     *85+150,(float)projectPoint(findFibrePoint(points[i])).z*70+160)
     ; //colourscheme 01
      point(80*(float)p.x, 80*(float)p.y, 80*(float)p.z);
87
    }
88
89 }
90
91 //function that checks if mouse is over sphere
92 boolean overSphere(){
    if(mouseX<sphere_size+width/7 && mouseY<sphere_size + height/7){</pre>
    return true;
    } else {
    return false;
96
97
```

```
98 }
100 //_SCROLLBARS & BUTTONS__
int width_scrollbars = 150;
102 int height_scrollbars = 15;
int space = 20; //space to left & top of screen
105 float x_scrollbars;
106 float y_VaryTheta = space;
107 float y_VaryPhi = space*2+height_scrollbars;
108 float y_Spiral = height-space-height_scrollbars;
109 float y_1sectionStd = space*5+height_scrollbars*4;
110 float y_1section = space*6+height_scrollbars*5;
111 float y_2section = space*7+height_scrollbars*6;
112 float y_gamma_1 = y_Spiral+7*space+5*height_scrollbars;
113 float y_gamma_2 = y_Spiral+8*space+6*height_scrollbars;
114 float y_gamma_3 = y_Spiral+9*space+7*height_scrollbars;
115 float y_gamma_4 = y_Spiral+10*space+8*height_scrollbars;
116
117
  void setupScrollbars(){
    x_scrollbars = width-width_scrollbars-space;
118
    y_VaryTheta = space+height_scrollbars/2;
119
    y_VaryPhi = y_VaryTheta+2*space+2*height_scrollbars;
120
    y_Spiral = y_VaryTheta+3*space+3*height_scrollbars;
121
122
    s_VaryTheta = new HScrollbar(x_scrollbars, y_VaryTheta,
123
      width_scrollbars, height_scrollbars, 2);
     s_VaryTheta2 = new HScrollbar(x_scrollbars, y_VaryTheta+space+
124
      height_scrollbars, width_scrollbars, height_scrollbars, 2);
     s_VaryPhi = new HScrollbar(x_scrollbars, y_VaryPhi,
125
      width_scrollbars, height_scrollbars, 2);
     s_Spiral = new HScrollbar(x_scrollbars, y_Spiral,
126
      width_scrollbars, height_scrollbars, 2);
127
    s_gamma_1 = new HScrollbar(x_scrollbars, y_gamma_1,
128
      width_scrollbars, height_scrollbars, 2);
    s_gamma_2 = new HScrollbar(x_scrollbars, y_gamma_2,
      width_scrollbars, height_scrollbars, 2);
    s_gamma_3 = new HScrollbar(x_scrollbars, y_gamma_3,
130
      width_scrollbars, height_scrollbars, 2);
131
    s_Flow = new HScrollbar(x_scrollbars, height-space/2-space-
132
      height_scrollbars, width_scrollbars, height_scrollbars, 2);
     s_noCircles = new HScrollbar(x_scrollbars, height-space/2,
133
      width_scrollbars, height_scrollbars, 2);
     s_noCircles.spos = s_noCircles.xpos +30*width_scrollbars/100;
134
135 }
137 void updateScrollbars(){
     s_VaryTheta.update();
138
    s_VaryTheta2.update();
139
    s_VaryPhi.update();
    s_Spiral.update();
141
    s_gamma_1.update();
142
    s_gamma_2.update();
143
    s_gamma_3.update();
145
    s_Flow.update();
    s_noCircles.update();
146
```

```
147 }
149 void displayScrollbars(){
     s_VaryTheta.display();
150
     s_VaryTheta2.display();
151
     s_VaryPhi.display();
152
     s_Spiral.display();
153
     s_gamma_1.display();
154
155
     s_gamma_2.display();
156
     s_gamma_3.display();
     s_Flow.display();
157
     s_noCircles.display();
158
     //add text
159
     fill(200);
160
     textSize(2*space/3);
161
     text("#fibres", x_scrollbars - space*5, height-space/4);
162
163 }
164
165 float scrollbarValue(HScrollbar bar, float maxValue){ //converts
      position of scrollbar to float between 0 & maxValue
166 return (bar.spos-bar.xpos)*maxValue/(bar.swidth-bar.sheight);
168
  void drawButtons(){
169
     //draw buttons
170
     fill(70,0,70);
171
     strokeWeight(2);
172
     stroke (255);
173
     rect(x_scrollbars - height_scrollbars - space, y_VaryTheta - space/3,
174
       height_scrollbars, height_scrollbars); //varyTheta
     rect(x_scrollbars - height_scrollbars - space, y_VaryPhi - space/3,
175
      height_scrollbars, height_scrollbars); //VaryPhi
     rect(x_scrollbars - height_scrollbars - space, y_Spiral - space/3,
      height_scrollbars, height_scrollbars); //Spiral
     rect(width-space-height_scrollbars,y_1sectionStd,
177
      height_scrollbars, height_scrollbars); //1section
     rect(width-space-height_scrollbars,y_1section, height_scrollbars,
178
       height_scrollbars); //1section
     rect(width-space-height_scrollbars,y_2section, height_scrollbars,
179
       height_scrollbars); //2section
180
     rect(x_scrollbars - space, y_gamma_1 - space/3, height_scrollbars
181
      , height_scrollbars); //gamma_1
     rect(x_scrollbars - space, y_gamma_2 - space/3, height_scrollbars,
182
       height_scrollbars); //gamma_2
     rect(x_scrollbars - space, y_gamma_3 - space/3, height_scrollbars,
183
       height_scrollbars); //gamma_3
     rect(x_scrollbars - space, height-space/2-4*space/3-
185
      height_scrollbars, height_scrollbars, height_scrollbars);//flow
186
     //add text
187
     fill(200);
188
     textSize(2*space/3);
189
     text("Vary Theta", x_scrollbars - space*6, y_VaryTheta + space/3)
190
     text("Vary Phi", x_scrollbars - space*5, y_VaryPhi+ space/3);
191
     text("Spiral", x_scrollbars - space*5, y_Spiral+ space/3);
192
```

```
{\tt text("std\ 1-section",width-space-height\_scrollbars*4-space*3,}
193
      y_1sectionStd+space/2);
     text("1-section", width-space-height_scrollbars*4-space*2,
194
      y_1section+space/2);
     text("2-section", width-space-height_scrollbars*4-space*2,
195
      y_2section+space/2);
     text("\u03B3\u2081", x_scrollbars - space*2 - height_scrollbars,
196
      y_gamma_1+space/3);
     text("\u03B3\u2082", x_scrollbars - space*2- height_scrollbars,
197
      y_gamma_2+space/3);
     \texttt{text("\u03B3\u2083", x\_scrollbars - space*2- height\_scrollbars,}
198
      y_gamma_3+space/3);
     text("D-Section Flow", x_scrollbars - space *6.5, height-space
199
      /2-3*space/4-height_scrollbars);
200 }
201
202 //_functions to check if mouse is over buttons__
203 boolean overVaryThetaButton() {
     if (mouseX >= x_scrollbars-height_scrollbars-space && mouseX <=
204
      x_scrollbars-space &&
         mouseY >= y_VaryTheta && mouseY <= y_VaryTheta+</pre>
205
      height_scrollbars) {
       return true;
206
     } else {
207
       return false;
208
209
210 }
211
212 boolean overVaryPhiButton()
     if (mouseX >= x_scrollbars-height_scrollbars-space && mouseX <=
213
      x_scrollbars-space &&
         mouseY >= y_VaryPhi && mouseY <= y_VaryPhi+height_scrollbars)
214
       return true;
215
     } else {
216
       return false;
217
219 }
220
221 boolean overSpiralButton()
     if (mouseX >= x_scrollbars-height_scrollbars-space && mouseX <=
      x_scrollbars-space &&
         mouseY >= y_Spiral && mouseY <= y_Spiral+height_scrollbars) {</pre>
223
       return true;
224
     } else {
225
       return false;
226
     }
227
228 }
229
230 boolean over1section()
     if (mouseX >= width-space-height_scrollbars && mouseX <= width-
231
      space &&
         mouseY >= y_1section && mouseY <= y_1section+
232
      height_scrollbars) {
       return true;
233
     } else {
       return false;
235
     }
236
```

```
237 }
239 boolean over2section() {
     if (mouseX >= width-space-height_scrollbars && mouseX <= width-
      space &&
         mouseY >= y_2section && mouseY <= y_2section+
241
      height_scrollbars) {
       return true;
242
243
     } else {
       return false;
245
246 }
247
248 boolean over1sectionStd()
     if (mouseX >= width-space-height_scrollbars && mouseX <= width-
249
      space &&
         mouseY >= y_1sectionStd && mouseY <= y_1sectionStd+
250
      height_scrollbars) {
       return true;
251
252
     } else {
253
       return false;
254
255 }
256
257 boolean overGamma1(){
     if (mouseX >= x_scrollbars - space && mouseX <= x_scrollbars -
258
      space+height_scrollbars &&
         mouseY >= y_gamma_1 - space/3 && mouseY <= x_scrollbars -</pre>
259
      space+height_scrollbars) {
260
       return true;
261
     } else {
       return false;
262
     7
263
264 }
265
266 boolean overGamma2(){
     if (mouseX >= x_scrollbars - space && mouseX <= x_scrollbars -
      space+height_scrollbars &&
         mouseY >= y_gamma_2 - space/3 && mouseY <= x_scrollbars -</pre>
268
      space+height_scrollbars) {
269
       return true;
270
     } else {
       return false;
271
     }
272
273 }
274
275 boolean overGamma3(){
     if (mouseX >= x_scrollbars - space && mouseX <= x_scrollbars -
      space+height_scrollbars &&
         mouseY >= y_gamma_3 - space/3 && mouseY <= x_scrollbars -</pre>
277
      space+height_scrollbars) {
278
       return true;
279
     } else {
       return false;
280
281
282 }
284 boolean overFlow(){
```

Appendix G

Class HScrollbar

```
class HScrollbar {
    int swidth, sheight;
                             // width and height of bar
    float xpos, ypos;
                             // x and y position of bar
                             // x position of slider
    float spos, newspos;
    float sposMin, sposMax; // max and min values of slider
                             // how loose/heavy
    int loose;
    boolean over;
                             // is the mouse over the slider?
    boolean locked;
    float ratio;
10
_{11} HScrollbar (float xp, float yp, int sw, int sh, int 1) {
      swidth = sw;
      sheight = sh;
13
      int widthtoheight = sw - sh;
14
      ratio = (float)sw / (float)widthtoheight;
15
      xpos = xp;
17
      ypos = yp-sheight/2;
      spos = xpos + swidth/2 - sheight/2;
18
      newspos = spos;
19
      sposMin = xpos;
      sposMax = xpos + swidth - sheight;
      loose = 1;
22
23 }
    void update() {
25
      if (overEvent()) {
26
        over = true;
27
      } else {
        over = false;
29
30
      if (mousePressed && over) {
31
        locked = true;
33
      if (!mousePressed) {
34
        locked = false;
35
      if (locked) {
37
        newspos = constrain(mouseX-sheight/2, sposMin, sposMax);
38
39
      if (abs(newspos - spos) > 1) {
        spos = spos + (newspos-spos)/loose;
41
42
    }
43
```

```
44
    float constrain(float val, float minv, float maxv) {
45
      return min(max(val, minv), maxv);
46
47
48
    boolean overEvent() {
49
       if (mouseX > xpos && mouseX < xpos+swidth &&
50
          mouseY > ypos && mouseY < ypos+sheight) {</pre>
51
         return true;
52
      } else {
53
         return false;
54
55
    }
56
57
    void display() {
58
      noStroke();
59
      fill(204);
60
      rect(xpos, ypos, swidth, sheight);
61
       if (over || locked) {
62
         fill(0, 0, 0);
63
      } else {
64
         fill(102, 102, 102);
65
66
      rect(spos, ypos, sheight, sheight);
67
68
69
    float getPos() {
70
      \ensuremath{//} Convert spos to be values between
71
      // 0 and the total width of the scrollbar
      return spos * ratio;
73
    }
74
75 }
```

62

Appendix H

Rec Library

```
This library for recording the screen is from Tim Rodenbroeker [6].

//For video Export add rec(); at the very end of draw!

final String sketchname = getClass().getName();

import com.hamoid.*;

VideoExport videoExport;

void rec(){

if(frameCount == 1){

videoExport = new VideoExport(this,"../"+sketchname+".mp4");

videoExport.setFrameRate(30);

videoExport.startMovie();

videoExport.saveFrame();
```

Bibliography

- [1] Peter Albers; Hansjörg Geiges; Kai Zehmisch. "A Symplectic Dynamics Proof Of The Degree-Genus-Formula". In: (2019). arXiv:1905.03054.
- [2] H. Geiges. "An Introduction to Contact Topology". In: Cambridge Stud. Adv. Math. 109, Cambridge University Press, Cambridge (2008).
- [3] Peter Lager. QScript. http://www.lagers.org.uk/qscript/. Processing Library.
- [4] Peter Lager. Shapes3D. http://www.lagers.org.uk/s3d4p/index.html. Processing Library.
- [5] Processing Foundation. *HScrollbar*. https://processing.org/examples/scrollbar.html. Processing Library.
- [6] Tim Rodenbroeker. rec(). https://timrodenbroeker.de/processing-tutorial-video-export/. Processing Library.
- [7] J. Noble. "Programming Interactivity". In: (2012).
- [8] Niles Johnson. A visualization of the Hopf fibration. https://nilesjohnson.net/hopf.html.
- [9] Niles Johnson. Talk: What is a fibration? https://www.youtube.com/watch?v=QXDQsmL-8Us.
- [10] Peter Albers. *lecture notes: Kontaktgeometrie*. Heidelberg University. (not published). 2020.