Global Surfaces of Section and the Hopf Fibration
Heidelberg University

Anna Ziegler

17 September 2021

Contents

1 Introduction
1.1 Fibre Bundles
1.1.1 What’s a Fibre Bundle?
1.1.2 The Hopf Fibration
1.1.3 The Hopf Flow as a Reeb Flow
1.1.4 Projecting the Hopf Fibration into R3
1.2 D-Sections
1.2.1 A Disc-Like 1-Section

2 Visualizing the Hopf Fibration
2.0.1 Libraries
2.1 Choosing Points on the Riemann Sphere
2.2 The Projection

3 Visualizing d-Sections
3.1 Disc-Like 1-Sections
3.1.1 The Disc-Like North Pole 1-Section
3.1.2 The Disc-Like South Pole 1-Section
3.1.3 Implementing the North Pole 1-Section
3.2 An Annular 2-Section
3.2.1 Implementing the Annular 2-Section
3.3 Rotating d-Sectionso
3.4 Letting D-Sections Flow
3.4.1 The Flowing Disc-like North Pole 1-Section
3.4.2 Letting the Grid Flow

4 The Graphical User Interface
4.1 The Riemann Sphere
4.2 Scrollbars and Buttons

Appendix: Code
Class CxComplex
Mathematics Library

D-Section Library

g5 9 aQ W »

Rotation Library

11
11
11
12

15
15
15
17
18
20
21
22
24
24
26

27
27
28

30

38

41

45

52

CONTENTS

F Graphics library
G Class HScrollbar

H Rec Library

54

61

63

Chapter 1

Introduction

This bachelor project builds on the paper A Symplectic Dynamics Proof of the
Degree-Genus Formula’ by Peter Albers, Hansjorg Geiges and Kai Zehmisch [1].
Our focus will be on the first part of the paper, which deals with classifying global
surfaces of section for the Hopf fibration. We will start by covering the basic math-
ematical concepts to then visualize the Hopf fibration using the programming lan-
guage Processing, and finally identify and visualize various d-sections.

1.1 Fibre Bundles

1.1.1 What’s a Fibre Bundle?

First, let us investigate what a fibre bundle is. Because, unlike its name, the Hopf
fibration is not only a fibration, but a fibre bundle, which is more constrained.

DEFINITION 1. A fibre bundle is a structure (E, B,w, F'). Here E,B,F are topo-
logical spaces and 7 : F — B is a continuous surjection. E is called the total space,
B the base space and F the fibre. 7 is the bundle projection satisfying the local
triviality condition: For every x € B, there is an open neighbourhood U C B of
x such that there is a homeomorphism ¢ : 771 (U) — U x F so that the following
diagram should commute:

7 HU) ¥ -*U__XF
T _ PT011

U

That means that a fibre bundle is a space that locally looks like a product, but
globally it can look differently. Thus, a Cartesian Product of two spaces is the easiest
example of a fibre bundle, since it also globally is a product. A more sophisticated
example is the Mobius Strip: locally it looks like a Cartesian Product of a circle
with a line, but it has a global twist. Both are depicted in figure 1.1.

1.1. FIBRE BUNDLES

Figure 1.1: The Cartesian Product and the Md&bius strip

1.1.2 The Hopf Fibration

For the Hopf Fibration, we have the total space being F = S% C C2. Interestingly,
we can obtain that sphere by a twisted product of S* with S2.

DEFINITION 2. The Hopf Fibration is a fibre bundle given by: (53, 5% H, S') with
the Hopf Map H defined as

H:8CC?—CuU{oo} =5’
(21,22)|—>é

zZ9

or, alternatively:

H:ScC?>—-cp!

(21, 22) = 21 %92

In this thesis, we will refer to the Hopf Map as the first of the two definitions,
and identify C U {oo} with the Riemann Sphere as defined below.

DerFINITION 3. The Riemann Sphere is the compactification of the complex plane,
which is achieved by adding the point oo to the complex plane. The mapping consists
of the identity on C and the second map on (CU o) \ {0}

o %forzEC
z 0 forz=o0

1.1.3 The Hopf Flow as a Reeb Flow

Another way of obtaining the Hopf Fibration is using the Reeb flow of the standard
contact form oy on S C R* given by

g = (v1dyr — yhdey + zodys — yodzs)|7ss

DEFINITION 4. In a contact Manifold, given a contact-1-form «, the Reeb Vector-
field R is the vector field satisfying

R € ker(da)

a(R) =1

4

1.1. FIBRE BUNDLES

The Reeb vector field of ay; is thus given by:
Ry = $1ay1 - ylal’l + I28y2 - yZarz

The Hopf Flow being the Reeb flow of a; implies lemma 5. For more information
about contact forms, Reeb vector fields and everything related, see [2].

LEMMA 5. The Hopf Flow is defined as ®%(p) = e - p

Intuitively, this means that both copies of C get rotated simultaneously. The
orbits of the Hopf flow are the fibres of the Hopf fibration. Using the Hopf map
from definition 2, we can verify this claim, since points on the same orbit map to
the same point on the Riemann sphere:

et-zy 0z

H(®(21,2)) = H((e"21,¢"2)) = T H((z1, 22))

REMARK 6. An interesting property of the Hopf fibration is that any two Hopf fibres
are linked by a so called Hopf link. This means, they are linked like two parts of a
chain, as you can see in figure (1.2).

Figure 1.2: The Hopf link

1.1.4 Projecting the Hopf Fibration into R?

To get an intuition about how the Hopf fibration behaves, it is useful to project it into
three dimensions. This can be done using the stereographic projection. Fortunately,

N = {oe} N = {co}
— =
7/ & *\ — A 7
{ AN / |r \ /
; <} ¥
l'.\“*- v_F :_ '&j 1 - /// Al 1 /
i il Y, - /
N ped ~——
i
IE:I o 'I] :)

Figure 1.4: The circle-preserving 2D stere-
Figure 1.3: The Riemann Sphere ographic projection

this map is circle-preserving, which means that circles will be mapped onto circles.
This property is very handy for our purpose since we want to look at the S'-fibres
of the Hopf fibration. Just like in the 2D-case (figure 1.4), the only circles that are
not mapped to circles are those which go through the north pole of the projection.

5

1.1. FIBRE BUNDLES

They are mapped to straight lines, which we can interpret as ’infinitely big’ circles.
In the diagram below, you can see how the projection works: On the left you can
see S? C C?. The Hopf map projects fibres of S? to points on the Riemann Sphere
on the top right. Whereas, the stereographic projection maps S to R* U oo, which
you can see on the bottom right.

Let us go through the diagram, to get a closer look at how the projection works.

NZ f==}

e

Hopf map i I

(z1,20) ~

Cc2o 3

Stereographic Projection

x) X 3 L
(x) + 1Yy, X9 + 1y,) = (] —] :] =) R U (00 o
— — — s

Figure 1.5: Projecting the Hopf Fibration into 3 Dimensions

We start by choosing a point on the Riemann Sphere, in this case the south pole,
indicated in blue, and the north pole drawn in pink. Now we want to reverse’ the
Hopf map, to find the fibre that is projected onto these points by the map. For the
north pole we compute:

21

— =00 = 2=0,|z7]=1
22

And analogously for the south pole:

D20 = u=0n=1
22

Thus, the north pole fibre is given by:

Cy = {(e",0) : 0 € R/27Z}
and the south pole fibre respectively:

Cy = {(0,e") : 0 € R/2rZ}

The reason for the names C and C5 will become clear in 1.2.1. Keep in mind that
the sum of the absolute values of z; and z; have to equal 1, since we want to stay on
S3. You can see the fibres in S? in diagram 1.5 indicated in the matching colours.
Having identified the fibres in C?, we use the stereographic projection o with north
pole N, = (0,0,0,1) to map them to R? U oo.

6

1.1. FIBRE BUNDLES

DEFINITION 7. The stereographic projection o with north pole N, = (0,0,0,1)
is defined as:
c:83cC* >R U
1 Y1 T2)
L=y 1=y 1 -y

(z1 + iy1, 22 + 1y2) — (

Using this projection, we obtain for § € R/27Z:

0 0 cos(0)

1—sin(0)"1—sin(f)’ 1— sin(9)> = (0.0

a(Cr) = (

a(Cy) = () = (cos(0), sin(0),0)

cos(f) sin(f) 0
111
Thus, we see that the two fibres we chose are projected onto the z-axis and onto
a unit circle in the x-y-plane respectively. We can see this illustrated in figure 1.5:
C5 intersects the N, and thus gets projected onto a line.
This concludes the process. We will implement what we have learned in our code
and choose the points on the Riemann Sphere systematically to study the behaviour
of the Hopf fibration.

1.2. D-SECTIONS

1.2 D-Sections

A valuable tool for studying the Hopf fibration is the concept of global surfaces of
section, or d-sections. Intuitively speaking, we are searching for a surface bounded
by a fibre or a union of fibres that will intersect all other fibres in our bundle exactly
d times.

DEerINITION 8. A global surface of section, or d-section, for the flow of a non-
singular vector field X on a three-manifold M is an embedded compact surface
>} C M that has to meet three conditions:
i) the boundary 0X(M) is a union of orbits
i) the interior Int(X) is transverse to X
ii1) the orbit of X through any point in M\ 0¥ intersects Int(2) in exactly d
points (in forward and backward time)
(from [1])

1.2.1 A Disc-Like 1-Section

Now we want to look at an example of a disc-like 1-section for the Hopf flow.
Before we go on, we will introduce the concept of the soul of a solid torus.

DEFINITION 9. Given a Torus T' = S! x D?, the soul Cr of V is given by
CT = Sl X {0}

That means that the soul is the circle in the 'middle’ of the torus as depicted in
figure 1.6.

Figure 1.6: Soul C7 of a torus T

REMARK 10. Notice that we can build up a solid torus using a union of nested tori.
We define them as T, = S!' x r * D? with 0 < r < 1. To obtain a solid torus, we
need to add the soul to this union of tori:

T = Uycr<1T, U Cr

LEMMA 11. S can be obtained by glueing two solid tori together.

1.2. D-SECTIONS

Proof. We define two tori V;, Vo C S? given by
Vi={la| < 5} ={l=l = 7}

Vo= (|2l < 5} = {|n] 2 &)
The identification with S! x D? is given by:

. 2
Vii={(z,\/1—|z]2e?) : |2| < g,@ € R\2nZ}

Vo i={(v/1—2]%e?,2) : |2| < \/75,9 € R\27Z}

Clearly, the union of these two shapes form the whole of S3. The souls C; of V;
and C5 of V5 are given by the fibres mapping to the respective poles of the Riemann
Sphere by the Hopf map. They are indicated in diagram 1.5 in pink and blue.

Cy ={(0,e") : 0 € R/277}
Cy = {(¢”,0): 0 € R/277Z}
In picture 1.7 you can see R?, with the two projected fibres in it. The sketch is

Figure 1.7: Two fibres of the Hopf Fibration being mapped into R3

symmetric under rotation, so the two blue points actually represent a circle and the
grey circles indicate tori. Note that the total space R3 U {oo} = S3 without the two
fibres can be obtained by a union of nested tori, like the ones indicated in grey. As
we investigated in Remark 10, a solid torus can be obtained by a union of its soul
and nested tori around this soul. This is precisely what we construct now: We take
the blue soul C; and the pink soul C5 and unite them with nested tori around them
to obtain V; and V5. This is illustrated in figure 1.8.

Although the blue fibre maps to a line in R? using the stereographic projection,
it is a circle in C2. If we chose a different north pole in the stereographic projection,
for example N = (1,0,0,0), then we would get the same result, but with switched
colours. In this case the pink fibre would be infinitely long and the blue fibre would
be the circle in the x-y-plane. This shows the distortions to be only an artifact of
the projection.

From this we can conclude that S® can be viewed as two solid tori glued together.
53 is obtained by gluing the meridian of one torus onto the longitude of the other. [

ExamvpLe 12. The disc-like surface ¥ bounded by Cy is a 1-section for the Hopf
flow.

Sy = {(re? V1 =12) :r € [0,1],0 € R/27Z} C S°

9

1.2. D-SECTIONS

Figure 1.8: Mapping of S? with the two solid tori, V; indicated in blue, V5 indicated
in pink

Proof. Since the boundary is given by C5, we can clearly see that it consists of one
fibre, proving (i) in definition 8. As we discussed in remark 6, we know that each
two Hopf fibres are linked by a Hopf link. Thus, we can infer that all other fibres
also interlink with Cy in a Hopf link. This implies that they must intersect Int(Xy)
exactly once, satisfying (ii) and (iii). In other words, it forms a 1-section for the
Hopf fibration.

We provide a more rigorous proof in lemma 13. O

10

Chapter 2

Visualizing the Hopf Fibration

Now we want to implement the above in computer code in order to visualise the
Hopf Fibration. The programming language of our choice is Processing, a visually
oriented language based on Java.

NOTATION. To refer to the number stored in the variable ’Amount’ we use the
notation nameunt. Variables will be indicated in italic: Variable.

To indicate the size of an m x k array with name ArrayName, we will use the notation
ArrayName[m][k].

2.0.1 Libraries

We import the library QScript [3], which includes a class for complex numbers and
3-dimensional vectors. For the points in C? we include a custom class called Cx-
Complex (Appendix B). All functions related to the projection of the Hopf fibration
you can find in Appendix C. Furthermore, all functions related to d-sections are
collected in Appendix D. We use the class Shapes3D [4] for the tube object, which
we use to show the Hopf flow. In Appendix E you find everything related to the
rotations of S3. For the graphical functions that organize our window and create the
graphical user interface, see Appendix F. Another class that we use for this purpose
is called HScrollbar [5] (Appendix G), it provides the scrollbars. Finally, the class
rec() [6] (Appendix H) is included to be able to record videos directly from the code.

2.1 Choosing Points on the Riemann Sphere

We implement various methods of choosing points on the Riemann Sphere. Firstly,

Figure 2.1: Angles of the Riemann Sphere, ¢ indicated in pink, ¢ in blue

we include functions for varying ¢ or 6 for a given contrary angle. These input

11

2.2. THE PROJECTION

Figure 2.2: Choosing points on the sphere using VaryTheta(), VaryPhi() and
Spiral()

angles are changeable with scrollbars. Additionally, we include a ’Spiral’- Function
that generates points in a spiral on the Riemann Sphere. This function also has a
scrollbar which can be used to rotate the spiral around the z-axis of the Riemann
Sphere, e.g. to vary 6.

2.2 The Projection

For this process, we will follow diagram 1.5. We start at the Riemann sphere,
follow the Hopf Map back to S C C? and project this fibre to R?® U oo using the
stereographic projection. We plot n,.circes different fibres, and this value will be
changeable in real-time. The detail of the plot depends on noPoints, a variable that
sets the number of points we compute per circle.

NoTATION. We will structure this part using the functions in the code. Their syntax
is encoded as Outputtype FunctionName (Inputtype).

CxComplex findFiberPoint (Complex)

In the first step, we take a complex number z and find one point on the corresponding
fibre in S3. This can be interpreted as a 'reverse Hopf map’, but instead of giving
us the whole preimage - that is, the whole fibre - we get only one point on it. To
achieve this, we set the imaginary part of the second complex coordinate to 0. The
computation of the remaining coordinates then looks as follows.
We take: z = (21,22) € C, p = (p1,p2) = (21, y1,22,y2) € C x C
Set yo = 0. We know that

P

D2

and also
(1)* 4+ ()" + (22)° + (12)* = 1
since p € S3. Thus we can infer:

, —\/ 1
=\ Tr @yt

Tl = 21 X2
Y1 = 22 T2

The function returns this point in C2.

12

2.2. THE PROJECTION

CxComplex getNewPoint (CxComplex)

Now, using the point p € C? that we obtained in the previous step, we follow the
Hopf flow to acquire a new point on the fibre.
As a reminder, the Hopf Flow for p € C? is defined as:

! =¢"-p

The function returns @ for ¢t = 21__ where noPoints defines how many points
noPoints’

per circle we want to compute. We use this function recursively to obtain n,,peints
equidistant points on the fibre.

Vector projectPoint(CxComplex)

Having obtained points on the fibre we want to visualize, we now use the stereo-
graphic projection o to map them to R?® U oo.

ial Y1 T2)
L=y’ 1—yo' 1 -y
This function returns the points’ coordinates in R3. There is a distortion of the
circles that can appear especially when the circles get larger and for small noPoints.
This is explained by the fact that the projection does not preserve the equidistance
of the points - most points get mapped close to the origin, and thus only to one side
of the circle.

o (21,91, 72,92) — (

void fillArray()

This function combines all of the above to create one array holding all the points

in R?® that we need to visualize the fibres. First, we choose Nnecirees points on
the Riemann Sphere. Then it creates an array of points in C? and fills it with
one point on each fibre using findFibrePoint (). Next it fills up the array circle-
Points[noCircles/[noPoints] like this:

Let us call the points on the Riemann Sphere z1, 29, ..., Znocirces and findFibrePoint (z;)
= ¢;, and we shorten the functions’ names to project() and getNew(). Then the
matrix is filled in the following manner.

1 2 3 noPoints
1 project(c;) project(getNew(c;)) project(getNew(getNew(c;)) project(getNew(...getNew(cy)...)
: project(cz) project(getNew(c,)) project(getNew(getNew(cp)) project(getNew(...getNew(c)...)
3 project(cs) project(getNew(cs)) project(getNew(getNew(c3)) project(getNew(...getNew(cs3)...)
noCircles | project(Cuocirees) | project(getNew(cpocirees)) | project(getNew(getNew(cpociraes)) | - | project(getNeu(...getNew(Chocirees).--)

Table 2.1: £illArray () filling up circlePoints[noCircles/[noPoints]

drawColCircle()

For visualizing the projected fibres, we use the array that we received using £illArray().

The image is obtained by plotting an arc through the points in each row.

Additionally, we colour the circle and the corresponding point on the Riemann

Sphere in the same shade, so we can identify the connections easily. The colour

scheme for the j-th circle, whose points are stored in circlePoints[j][0], circlePoints[jj[1],...,circlePoint:
1] looks as follows.

13

2.2. THE PROJECTION

R = circlePoints[j] [0] .x*105+150,
G = circlePoints[j] [0] .y*85+150,
B = circlePoints[j] [0].z*70+160,

The RGB values we compute build on the x,y and z coordinates of the first pro-
jected point of the circle. Because of the black background, we add an integer, so
the resulting colours are bright enough to be visible. Additionally, we multiply the
values by a factor, to change how much the colour varies with the changing coor-
dinate. Since these are the points with yo = 0 and 25 > 0 (due to the function
findFibrePoint ()), we find that the projected x,y and z-values will lie on the unit
sphere in R3, resulting in z € [-1,1], y € [~1,1], 2 € [0,1]. With this knowl-
edge, we infer that the RGB values resulting from this scheme will be R € [45, 255],
G € [65,235] and B € [160,250]. As you can see in figure 2.2 and in the following
chapters, the colours are well visible and vary enough to point out the connection
between the points on the Riemann Sphere and the fibres.

14

Chapter 3

Visualizing d-Sections

First, we want to focus on visualizing disc-like 1-sections, and later also 2-sections.
In both cases, we will first find a specific d-section and then create various other
d-sections by using rotations on S® and the Hopf flow. To implement this, we add
functions to our Processing sketch collected in D-Section library (Appendix D).

3.1 Disc-Like 1-Sections

To visualize disc-like 1-sections, we first investigate the 1-sections ¥y and ¥g . Then
we will implement >y .

3.1.1 The Disc-Like North Pole 1-Section

This surface is called the north pole 1-section because its boundary is given by the
fibre Cy. As we investigated before (figure 1.5), this circle gets mapped to the north
pole of the Riemann Sphere by the Hopf map. To put this into formulas:

Cy = {(¢”,0) : 0 € R/277Z}
Yy = {(re® V1 —1r2):r <1,0 € R/27Z}
LEMMA 13. X is a 1-section for the Hopf fibration.

Proof. We can obtain ¥y as a meridional disc Dz in Vj glued together with a

helicoidal surface A in V5. Firstly, we want to show that the meridional disc in Vi
intersects all Hopf fibres in that solid torus exactly once. The Hopf fibres in V; lie
on the nested tori 7). as defined in Remark 9. They are rotating once around the
longitude A and once around the meridian g of the torus that they lay on. To get
an intuition, we depict one of these tori in figure 3.1 as a rectangle whose opposite
edges are identified. The Hopf fibres are then given by the pink fibre h and by all
possible shifted fibres, like the one indicated in blue. Since all Hopf fibres rotate once
around the meridian and longitude at the same time, they intersect a meridional
disc exactly once. An example of a meridional disc intersecting the torus in figure
3.1 is given as the left vertical edge of the rectangle. We can see clearly that this disc
intersects each fibre exactly once, and that this is also true if we move the vertical
line horizontally. Consequently, every meridional disc has this property. Thus, the

15

3.1. DISC-LIKE 1-SECTIONS

e

X

Figure 3.1: The Hopf fibres on an unfolded torus

meridional disc D5 = {re? : r < ?, 0 € R/27Z} intersects each Hopf fibre in V)
2

exactly once. The boundary of this disc is given by p; = Ay. We can embed it into

V1 as follows:

Dys—Vi=D*x 8"
re'? — (rew, V1—r?)

Next, we proof that A € V5 is also intersecting all Hopf fibres in that solid torus
exactly once. We define the helicoidal surface A with oriented boundary CoU—(h —
p2) = Co U Ay, First we cut V3 open at a meridonal disc and then we apply a Dehn
Twist, so that the Hopf fibres in this torus correspond to h = S' x {*}. The whole
process is depicted in 3.2. A\ is now twisted once around the torus. Since the Hopf
fibres in V5 correspond to straight lines now, we can clearly see that they all intersect
the surface exactly once. A can be described as A = {(re,0) : r € [0,1],0 € [0, 27]},

‘L cut open
A A
- -— <4
s Sty
l i) Dehn-Twist

WA
= =

)

Figure 3.2: The yellow Helicoidal surface A in V4

as you can see in figure 3.3. We embed A into V5 as follows:

16

3.1. DISC-LIKE 1-SECTIONS

Figure 3.3: Embedding A into V5

A=10,1] x [0,27] = Vo = S* x D?
1., 2
— —r2e", %r)

Hence these two surfaces glued together intersect each Hopf fibre in S3 = V; U V;
exactly once, proving (ii) and (iii) in definition 8. That means we only need to show
(i) still. We glue the two surfaces together at Ay, so that the glued surface has Cy
as a boundary, proving (i). This concludes our proof. O

(r,0) — (4/1

3.1.2 The Disc-Like South Pole 1-Section

Similarly to the last section, we also investigate the special case of the disc-like 1-
section bounded by the fibre C; = {(0,¢") : ¢t € R/27Z}. Since C; maps to the
south pole of the Riemann Sphere by the Hopf map (the blue fibre in figure 1.5),
we call this 1-section the south pole 1-section. Using the stereographic projection,
the fibre gets mapped onto the z-axis in R3. Thus, the 1-section it "surrounds” is a
half-plane. We include a special function void drawSouthernDSectionBoundary()
for this case, in which we chose one half-plane for the visualization (see figure 3.4).

Figure 3.4: The South Pole 1-Section ¥g

17

3.1. DISC-LIKE 1-SECTIONS

3.1.3 Implementing the North Pole 1-Section

For visualizing >, we first need to initialize a grid of points on the 1-section. We
implement two different methods for this task.

The first method is using CxComplex [] [] getDSectionGrid(int noColumns, int
noRows, CxComplex p). In figure 3.5 you can see how we set up the grid. First, we
choose one point on the boundary fibre, p, as a starting point. This point will be
stored at [0][0] in our array. Since the boundary is one fibre, we can add the other
points on the boundary fibre using the Hopf flow (Lemma 5). We vary our angle
from a =0 to a = %W to fill the first row of the array with equidistant points, pink
in the picture. Just in the same way, the interval o € [37, 7] will fill the last column
of the matrix with the blue points, and « € [, %7?] provides us with the last row
indicated in pink, and the points on the rest of the boundary will fill in the first
column.

Figure 3.5: Setting up a Grid of the d-Section

After filling in the boundary, we compute the points in the interior of the surface.
In figure 3.5 we find them coloured orange. Going through the columns, we fill in
equidistant points on the line between the first and last entry. Additionally, we
normalize the points in such a way that they lie again on our d-section. Since
the boundary points all lay on Cs, the second complex coordinate is always 0, and
that is also true for the points on the line between them. Therefore the function
normalize2ndCoordinate () normalizes the point to be of length 1 (and thus to be
in S%) by adapting the second complex coordinate.

After creating this grid-array, we use void displayGrid(CxComplex[][] grid)
to plot lines connecting the rows and columns. You can see the results in figure 3.6.

Looking at the results that this grid yields, we notice that the way to obtain
it is not very elegant and that the surface also does not look as symmetric as we
expected. We suspect the problem to be in the normalization of the points. But
instead of solving this issue, we decide to implement a second, more elegant way
to obtain the grid. We call it circular grid. Instead of aiming for equidistance, we
now aim for better visualization of the flowing grid. Since the fibres closer to the
origin seem to flow away faster than the fibres closer to the boundary of the disc-
like 1-section when we apply the Hopf flow in 3.4, it makes sense to have a higher

18

3.1. DISC-LIKE 1-SECTIONS

Figure 3.6: Visualizing the d-Section using a 6x6 grid

density of points closer to the origin. This is taken into account in the second way
of obtaining a grid, implemented in getDSectionGridCircular (). Here we vary r
and @ to obtain points on concentric circles. You can see a sketch of the process in

figure 3.7.

t
wory .

Figure 3.7: Setting up the circular grid, on the right you can see how the points are
stored in the array

The results that this grid yields are more aesthetic, as you can see in 3.8.

Additionaly, we include a function called void displayGrids(CxComplex[] []
V_1, CxComplex[][] V_2) which visualizes the intuition in 3.1.1 of glueing two
surfaces together to obtain a d-section, colouring the two parts in different colours.
You can see the results in figure 3.9.

19

3.2. AN ANNULAR 2-SECTION

Figure 3.8: Visualizing Xy Figure 3.9: Visualizing Yy as a
using a circular grid glueing of two surfaces

3.2 An Annular 2-Section

Now we construct a 2-section for the Hopf flow.

LEMMA 14. We can obtain a 2-section A for the Hopf fibration by glueing two
helicoidal annuli A; C V; and Ay C V5 together.

Proof. Let us define the helicoidal annulus A; in Vi with boundary 0A4; = C; U
—(h —2p1) with Int(A;). Intuitively, this helicoidal annulus is a surface connecting
two Hopf-linked circles. To show that A; intersects each Hopf fibre in V; exactly
twice, we use a similar approach as in Lemma 13. As you can see in figure 3.10,
we again cut the torus open. As we can see, the Hopf fibre h and the boundary

|, i) cut open

(T 7 Ml
(_}f_/_L_} X
IH_/____ =0 = 1.\;._/r

l ii) Dehn-Twist

Figure 3.10: heliocoidal annulus A; in V}

—(h — 2p;) are both twisted around the torus, but in different directions. When
we now apply the Dehn-twist, we obtain straightened Hopf fibres and the orange
boundary is twisted around the torus twice. This shows clearly that this surface
intersects the Hopf fibres in V; exactly twice.

Analogously, we have a helicoidal annulus Ay in V5 with 0Ay; = Co U —(h — o). For

20

3.2. AN ANNULAR 2-SECTION

this annulus, we can go through the same procedure to prove that it intersects the
Hopf fibres in V5 exactly twice. And since

h—2p =M —p1 = —(Xa— pi2) = —(h — 2p2)

we can glue A; to Ay at —(h — 2u1) = h — 2us. The boundary of A is then given
by 0A = C; Uy, which is clearly a union of orbits, proving (i) in definition 8. And
since the two parts intersect each Hopf fibre in their solid torus exactly twice, the
union will intersect all Hopf fibres exactly twice, satisfying (ii) and (iii). Thus we
can conclude that A forms a 2-section for the Hopf flow. m

3.2.1 Implementing the Annular 2-Section

In the visualization of this 2-section, we colour the two parts A; and A, differ-

ently, to get a better intuition about the two tori. The functions CxComplex[] []
getV_lpart_2Section(float varyR, float varyTheta) and CxComplex[][] getV_2part_2Secti
varyR, float varyTheta) obtain the two parts of the grid. For this purpose, we

vary # and r in these expressions:

2) 1)
A= (£ cre \/1—=r2. e’g)
2 2
Ay = (/1 - 57“2 - elf, % -re)

The grids we obtain here are visualized using the function void displayGrids()
that plots the grid with distinct colours for the two parts. The standard colour
scheme is yellow for A; and green for A,, as you can see in figure 3.11.

Figure 3.11: Implementation of the 2-section in two different colours

21

3.3. ROTATING D-SECTIONS

3.3 Rotating d-Sections

To study the d-sections of the Hopf fibration, we implemented two d-sections. Now
we will use Matrices M € SU(2) C SO(4) to rotate them around the 3-sphere to
create numerous d-sections. We use the matrix group SU(2) since it is compatible
with the complex structure of our C? space. All the necessary functions can be
found in Appendix E.

LEMMA 15. For a d-section X of the Hopf flow, the surface ¥, = A - ¥ with
A € SU(2) is also a d-section for the Hopf flow.

Proof. We define the Hopf flow ®%(p) as in lemma 5 and the matrix A € SU(2).
First, we note that any matrix A € SU(2) has the following property:
A is commutative with the complex multiplication and scalar multiplication, thus

A-e" = A (cos(t) +isin(t)) = (cos(t) +isin(t))- A=e"- A 1)

Now, we prove the first statement of the definition. Let us write down the orbit like
this: For z € S the orbit is given as ®%(x) = €' - z for ¢ € [0, 27]. The boundary
of ¥, using y € 0% is thus given by:

A@ﬁ%(y):A~e“-ygeit-z4~y:eit-(Ay)WithAy€S3

Thus, the boundary of ¥, is given by an orbit of the Hopf flow. Now, we want to
look at properties (ii) and (iii). For the d-section X these properties hold. For the
rotated surface A - Y = X, the properties (ii) and (iii) hold for the rotated flow
A - @l But again, since

Adh=A-e' Lt A=3)- A

the rotated flow is the Hopf flow. Thus, we can conclude that ., is indeed a
d-section for the Hopf flow. O

To implement this way of obtaining new d-sections, we first need to choose
various matrices M; € SU(2) that are of the following form:

SU(2) = {(g —;) o, B € C,laf” +|8]° =1}

This complex matrix can be converted to a real matrix as follows. Given a
complex 2-by-2 matrix

(an +1by1 aip + ib12>

ag1 + by agy + 1ba
we derive the real matrix

a1 —bir aiz —bio

bii ann b2 ap

az; —bar azy —by
bay @ by ag

We include the functions PMatrix3D giveRotationMatrixl(float angle_1),
PMatrix3D giveRotationMatrix2(float angle 2) and

22

3.3. ROTATING D-SECTIONS

PMatrix3D giveRotationMatrix3(float angle 3). Each function returns a rota-
tion matrix M; that is obtained in the following ways:

Correponding to M; : o = e, 3 =0

Correponding to My : o = 3 = \%em

Correponding to M3 : a = isin(ys), 8 = cos(73)

Yielding the real matrices

cos(y1) —sin(7) 0 0
M= sin(y1) cos(m1) 0 0
! 0 0 cos(y1) sin(y)
0 0 —sin(y1) cos(m)
0 0 —cos(y2) —sin(yz)
Mo — 1 0 0 sin(y2) —cos(y2)
2T /2 | cos(va) —sin(ye) 0 0
sin(y2) cos(y2) 0 0
0 —sin(ys) —cos(7s) 0
M — sin(ys) 0 0 —cos(73)
7 cos(7s) 0 0 sin(vy3)

0 cos(y3) —sin(ys) 0

Applying these matrices, we can rotate our d-section grid using the function
CxComplex[] [] rotateDSection(CxComplex[][] grid, float angle,
int kindOfRotation). The kind of rotation ¢ € {1,2,3} determines which M, will
be used as a rotation matrix. The function returns a new grid by multiplying it
with a rotation matrix. With these functions, we can now rotate our d-sections
on the sphere to other d-sections we want to investigate. We also include a slightly
different colour scheme which is used to visualize the rotated grid of the two-coloured
d-sections. In this scheme, the yellow part is indicated in orange and the green part
in blue (figure 3.12).

Figure 3.12: The rotated 2-section using M3

23

3.4. LETTING D-SECTIONS FLOW

3.4 Letting D-Sections Flow

LEMMA 16. Using a d-section X of a non-singular vector field X, we can obtain a
second d-section X, for X by letting it low with the flow of the vector field.

Proof. Firstly, if we let the surface go with the flow of the vector field, it is still
compact. Furthermore, the boundary of ¥ - being a union of orbits - will stay the
same, since the flow moves along the orbits. Moreover, the interior will still be
transverse to X, since it gets moved along the orbits of the points. Also, the orbits
will intersect Int(X0,) in exactly d points, since the d points in which Int(X)
intersects all orbits simply move along them. Thus we can conclude that X, is a
d-section for the vector field X. O

3.4.1 The Flowing Disc-like North Pole 1-Section

We focus on this specific d-section to investigate in formulas how it flows with the
Hopf flow. The 1-section is given by:

Sy ={(re? V1 —12):0<r<1,0cR/2nZ}
And the Hopf flow is defined as:
Qp(p) =e"-p

Now we take a point p in the interior of the 1-section: p = (r-€?, /1 — r2) with
fixed € [0,27) and 0 <7 < 1.

Oh(p) =€ (r- e’ V1—r)=(r " V1 —re")

When we project ®%(p) to R? using the stereographic projection o we introduced
before, we find:

(D4 (p)) = o(r- efelt /1 — re')

! (rcos(0)cos(t), rsin(8)sin(t), /1 — rcos(t))

1o J1- rsin(t)

Since all orbits are circles, we should flow back to the original Xy when we go
with the flow for ¢ = 27. Interestingly, the point N = (0,0,1,0) € Xy lies on Cj,
which maps onto the z-axis. That means, to flow once around its fibre, this point

has to go through the north pole of . As a result, the projected point has to pass
00.

OL(N) =€ - (0,1) = (0,¢™)
Applying the stereographic projection yields:

(@) = o((0,6) = 0,0, 151
implying:)
O-(CI)%(N» = (07 0, 1)
limt/go(@iz(]v)) = limy = (0,0, %) — 400

24

3.4. LETTING D-SECTIONS FLOW

Figure 3.13: The pink grid visualizes ¥ (indicated in white) flowing with the Hopf
flow @% for t =0,t=7,t=2t=3and t =2n

cos(t)
"1 — sin(t)

o(®%(N)) = (0,0,~1)

o(®F (N)) = (0,0,1)

limt\%a'(q)%(]\?)) = limt/%(o, 0) — — OO

The flip from +00 to —oo is nicely visible in our implementation, as you can see in
figure 3.13.

25

3.4. LETTING D-SECTIONS FLOW

3.4.2 Letting the Grid Flow

To implement this feature, we include a scrollbar to enable the user to change t in
real-time. Using this value, the function CxComplex [] [] letGridFlow(CxComplex[][]
grid, float t) goes through the grid and lets each point go with the Hopf flow.

We also implement a second way of visualizing the flow by drawing lines along
the flow of the grid. Therefore, we can not only visualize the new position but also
the movement of the grid. To achieve this, we implement so-called tubes provided
by the library Shapes3D [4] for each point on the grid.

Since this procedure is computationally costly, we first compute the tubes in
the setup() function. This function runs before the application starts. Using
the function Tube[] [] setupTubes (CxComplex[][] grid, float t), we set up
tubes of various lengths, that we only have to refer to later. When the application
is running, we use drawTubeCoord() to display the tubes. These functions are not
included in the final state of the code, because of their computational effort and
the cost of crowding most of the screen. But if the user wants to enable them, it is
possible to un-comment the needed lines (Appendix A, lines 91, 160, 202).

Figure 3.14: Tubes

26

Chapter 4

The Graphical User Interface

For a more intuitive and real-time changeable exploration of the Hopf fibration,
we include a graphical user interface in the programme. All related functions are
included in Appendix F. The GUI consists of an overlay that visualizes the points
on the Riemann sphere and numerous scrollbars and buttons to change the way we
obtain the points on the sphere and to enable the visualization of d-sections. We
also enable the user to explore different d-sections using rotational matrices and the
Hopf flow.

HopTFitstation

Figure 4.1: Overview of the GUI

4.1 The Riemann Sphere

The sphere in the top left corner visualizes the points on the Riemann Sphere that
we choose. We colour them like the projected fibres, to make the connection visible.

27

4.2. SCROLLBARS AND BUTTONS

Clicking on the sphere, it will start or stop rotating, so we can always get a good
perspective at the points.

4.2 Scrollbars and Buttons

We use the class HScrollbars [5] (Appendix G) to set up the scrollbars for varying
the different variables.

We go through the scrollbars and buttons from top to bottom. In the top right
corner, we find the scrollbars to change the way the points on the Riemann Sphere are
obtained. Here, the functions VaryTheta(), VaryPhi() and Spiral() are covered,
as discussed in 2.1. With a click on the button, we enable the function, and with the
scrollbars we can change the input angle. In the special case of VaryTheta(), there
are two scrollbars, which means we can give two different input angles if we wish to.
If we want to choose only one angle, we can click on one scrollbar and then hover
over the second while we move our mouse to change the value. The second scrollbar
will then follow the movement as well. Below that, there are three buttons to enable
the visualization of d-sections. The first one is the standard X, the second one is
Y n coloured in two different colours, and the third one is the annular 2-section. The
three scrollbars tagged with v;, ¢ € 1,2, 3 rotate the d-sections with the rotational
matrices M;, as discussed in 3.3. To enable a rotation, we click on the button on
the left side of the scrollbar. Then we are able to change the input angle. On the
bottom of the window, there are two more scrollbars. The first one is to let the grid
flow with the Hopf flow. Again, a click on the button enables it. This feature can
also be used additionally to a rotation. That means we can first rotate the d-section
and then let this new d-section flow with the Hopf flow. The last scrollbar is used
for changing the number of circles that are plotted. To reset the rotations or flow,
we can click on the d-section button again.

Camera Modes

Using the "UP’ button on the keyboard, we can switch between two camera modes:
The first one is static, and the second one is rotating your view with the horizontal
movement of your mouse.

Recording the Screen

It is possible to record a video of your exploration, therefore it is only necessary
to un-comment lines 2,3 and 268 in the main code (Hopffibration.pde). Then a
video of the window will be recorded from the start of the application until you
stop it using the key 'Q’ or Processings stop-button. This file saves to where your
"HopfFibration’-folder is located.

28

Conclusion

For exploring the Hopf Fibration on your device, you can download Processing at
https://processing.org/download. Next, add the attached folder "HopfFibration’ to
your processing directory and 'QScript’, ‘Shapes3D’, 'video’ and 'VideoExport’ to
the library folder. Alternatively, you can also download the code from
https://github.com/JeBentMooi/HopfFibration.git and import the libraries manu-
ally. Using the Processing application, you can open the project 'HopfFibration’
and press the play button. Unfortunately, it is not possible to export the code as a
standalone application, due to problems with the 3D renderer.

To conclude this thesis, we have gained a basic understanding of the mathe-
matical concepts around the Hopf Fibration. Furthermore, we developed code to
visualise the implications of its mathematical properties. Using the program, it is
now possible to explore the Hopf Fibration and numerous of its d-sections to develop
intuitions about its behaviour. This tool will aid future inquiries into the properties
of the Hopf Fibration. Such as the study of more complex d-sections, like the pair
of pants 1-section, as investigated in [1]. Also, using the method of the annular 2-
section, it is possible to construct annular d-sections for any d € N. We look forward
to any creative application of the program in the future, both in educational as well
as research contexts.

29

© 0 N A W N

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27
28
29
30

31

32
33
34
35

Appendix A

Appendix: Code

The code can also be found at: https://github.com/JeBentMooi/HopfFibration.git

//library for recording the screen
import processing.video.x*;
import com.hamoid.x*;

//library for extrusions: Shapes 3D
shapes3d. *;

import
import
import
import
import
import

shapes3d
shapes3d.
shapes3d.
shapes3d.
shapes3d.

.contour . *;
org.apache.commons.math. *;
org.apache.commons.math.geometry.*;
path.x*;

utils.x*;

//library for complex numbers: QScript

import
import
import
import
import
import

Complex i

//SETUP HOPF FIBRES

org.
org.
org.

org

org.

org

qgqscript.
gscript.
gscript.
.qscript.
gqscript.
.gscript.

* *

)

editor. x;
errors.*;
events . x*x;
eventsonfire.x*;
operator.x*;

= new Complex(0,1); //i

int noPoints = 150;
circle;
int noCircles =
be changed with scrollbar
Vector[]J][lcirclePoints;
Complex[]startingPoints;

must be >=3

30;

//how many points will be used to

//how many circles do you want to

//SETUP SCROLLBARS & BUTTONS

30

draw 1

plot?

can

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

76
7
78
79
80

HScrollbar s_VaryPhi,
HScrollbar s_gamma_1,
HScrollbar s_Flow,

s_VaryTheta, s_VaryTheta2, s_Spiral;
s_gamma_2, s_gamma_3, s_gamma_4;
s_noCircles;

boolean VaryThetaMode = true;
boolean VaryPhiMode = false;
boolean SpiralMode = false;
boolean RotationMode = true;
boolean zoomMode = false;
float rot = 0;

int camMode = O0;

boolean ModelsectStd = false;
boolean Modelsect = false;
boolean Mode2sect = false;
//SETUP D SECTION GRIDS

int varyR = 8;

int varyTheta = 15;

CxComplex [1[]

CxComplex [][]
1;

CxComplex [][] circularGrid_rot =

PVector []1[] tubes;

circularGrid = new CxComplex[varyR][varyThetal;
circularGrid_flow = new CxComplex[varyR][varyTheta

new CxComplex[varyR][varyThetal;

//2.2.1

CxComplex [J[] V_1grid_1
CxComplex [J[] V_2grid_1 =
CxComplex []1[] V_1grid_1_rot =
CxComplex [1[] V_2grid_1_rot
CxComplex [J[] V_1grid_1_flow
CxComplex [J[] V_2grid_1_flow

getV_1part (13,20);
getV_2part (13,20);
getV_1part (13,20);
getV_2part (13,20);
getV_1part (13,20);
getV_2part (13,20);

//2.2.2
CxComplex [J[] V_1grid_2 = getV_1lpart_2Section(13,20);
CxComplex [J[] V_2grid_2 = getV_2part_2Section(13,20);

CxComplex [][]
CxComplex [1[]
CxComplex [][]
CxComplex [1[]

V_1grid_2_rot = getV_1lpart_2Section (13,20);
V_2grid_2_rot = getV_2part_2Section (13,20);
V_1grid_2_flow = getV_lpart_2Section(13,20);
V_2grid_2_flow = getV_2part_2Section(13,20);

//rotation modes & flow mode

boolean rotModel = false;

boolean rotMode2 = false;

boolean rotMode3 = false;

boolean flowMode = false;
s1 void setup() {

size (900, 800, P3D);

82
83
84
85
86
87
88
89
90
91

frameRate (10); //fix-bug-thing, do not delete
setupScrollbars () ;

//grid

circularGrid = getDSectionGridCircular (varyR, varyTheta);
circularGrid_flow = getDSectionGridCircular (varyR, varyTheta);
circularGrid_rot = getDSectionGridCircular (varyR, varyTheta);

//SETUP TUBES

//tubes = setupTubes(circularGrid, 2*PI);

31

95 void draw (){
96 background (0) ;

98 //CHOOSE CAMERAMODE

99 if (camMode%3 == 1){

100 camera (mouseX*2, height/2, (height/2) / tan(PI/6), width/2,
height/2, 0, 0, 1, 0); //camera which rotates objects with
MouseX

101 } else if (camMode’%3 == 0){

102 camera(width/2, height/2, (height/2) / tan(PI/6), width/2,
height/2, 0, 0, 1, 0); //centered camera

103 }

104
105 //UPDATE NoCircles

106 noCircles = 2x(int)scrollbarValue(s_noCircles, 50); //always even
number

107 //get everything in order to plot

108 circlePoints = new Vector [noCircles][noPoints];

109 //setup array of points of interest in C, whose fibres we want to
find

110 startingPoints = new Complex[noCircles];

111

112

113 //SETUP STARTING POINTS

114 if (VaryThetaMode == true){

115 addPointsVaryTheta(noCircles/2, scrollbarValue(s_VaryTheta, PI));

116 addPointsVaryTheta(noCircles/2,noCircles/2, scrollbarValue (
s_VaryTheta2, PI));

117 } else if(VaryPhiMode == true){

118 addPointsVaryPhi (noCircles, scrollbarValue(s_VaryPhi, PI));

119 } else if (SpiralMode true) {
120 addPointsSpiral (noCircles);

121 3

122

123 //SETUP COORDINATE SYSTEM

124 centerCoordinatesystem() ;

125 drawAxes (300) ;

126 nameAxes (300) ;

127

128 //DRAW D SECTION

129 if (ModelsectStd == true){ //Std grids

130 if (rotModel == true){

131 circularGrid_rot = rotateDSection(circularGrid,
scrollbarValue (s_gamma_1,2%PI) ,1);

132 displayGrid(circularGrid_rot, true, 250,250,0);

133 displayGrid(circularGrid, true);

134 if (flowMode == true){

135 circularGrid_flow = letGridFlow(circularGrid_rot,
scrollbarValue (s_Flow ,2*PI));

136 displayGrid(circularGrid_flow, true, 200,0,200);

137 }

138 } else if (rotMode2 == true){

139 circularGrid_rot = rotateDSection(circularGrid,
scrollbarValue (s_gamma_2 ,2*PI) ,2);

140 displayGrid(circularGrid_rot, true, 250,250,0);

141 displayGrid(circularGrid, true);

32

142
143

144
145
146
147

148
149
150
151

152
153
154
155

157

158
159

161
162
163
164

165
166

167

168
169
170
171

172

173
174
175
176

177

178
179
180
181

182

183

184
185

if (flowMode == true){
circularGrid_flow = letGridFlow(circularGrid_rot,
scrollbarValue (s_Flow ,2%*PI));
displayGrid(circularGrid_flow, true, 200,0,200);
}
} else if (rotMode3 == true){
circularGrid_rot = rotateDSection(circularGrid,
scrollbarValue (s_gamma_3 ,2*xPI) ,3);
displayGrid(circularGrid_rot, true, 250,250,0);
displayGrid(circularGrid, true);
if (flowMode == true){
circularGrid_flow = letGridFlow(circularGrid_rot,
scrollbarValue(s_Flow ,2*PI));
displayGrid(circularGrid_flow, true, 200,0,200);
}
} else { //no rotation mode == true
displayGrid(circularGrid, true);
if (flowMode == true){
circularGrid_flow = letGridFlow(circularGrid,
scrollbarValue (s_Flow ,2%*PI));
displayGrid(circularGrid_flow, true, 200,0,200);
//TUBES
//drawTubeCoord (tubes, scrollbarValue(s_Flow, 50));
}

}

} else if (Modelsect == true){ //2.2.1 - glue meridonal disc to
annulus
if (rotModel == true){

V_1lgrid_1_rot = rotateDSection(V_1grid_1, scrollbarValue(
s_gamma_1 ,2*PI) ,1);
V_2grid_1_rot = rotateDSection(V_2grid_1, scrollbarValue(
s_gamma_1 ,2%PI) ,1);
displayGridsColoured(V_1igrid_1_rot, V_2grid_1_rot);
displayGrids (V_1grid_1, V_2grid_1);
if (flowMode == true){
V_1grid_1_flow = letGridFlow(V_1grid_1_rot, scrollbarValue (
s_Flow ,2%PI));
V_2grid_1_flow
s_Flow ,2%PI));
displayGridsColoured(V_1grid_1_flow ,V_2grid_1_flow);
}
} else if (rotMode2 == true){
V_1grid_1_rot = rotateDSection(V_1grid_1, scrollbarValue(
s_gamma_2 ,2*PI) ,2);
V_2grid_1_rot = rotateDSection(V_2grid_1, scrollbarValue(
s_gamma_2 ,2*PI) ,2);
displayGridsColoured(V_1grid_1_rot, V_2grid_1_rot);
displayGrids (V_1grid_1, V_2grid_1);
if (flowMode == true){
V_1grid_1_flow = letGridFlow(V_1grid_1_rot, scrollbarValue(
s_Flow ,2*xPI));
V_2grid_1_flow
s_Flow ,2%PI));
displayGridsColoured(V_1grid_1_flow,V_2grid_1_flow);
}
} else if(rotMode3 == true){

letGridFlow(V_2grid_1_rot, scrollbarValue(

letGridFlow (V_2grid_1_rot, scrollbarValue(

33

186 V_1grid_1_rot = rotateDSection(V_1grid_1, scrollbarValue(
s_gamma_3 ,2*PI) ,3);

187 V_2grid_1_rot = rotateDSection(V_2grid_1, scrollbarValue(
s_gamma_3 ,2*%PI), 3);

188 displayGridsColoured(V_1grid_1_rot, V_2grid_1_rot);

189 displayGrids(V_1grid_1, V_2grid_1);

190 if (flowMode == true){

191 V_1grid_1_flow = letGridFlow(V_1grid_1_rot, scrollbarValue(
s_Flow ,2*xPI));

192 V_2grid_1_flow = letGridFlow(V_2grid_1_rot, scrollbarValue(
s_Flow ,2%PI));

193 displayGridsColoured(V_1grid_1_flow,V_2grid_1_flow);

194 }

195 } else {

196 displayGrids(V_1grid_1, V_2grid_1);

197 if (flowMode == true){

198 V_1grid_1_flow = letGridFlow(V_1grid_1, scrollbarValue(
s_Flow ,2%PI));

199 V_2grid_1_flow = letGridFlow(V_2grid_1, scrollbarValue(
s_Flow ,2*xPI));

200 displayGridsColoured(V_1grid_1_flow,V_2grid_1_flow);

201 //TUBES

202 //drawTubeCoord (tubes, scrollbarValue(s_Flow, 50));

203 }

204 }

205

206 } else if (Mode2sect == true){ //2.2.2 - glue two annuli

207 if (rotModel == true){

208 V_1lgrid_2_rot = rotateDSection(V_1grid_2, scrollbarValue(
s_gamma_1 ,2*PI) ,1);

209 V_2grid_2_rot = rotateDSection(V_2grid_2, scrollbarValue(
s_gamma_1 ,2*PI) ,1);

210 displayGridsColoured(V_1grid_2_rot, V_2grid_2_rot);

211 displayGrids (V_1grid_2, V_2grid_2);

212 if (flowMode == true){

213 V_1grid_2_flow = letGridFlow(V_1grid_2_rot, scrollbarValue (
s_Flow ,2*PI));

214 V_2grid_2_flow = letGridFlow(V_2grid_2_rot, scrollbarValue(
s_Flow ,2%PI));

215 displayGridsColoured(V_1grid_2_flow,V_2grid_2_flow);

216 }

217 } else if (rotMode2 == true){

218 V_1grid_2_rot = rotateDSection(V_1grid_2, scrollbarValue(
s_gamma_2 ,2*PI) ,2);

219 V_2grid_2_rot = rotateDSection(V_2grid_2, scrollbarValue(
s_gamma_2 ,2*PI) ,2);

220 displayGridsColoured(V_1grid_2_rot, V_2grid_2_rot);

221 displayGrids (V_1grid_2, V_2grid_2);

222 if (flowMode == true){

223 V_1grid_2_flow = letGridFlow(V_1grid_2_rot, scrollbarValue(
s_Flow ,2%PI));

224 V_2grid_2_flow = letGridFlow(V_2grid_2_rot, scrollbarValue (
s_Flow ,2*PI));

225 displayGridsColoured(V_1grid_2_flow ,V_2grid_2_flow);

226 T

227 } else if(rotMode3 == true){

228 V_1grid_2_rot = rotateDSection(V_1grid_2, scrollbarValue(

s_gamma_3 ,2*PI) ,3);

34

229 V_2grid_2_rot = rotateDSection(V_2grid_2, scrollbarValue(
s_gamma_3 ,2*PI) ,3);

230 displayGridsColoured(V_1grid_2_rot, V_2grid_2_rot);

231 displayGrids(V_1grid_2, V_2grid_2);

232 if (flowMode == true){

233 V_1grid_2_flow = letGridFlow(V_1grid_2_rot, scrollbarValue (
s_Flow ,2%PI));

234 V_2grid_2_flow = letGridFlow(V_2grid_2_rot, scrollbarValue(
s_Flow ,2*xPI));

235 displayGridsColoured(V_1grid_2_flow,V_2grid_2_flow);

236 }

237 } else {

238 displayGrids (V_1grid_2, V_2grid_2);

239 if (flowMode == true){

240 V_1grid_2_flow = letGridFlow(V_1grid_2, scrollbarValue(
s_Flow ,2%PI));

241 V_2grid_2_flow = letGridFlow(V_2grid_2, scrollbarValue(
s_Flow ,2%PI));

242 displayGridsColoured(V_1grid_2_flow,V_2grid_2_flow);

243 }

244 }

245 } else { 7}

246

247 //DRAW FIBRES

248 fillArray (); //compute

249 drawColCircle(); //draw fibres
250

251 // - GUI -

252 //DRAW SPHERE IN CORNER

253 camera(); //back to normal camera settings for the overlay
254 centerCoordinatesystemOverlay () ;

255 if (RotationMode == true){

256 rot = getRotation(rot);

257 +

258 rotateSphere (rot);

259 drawAxes (80,3);

260 drawSphere () ;

261 drawPointsOnSphere(startingPoints) ;

262

263 //DRAW SLIDERS

264 camera(); //back to normal camera settings for second overlay
265 updateScrollbars () ;

266 displayScrollbars () ;

267 drawButtons () ;

268

269 //enable to record screen:
270 rec();
271

272
273 void mousePressed () {
274 if (overVaryThetaButton ()==true) {

275 VaryThetaMode = true;

276 VaryPhiMode = false;

277 SpiralMode = false;

278 }

279 if (overVaryPhiButton ()==true) {
280 VaryThetaMode = false;

281 VaryPhiMode = true;

35

282
283
284
285
286
287
288

290
291
292
293
294

296
297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

SpiralMode = false;
}
if (overSpiralButton () ==true){
VaryThetaMode = false;
VaryPhiMode = false;
SpiralMode = true;
}
if (overSphere ()==true && RotationMode == true){
RotationMode = false;
} else if (overSphere()==true && RotationMode ==
RotationMode = true;
¥
if (overlsectionStd()==true) {
ModelsectStd = true;
Modelsect = false;
Mode2sect = false;

rotModel = false;
rotMode2 = false;
rotMode3 = false;
flowMode = false;

¥

if (overlsection()==true) {
ModelsectStd = false;
Modelsect = true;
Mode2sect = false;

rotModel = false;
rotMode2 = false;
rotMode3 = false;
flowMode = false;

¥

if (over2section()==true) {
ModelsectStd = false;
Modelsect = false;
Mode2sect = true;

rotModel = false;
rotMode2 = false;
rotMode3 = false;
flowMode = false;

}

if (overGammal ()==true) {
rotModel = true;
rotMode2 = false;
rotMode3 = false;

}

if (overGamma2 ()==true) {
rotModel = false;
rotMode?2 true;
rotMode3 false;

}

if (overGamma3 ()==true) {
rotModel = false;
rotMode2 = false;
rotMode3 = true;

}

if (overFlow()==true) {

36

false){

340
341
342 }
343

flowMode = true;

344 void keyPressed () {

345
346
347
348
349
350
351
352
353 F

if (key == CODED) {
if (keyCode == UP) {
camMode ++;
}
} else if (key == ’q’) {

3

videoExport.endMovie () ;
exit () ;

37

Appendix B

Class CxComplex

I coded this class to have an object for the 4-dimensional points in C x C

class CxComplex { //Complex x Complex

Complex z_1;
Complex z_2;

//__CONSTRUCTOR_ _

CxComplex () {

this.z_1 = new Complex();
this.z_1 = new Complex();

}

CxComplex (CxComplex z){

this.z_1 = z.z_1;
this.z_2 = z.z_2;

}

CxComplex (Complex x,
this.z_1 = x;
this.z_2 = y;

}

CxComplex (double x_1,

y_1
this.z_1 = new Complex(x_1, y_1)
this.z_2 = new Complex(x_2, y_

}

CxComplex (float x_1,

Complex y)

double

float y_1,

, double x_2, double y_2) {

2);

float x_2, float y_2) {

this.z_1 = new Complex((double)x_1, (double)y_1);
this.z_2 = new Complex((double)x_2, (double)y_2);

}

//__FUNCTIONS__
double x_10{

return this.z_1.real;
¥

double y_10){

return this.z_1.imag;
}

double x_20){

return this.z_2.real;

38

42
43
44
45
46
47
48

64
65
66
67
68
69
70
71
72

73

74

75

b
double y_2(0){
return this.z_2.imag;

}

CxComplex normalize (){

float len = sqrt(pow((float)this.x_1() ,2)+pow((float)this.y_1(),2)

+pow ((float)this.x_2() ,2)+pow((float)this.y_2() ,2));
float x_1 = (float)this.x_1() / 1len;
float y_1 (float)this.y_1() / len;
float x_2 = (float)this.x_2() / 1len;
float y_2= (float)this.y_2() / 1len;
return new CxComplex(x_1,y_1,x_2,y_2);
}

CxComplex goWithFlow(float t){ //goes with the Hopf flow
Complex new_z_1 = this.z_1.mult(Complex.exp(i.mult(t)));
Complex new_z_2 = this.z_2.mult(Complex.exp(i.mult(t)));
return new CxComplex(new_z_1,new_z_2);

}

CxComplex normalize2ndCoordinate (){

float len = sqrt(pow((float)this.x_1(),2)+pow((float)this.y_1()
,2)+pow ((float)this.x_2() ,2)+pow ((float)this.y_2(),2)); //length

of vector

float =x_1 (float)this.x_1Q);

float y_1 (float)this.y_10);

float x_2 = 1-1len;

float y_2= (float)this.y_2Q);

return new CxComplex(x_1,y_1,x_2,y_2);

}

CxComplex applyRotMatrix (PMatrix3D rot){

float a = rot.multX((float)this.z_1.real, (float)this.z_1.imag,

(float)this.z_2.real, (float)this.z_2.imag);

float b =rot.multY((float)this.z_1.real, (float)this.z_1.imag,

(float)this.z_2.real, (float)this.z_2.imag);

float ¢ =rot.multZ((float)this.z_1.real, (float)this.z_1.imag,

(float)this.z_2.real, (float)this.z_2.imag);

float d =rot.multW((float)this.z_1.real, (float)this.z_1.imag,

(float)this.z_2.real, (float)this.z_2.imag);

return new CxComplex(a,b,c,d);

}

3

//__more functions__

CxComplex subtract(CxComplex x, CxComplex y){
Complex a = x.z_1.sub(y.z_1);
Complex b = x.z_2.sub(y.z_2);
return new CxComplex(a,b);

}
CxComplex mult (double scalar, CxComplex z){
Complex a = z.z_1;
Complex b = z.z_2;
a = new Complex(a.real*scalar, a.imag*scalar);

39

93
94
95
96

98
99

101
102
103
104

106

b = new Complex(b.real*scalar, b.imag*scalar);
return new CxComplex(a,b);

3

CxComplex
Complex
Complex
Complex
Complex

a
b

add (CxComplex x, CxComplex y){

a

b
C=
d

x.z_1;
_2;
-1
_2;

>

<< X
N N N

a.add(c);
b.add (d);

return new CxComplex(a,b);

40

10
11

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35

Appendix C

Mathematics Library

// __MATHEMATICAL ALGORITHM FUNCTIONS__

void fillArray(){ //gives #noPoints points on the circle in R3, (
evenly spaced on the circle in C2)
CxComplex [] PointsInC2 = new CxComplex[noCircles]; //array of
points in C2
for(int i=0; i<noCircles; i++){
PointsInC2[i] = findFibrePoint(startingPoints[i]); //£fill that
array up:
}
for (int j=0; j<noCircles; j++){
circlePoints[j]1[0]= projectPoint(PointsInC2[jl); //put starting
points’ projections in first entry
for(int i=1; i< noPoints; i++){
circlePoints[jl[i] = projectPoint (getNewPoint (PointsInC2[j]))

PointsInC2[j] = getNewPoint (PointsInC2[j]);
}

}

CxComplex findFibrePoint (Complex p){ //put in complex number p and
get one point on circle in S°3

// (x_1,y_2,x_2,y_2) is coordinate in C~2

// trick: set y_2 =0.

float x_1;

float x_2;

float y_1;

x_2 = sqrt(1/(1+ pow((float)p.real,2)+ pow((float)p.imag,2)));

x_1 = (float)p.real*x_2;

y_1 = (float)p.imag*x_2;

CxComplex p_Fibre = new CxComplex(x_1,y_1,x_2,0);

return p_Fibre;

}

CxComplex getNewPoint (CxComplex p){ //generate new point on same
Fibre
//go fourth of orbit to find next point
Complex t= new Complex (2*PI/noPoints) ;
Complex z_1_second = p.z_1.mult(Complex.exp(i.mult(t)));
Complex z_2_second = p.z_2.mult(Complex.exp(i.mult(t)));

41

37
38
39

41
42
43
44
45
46
47
48
49

51

67

68
69
70
71
72
73
74
75
76
7

79

80

81

82

83

3

CxComplex p_2 = new CxComplex(z_1_second, z_2_second);
return p_2;

CxComplex getNewPoint (CxComplex p, int noPoints){ //generate new

3

point on same Fibre
//go fourth of orbit to find next point
Complex t = new Complex (2*PI/noPoints);
Complex z_1_second = p.z_1.mult(Complex.exp(i.mult(t)));
Complex z_2_second = p.z_2.mult(Complex.exp(i.mult(t)));

CxComplex p_2 = new CxComplex(z_1_second, z_2_second);
return p_2;

Vector goWithFlowAndProject (CxComplex p, float t){

}

//generate new point on same Fibre //go fourth of orbit to find
next point

Complex z_1_second = p.z_1.mult(Complex.exp(i.mult(t)));

Complex z_2_second = p.z_2.mult(Complex.exp(i.mult(t)));

CxComplex p_2 = new CxComplex(z_1_second, z_2_second);

Vector v = projectPoint(p_2);

//println(v.x, v.y, v.z);

return v;

Vector projectPoint (CxComplex p){//put in point in 4D get it

projected into R"3 via stereographic projection with N=(0,0,0,1)
//for projecting p, p’, M

Vector p_projected = new Vector(p.z_1.real/(l-p.z_2.imag),p.z_1.

imag/(1-p.z_2.imag) ,p.z_2.real/(l-p.z_2.imag));

return p_projected;

}

Complex SphericalToComplex(float theta, float phi){ //converts

}

spherical coordinates to cartesian and projects them down
//theta 1is

angle from x-axis in x/y plane, phi is from z-axis in z/y plane

//convert from spherical to cartesian

double x sin (phi) *cos(theta) ;

double y sin (phi)*sin(theta) ;

double z =cos(phi);

//stereographicProjection

double Re = x/(1-2);

double Im = y/(1-2);

return new Complex(Re, Im);

Vector ComplexToCartesian(Complex cplx){ //converts complex number

into cartesian coordinate on the riemann sphere

//stereographic projection

float x=2*(float)cplx.real /(l+pow((float)cplx.real,2)+pow((float
Jcplx.imag,2));

float y=2*(float)cplx.imag /(l+pow((float)cplx.real,2)+pow((float
)cplx.imag,2));

double z=(-1+pow((float)cplx.real,2)+pow((float)cplx.imag,2))/(1+
pow((float)cplx.real,2)+pow((float)cplx.imag,2));

return new Vector(x,y,z);

42

84
85

}

86 float distance(Vector vector_1, Vector vector_2){
return (float) (Vector.sub(vector_1,vector_2)) .mag();

87
88
89

}

90 void drawColCircle(){ //draw coloured circle
strokeWeight (0.05) ;

noFill () ;

curveTightness (0.5) ;

for(int j=0; j<noCircles; j++){

91
92
93
94

97
98

99
100
101
102

103
104
105

106

107

108
109
110
111
112
113
1

=

4

115
116
117
118
119
120

121

122
123

124
125
126

}

3

beginShape () ;
stroke ((float)circlePoints [j][0].x*105+150, (float)circlePoints [
j1[0].y*85+150,(float)circlePoints[j][0].z*70+160); //
colorscheme 01
for(int i=0; i<noPoints-1; i++){

if (i>0 && distance(circlePoints[jl[i],circlePoints[j]l[i-1])>
noPoints/2+10){//distance too big - end shape and start new
shape for rest of circle.

endShape () ;

beginShape () ;

} else {

curveVertex ((float)circlePoints[jl[i].x,(float)circlePoints[j
1[il.y,(float)circlePoints[j1[i].z);

}
}
curveVertex ((float)circlePoints[j][0].x,(float)circlePoints[j
100].y,(float)circlePoints[j]1[0].2); //1
curveVertex ((float)circlePoints[j][1].x,(float)circlePoints[j
1[1].y,(float)circlePoints[j1[1].2); //2
curveVertex ((float)circlePoints[j][2].x,(float)circlePoints[j
1[2].y,(float)circlePoints[jl1[2].2); //3 - need those three for
anchor point in beginning and end
endShape () ;

//__STARTING POINTS ON RIEMANN SPHERE__

void addPointsVaryTheta(int amount, float phi){ //look how theta

3

changes fibres, constant phi

for(int j=0; j<amount; j++){

}

startingPoints [jl=SphericalToComplex (j*2*PI/amount, phi);

void addPointsVaryTheta(int array_entry, int amount, float phi){ //

3

gives #amount equidistant points on horizontal circle on S2, phi
gives "height" in circle.

//starts in
array_entry-th entry of the array

for (int j=0; j<amount; j++){

}

startingPoints [array_entry+j]l=SphericalToComplex (j*2*PI/amount,
phi);

127 void addPointsVaryThetaAndPhi (int amount, float alpha){ //gives "

43

128
129

130
131
132

134
135

137
138
139

140
141
142
143
144
145

146
147

148
149
150
151
152
153

vertical" circle

for (int j=0; j<amount; j++){
startingPoints[jl=SphericalToComplex (alpha*sin(j*PI/amount),

}
}

alphax*xcos (j*PI/amount)) ;

void addFewPointsVaryTheta(int amountHeights, float[] phi){/
equidistant points on #amountHeights different Heights

for(int j=0; j<amountHeights;

j++){

addPointsVaryTheta ((noCircles/amountHeights)*j, noCircles/

¥
X

void addPointsVaryPhi (int amount,

amountHeights, phil[jl);

changes fibres, constant

theta

for (int j=0; j<amount; j++){

}
}

startingPoints [j]l=SphericalToComplex (theta,

/makes

float theta){ //look how phi

j*(2*PI/amount)) ;

void addPointsVaryPhi(int array_entry, int amount, float theta){ //

look how phi changes fibres,

for (int j=0; j<amount; j++){
startingPoints [array_entry+j]l=SphericalToComplex (theta,

}
}

/amount)) ;

constant theta

void addFewPointsVaryPhi (int amountHeights, float[] theta){

for(int j=0; j<amountHeights;

j++){

addPointsVaryPhi ((noCircles/amountHeights)*j, noCircles/

}
}

amountHeights, thetaljl);

j*(2%PI

void addPointsSpiral(int amount){ //gives #amount points in a

spiral around the sphere

for(int j=0; j<amount; j++){
startingPoints [j]=SphericalToComplex (j*(2*PI/amount)+

}

scrollbarValue (s_Spiral,

2*PI),

44

j*(PI/amount)) ;

23
24
25
26
27

29
30

32

33

34

35

36

37

Appendix D

D-Section Library

int dSectionNoPoints = 20;

VA

3

/-

id SetupDisplaySettingsDSection(){
strokeWeight (0.02) ;
£i11(150,200,150,130);

stroke (255) ;

_SOUTHERN 1-SECTION__

void drawSouthernDSectionBoundary (){

}

//

SetupDisplaySettingsDSection () ;
pushMatrix () ;

rotateX(PI/2);

rotateZ (PI);

rect (0,-200,400,400) ;
popMatrix () ;

__GRID 1-SECTION__

CxComplex [J[] setupDSectionGrid (CxComplex[]J[] grid, int noCol, int

3

noRow, CxComplex z){
CxComplex p = new CxComplex(z.normalize());
grid = getDSectionGrid(noCol, noRow, p);
return grid;

CxComplex [][] getDSectionGrid(int noColumns, int noRows, CxComplex

p){
CxComplex [][] grid= new CxComplex[noColumns][noRows];
//£fill the first & last row of the grid, [0][0]=p and [0] [noRows
-1]=p_opposite
for(int i=0; i<noColumns; i++){
grid[i][0] = p.goWithFlow (3*PI*i/(4*noColumns)) ;
grid[noColumns-1-i] [noRows-1] = p.goWithFlow (PI + 3*xPIx*i/ (4%
noColumns)) ;
}
//£ill the first & last column of the grid
CxComplex startHereFirst = grid[0][0].goWithFlow (7*PI/4); //start
at p_tilde
CxComplex startHereLast = grid[0][0].goWithFlow (3*xPI/4); //start

45

38
39

40

41
42
43
44
45
46
47

63

7

81

}

at p_opposite
for(int i=0; i<noRows-1; i++){
grid [0] [noRows-1-i] = startHereFirst.goWithFlow(i*PI/(4*noRows))
; //first col
grid[noRows-1][i]= startHerelast.goWithFlow(i*PI/(4*noRows)); //
last col
}
//£fill the middle column for column
for(int i = 1; i < noColumns-1; i++){ //go through cols
for(double j = 1; j < noRows-1; j++){ //go through rows
double rows = noRows;
double multi = j/rows;
CxComplex diff = new CxComplex(subtract(grid[i][noRows-1],
grid[i][0]));
diff = add(grid[i][0] ,mult (multi, diff));
grid[i] [(int)j] = diff.normalize2ndCoordinate () ;
}
}

return grid;

CxComplex [][] getDSectionGridCircular(float varyR, float varyTheta)

{ //gives us north pole d-section
CxComplex [][JcircularGrid = new CxComplex[(int)varyR][(int)
varyThetal;
for(int i=0; i<varyR; i++){
for(int j=0; j<varyTheta; j++){
Complex Im = new Complex(0,1); //i
Complex r = new Complex(i/varyR-1);
Complex Theta = new Complex (j*2*PI/varyTheta-1);
Complex c_2 = new Complex(Complex.sqrt(Complex.sub(l,Complex.
pow(r,2))));
Complex c_1
)
circularGrid[i]l[j] = new CxComplex(c_1, c_2);

}

new Complex(r.mult (Complex.exp(Im.mult(Theta)))

}

return circularGrid;

CxComplex [1[] letGridFlow(CxComplex []J[] grid, float t){

3

CxComplex [][] newGrid = new CxComplex[grid.length][grid[0].length
1;

for(int 1 = 0; i < grid.length; i++){
for(int j = 0; j < grid[0].length; j++){
newGrid[i][j] = grid[il[j].goWithFlow (t);
}

}

return newGrid;

void displayGrid(CxComplex []J[] grid){

strokeWeight (0.02) ;

noFill () ;

stroke (255) ;

//make lines connecting each column

for(int i = 0; i < grid[0].length; i++){ //go through rows

46

87 for(int j = 1; j < grid.length; j++){ //go through cols

88 Vector x = new Vector(projectPoint (grid[j-11[il));

89 Vector y = new Vector (projectPoint (grid[jl[i]));

90 line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y, (
float)y.z);

91 }

92 }

93 //make lines connecting each row

94 for(int i = 0; i < grid.length; i++){ //go through cols

95 for (int j 1; j < grid[0].length; j++){ //go through rows

96 Vector x = new Vector(projectPoint (grid[i]l[j-11));

97 Vector y = new Vector (projectPoint (grid[il[j]1));

98 line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
float)y.z);

99 }

100 }

101

102

103 void displayGrid(CxComplex[]J[] grid, boolean circular){

104 strokeWeight (0.02) ;

105 noFill () ;

106 stroke (52,165,218) ;

107 //make lines connecting each column

108 for(int i = 0; i < grid[0].length; i++){ //go through rows

109 for (int j 1; j < grid.length; j++){ //go through cols

110 Vector x = new Vector(projectPoint(grid[j-11[1i]));

111 Vector y = new Vector (projectPoint (grid[jl[il));

112 line ((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y, (
float)y.z);

113 3

114 }

115 //make lines connecting each row
116 for(int i = 0; i < grid.length; i++){ //go through cols

117 for (int j 1; j < grid[0].length; j++){ //go through rows

118 Vector x = new Vector (projectPoint (grid[i][j-1]1));

119 Vector y = new Vector(projectPoint (grid[i]l[j]1));

120 line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y, (
float)y.z);

121 }

122 3

123 if (circular == true){ //if circular grid, then connect first and
last column

124 for(int i= 0; i<grid.length; i++){

125 Vector x = new Vector (projectPoint (grid[i][0]));

126 Vector y = new Vector (projectPoint (grid[i] [grid [0].length-1])
)

127 line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y, (
float)y.z);

128 ¥

129 }

130 }

131
132 void displayGrid (CxComplex [][] grid, int r, int g, int b){
133 strokeWeight (0.02) ;

134 noFill ();

135 stroke(r, g, b);

136 //make lines connecting each column

137 for(int i = 0; i < grid[0].length; i++){ //go through rows

47

138
139
140
141

142
143
144
145
146
147
148
149

150
151
152

154

155
156
157
158
159
160
161
162
163

164
165
166
167
168
169
170
171

172
173
174

175
176
177

178

179

181

182

183

184

186
187

for(int j = 1; j < grid.length; j++){ //go through cols
Vector x = new Vector(projectPoint (grid[j-11[il));
Vector y = new Vector(projectPoint (grid[jl[il));
line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y, (
float)y.z);
}
}
//make lines connecting each row
for(int i = 0; i < grid.length; i++){ //go through cols

for (int j 1; j < grid[0].length; j++){ //go through rows
Vector x = new Vector(projectPoint (grid[i]l[j-11));
Vector y = new Vector (projectPoint (grid[il[j]1));
line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(

float)y.z);

}

void displayGrid(CxComplex[]J[] grid, boolean circular, int r, int g

, int b){

strokeWeight (0.02) ;

noFill () ;

stroke(r, g, b);

//make lines connecting each column

for(int i = 0; i < grid[0].length; i++){ //go through rows
for(int j = 1; j < grid.length; j++){ //go through cols

Vector x = new Vector(projectPoint(grid[j-11[i]));

Vector y = new Vector (projectPoint (grid[jl[il));
line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y,(
float)y.z);
}

}

//make lines connecting each row
for(int i = 0; i < grid.length; i++){ //go through cols

for (int j 1; j < grid[0].length; j++){ //go through rows
Vector x = new Vector(projectPoint(grid[i]l[j-1]1));
Vector y = new Vector (projectPoint (grid[i]l[j]));
line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y, (
float)y.z);
}
}
if (circular == true){ //if circular grid, then connect first and
last column
for(int i= 0; i<grid.length; i++){
Vector x = new Vector(projectPoint (grid[i][0]));
Vector y = new Vector (projectPoint (grid[i] [grid[0].length-1])
)
line((float)x.x,(float)x.y,(float)x.z,(float)y.x,(float)y.y, (
float)y.z);
}
}

//__A HELICOIDAL ANNULUS__

//set up V_1 and V_2 parts seperately:
CxComplex [J[] getV_1ipart(float varyR, float varyTheta){

CxComplex [J[]V_1_circularGrid = new CxComplex[(int)varyR][(int)

48

202

204
205
206
207
208
209
210

211

212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229

230

231
232
233
234
235
236

}

varyThetal;
for (int k=0; k<varyR; k++){

for (int j=0; j<varyTheta; j++){
Complex Im = new Complex(0,1); //i
Complex r = new Complex(k/(varyR-1));
println("r", k, j, " : ", r.real, r.imag);
Complex Theta = new Complex(j*2*PI/varyTheta-1);
Complex c_1 = new Complex(r.mult(sqrt(2)/2));

Complex c_2 = new Complex(Complex.sqrt(Complex.sub(1l,Complex.
pow(r,2) .mult(0.5))) .mult (Complex.exp(Im.mult (Theta))));
V_1_circularGrid[k][j] = new CxComplex(c_2, c_1);

}
}

return V_1_circularGrid;

CxComplex [1[] getV_2part(float varyR, float varyTheta){

3

//_

CxComplex [J[JV_2_circularGrid = new CxComplex[(int)varyR][(int)
varyThetal;
for(int k=0; k<varyR; k++){
for(int j=0; j<varyTheta; j++){
Complex Im = new Complex(0,1); //i
Complex r = new Complex(kx*(sqrt(2)/2)/(varyR-1));
println("r", k, j, " : ", r.real, r.imag);
Complex Theta = new Complex (j*2*PI/varyTheta-1);
Complex c_1 = new Complex(Complex.sqrt(Complex.sub(1l,Complex.
pow(r,2))));
Complex c_2
)
V_2_circularGrid[k][j] = new CxComplex(c_2, c_1);
}

new Complex(r.mult (Complex.exp(Im.mult(Theta)))

}

return V_2_circularGrid;

_AN ANNULAR 2-SECTION__

CxComplex []1[] getV_1ipart2(float varyR, float varyTheta){

3

CxComplex [J[JV_1_circularGrid = new CxComplex[(int)varyR][(int)
varyThetal;
for(int k=0; k<varyR; k++){
for(int j=0; j<varyTheta; j++){
Complex Im = new Complex(0,1); //i
Complex MinIm = new Complex(0,-1);
Complex r = new Complex(k/(varyR-1));
println("r", k, j, " : ", r.real, r.imag);
Complex Theta = new Complex (j*2*PI/varyTheta-1);
Complex c_1 = new Complex(r.mult(sqrt(2)/2) .mult(Complex.exp(
MinIm.mult (Theta))));
Complex c_2 = new Complex(Complex.sqrt(Complex.sub(1l,Complex.
pow(r,2) .mult (0.5))) .mult(Complex.exp(Im.mult (Theta))));
V_1_circularGrid[k][j] = new CxComplex(c_1, c_2);
}
}

return V_1_circularGrid;

237 CxComplex [J[] getV_2part2(float varyR, float varyTheta){

49

238

240
241
242
243
244
245
246

247

248
249
250
251
252
253
254

267

269

270
271

272

273
274
275
276

277
278
279
280
281
282

3

CxComplex [J[]V_2_circularGrid = new CxComplex[(int)varyR][(int)
varyThetal;
for (int k=0; k<varyR; k++){
for(int j=0; j<varyTheta; j++){
Complex Im = new Complex(0,1); //i
Complex MinIm = new Complex(0,-1);
Complex r = new Complex(kx*(sqrt(2)/2)/(varyR-1));
println("r", k, j, " : ", r.real, r.imag);
Complex Theta = new Complex (j*2*PI/varyTheta-1);
Complex c_1 = new Complex(Complex.sqrt(Complex.sub(l,Complex.
pow(r,2))) .mult (Complex.exp(MinIm.mult (Theta))));
Complex c_2 = new Complex(r.mult(Complex.exp(Im.mult(Theta)))
)
V_2_circularGrid[k][j] = new CxComplex(c_1, c_2);
}
}

return V_2_circularGrid;

// for the last 2 sections we need this function to visualize the

grids:

void displayGrids (CxComplex[]J[] V_1, CxComplex[][] V_2){

}

displayGrid(V_2, true, 0, 150, 120);
displayGrid (V_1, true, 205, 200, 0);

void displayGridsColoured(CxComplex[][] V_1, CxComplex[]J[] V_2){

}

displayGrid(V_2, true, 0, 150, 170);
displayGrid(V_1, true, 240, 160, 5);

// __TUBES__

PVector [J[] setupTubes (CxComplex[]J[] grid, float t){// t is the

}

time that it will flow in the Hopf flow

int noTotalCoord = 50; //noCoord is how many coordinates will be
passed into the curve

Jmmm -

//get an array of vectors out of that array of points from that
grid

PVector [J[] tubeVectors =new PVector[grid.length * grid[0].length
J[noTotalCoord];
for(int i=0; i<grid.length; i++){//go through cols of grid
for (int j=0; j<grid[0].length; j++){//go through rows of grid
for(int k=0; k<noTotalCoord; k++){ //go through coordinates
tubeVectors [i*grid [0].length +j][k] = new PVector ((float)
goWithFlowAndProject (grid[i][j], k*t/noTotalCoord) .x, (float)
goWithFlowAndProject (grid[i]l[j],k*t/noTotalCoord) .y, (float)
goWithFlowAndProject (grid[i][j],k*t/noTotalCoord) .z) ;
}
}
}

return tubeVectors;

283 void drawTubeCoord (PVector [][]tubeCoord, float NumCoord){ //

NumCoord tells us how many coordinates we should draw

30

284
285

287
288
289
290
291
292

293
294

296
297
208
299
300 }
301

float radius = 0.01; //radius of cross section
for (int j=0; j<tubeCoord.length; j++){
PVector [] coordinates;
if (NumCoord >3){
coordinates = new PVector [(int)NumCoord+1];
for(int i=0; i<(int)NumCoord+1; i++){
coordinates [i]=tubeCoord[j][i];
}
BSpline3D path = new BSpline3D(coordinates ,20); //create
path for these coordinates
Oval oval = new Oval(radius, 10); //create cross section
Tube tube new Tube (path,oval); //create tube
tube.drawMode (S3D.SO0LID) ;
tube.fill(color (150,150,255));
tube.draw(getGraphics ());

302 void drawTubes (Tube [][] tubes){ //draws all tubes completely

303
304
305
306
307
308
300
310 }

for(int i=0; i<tubes.length; i++){//go through cols
for(int j=0; j<tubes[0].length; j++){//go through rows
tubes [i][j].drawMode (S3D.SOLID);
tubes [i][j].£fil1l1(color(150,150,255));
tubes [i] [j].draw(getGraphics ());
}

51

© N O s W N

=
o

11
12
13
14
15
16
17
18

20
21

23
24
25
26
27

29
30
31

32

33
34
35
36
37
38

Appendix E

Rotation Library

the implementation of the rotation matrices in 3.2.47777

//Here you will find everything about using the S04 Matrices

for rotating the d-section around.

PMatrix3D giveRotationMatrixl(float angle_1){
PMatrix3D rot_1 = new PMatrix3D(cos(angle_1),-sin(angle_1),0,0,
sin(angle_1),cos(angle_1),0,0,
0,0,cos(angle_1),sin(angle_1),
0,0,-sin(angle_1),cos(angle_1));

return rot_1;

}

PMatrix3D giveRotationMatrix2(float angle_2){

PMatrix3D rot_2 = new PMatrix3D(0,0,-cos(angle_2),-sin(angle_2),
0,0,sin(angle_2) ,-cos(angle_2),
cos(angle_2),-sin(angle_2),0,0 ,
sin(angle_2),cos (angle_2) ,0,0);

return rot_2;

3

PMatrix3D giveRotationMatrix3(float angle_3){
PMatrix3D rot_3 = new PMatrix3D(0,-sin(angle_3),-cos(angle_3),0,
sin(angle_3),0,0,-cos(angle_3),
cos (angle_3),0,0,sin(angle_3),
0,cos(angle_3) ,-sin(angle_3),0);

return rot_3;

}

CxComplex [J[] rotateDSection(CxComplex[][] grid,

kindOfRotation) {

float angle,

int

CxComplex [J[] rotGrid = new CxComplex[grid.length][grid[0].length

1;

PMatrix3D rot;
if (kindOfRotation == 1)

}

}

rot = new PMatrix3D(giveRotationMatrixl (angle));
else if (kindOfRotation == 2){

rot = new PMatrix3D(giveRotationMatrix2 (angle));
else { //(kindOfRotation ==3) or faulty int

52

39 rot = new PMatrix3D(giveRotationMatrix3 (angle));

40 }

41 for(int i=0; i<grid.length; i++){

42 for(int j=0; j<grid[0].length; j++){

43 rotGrid[i][j] = grid[i][j].applyRotMatrix(rot);
44 T

45 }

46 return rotGrid;

a7 }

33

1

2 //__SETUP COORDINATE SYSTEM
3 void centerCoordinatesystem(){
translate (width/2-50, height/2+50,

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Appendix F

Graphics library

//__GRAPHICS FUNCTIONS__

scale (100) ;
rotateX (3*xPI/8) ;
rotateZ (PI/8);

void drawAxes (float size){
//X - red
stroke (192,0,0) ;
strokeWeight (0.07) ;
line(0,0,0,size ,0,0) ;
//length indicator
//1line (10,0,-20,10,0,20);

//Y - green

stroke (0,192,0);

line(0,0,0,0,size ,0) ;

//Z - blue

stroke (0,0,192);

1line(0,0,0,0,0,size) ;
}

-100) ;

void drawAxes(float size, float weight){

//X - red
stroke (192,0,0) ;
strokeWeight (weight) ;
line(0,0,0,size,0,0) ;
//length indicator
//1line (10,0,-20,10,0,20);
//Y - green
stroke (0,192,0);
line(0,0,0,0,size ,0) ;
//Z - blue
stroke(0,0,192);
1ine(0,0,0,0,0,size) ;
}

void nameAxes (float size){
textSize (20) ;
£i11 (200) ;

o4

81

87

97

text("x",size+2,0,0);
text ("y",0,size+2,0);
text ("z",0,0,size+2) ;

}

// overlay coordinate system

void centerCoordinatesystemOverlay (){
translate (width/7, height/7,0);
rotateX (3*xPI/10) ;
rotateY (PI/20);
rotateZ(PI/10);

}
//__GUI__
int sphere_size = 80;

void drawSphere (){
strokeWeight (1) ;
stroke (255, 70);
noFill () ;
sphere (sphere_size);
text ("N",0,0,83);
text ("x",83,0,0);
text("y",0,83,0);

}

float getRotation(float rot){
float currentRot = rot+PI/100;
return currentRot;

}

void rotateSphere(float rot){
rotateZ (rot) ;
}

void drawPointsOnSphere (Complex []points){
Vector p = new Vector ();
for (int i1=0; i<points.length; i++){
//get coordinates on sphere
p = (ComplexToCartesian(points([i]));
//draw them
strokeWeight (5) ;
stroke ((float)projectPoint (findFibrePoint (points[i])) .x
*105+150, (float)projectPoint (findFibrePoint (points[i])) .y
*85+150, (float)projectPoint (findFibrePoint (points[i])).z*70+160)
; //colourscheme 01
point (80*(float)p.x, 80*x(float)p.y, 80*x(float)p.z);
}
}

//function that checks if mouse is over sphere
boolean overSphere (){
if (mouseX<sphere_size+width/7 && mouseY<sphere_size + height/7){
return true;
} else {
return false;

}

35

98 }

99
100 // __SCROLLBARS & BUTTONS__

100 int width_scrollbars = 150;
102 int height_scrollbars = 15;
103 int space = 20; //space to left & top of screen

104

105 float x_scrollbars;

16 float y_VaryTheta = space;

107 float y_VaryPhi = spacex*2+height_scrollbars;

108 float y_Spiral = height-space-height_scrollbars;

109 float y_lsectionStd = space*b+height_scrollbars*4;

110 float y_1lsection = spacex*x6+height_scrollbars*5;

111 float y_2section = spacex*x7+height_scrollbars*6;

112 float y_gamma_1 = y_Spiral+7*space+bxheight_scrollbars;

113 float y_gamma_2 = y_Spiral+8*space+6xheight_scrollbars;

114 float y_gamma_3 y_Spiral+9*space+7*height_scrollbars;

115 float y_gamma_4 y_Spiral+10*space+8*height_scrollbars;

116

117 void setupScrollbars (){

118 x_scrollbars = width-width_scrollbars-space;

119 y_VaryTheta = space+height_scrollbars/2;

120 y_VaryPhi = y_VaryTheta+2*space+2*xheight_scrollbars;

121 y_Spiral = y_VaryTheta+3*space+3*height_scrollbars;

122

123 s_VaryTheta = new HScrollbar(x_scrollbars, y_VaryTheta,
width_scrollbars, height_scrollbars, 2);

124 s_VaryTheta2 = new HScrollbar(x_scrollbars, y_VaryTheta+space+
height_scrollbars, width_scrollbars, height_scrollbars, 2);

125 s_VaryPhi = new HScrollbar(x_scrollbars, y_VaryPhi,
width_scrollbars, height_scrollbars, 2);

126 s_Spiral = new HScrollbar(x_scrollbars, y_Spiral,
width_scrollbars, height_scrollbars, 2);

127

128 s_gamma_1 = new HScrollbar(x_scrollbars, y_gamma_1,
width_scrollbars, height_scrollbars, 2);

129 s_gamma_2 = new HScrollbar (x_scrollbars, y_gamma_2,
width_scrollbars, height_scrollbars, 2);

130 s_gamma_3 = new HScrollbar(x_scrollbars, y_gamma_3,

width_scrollbars, height_scrollbars, 2);
131

132 s_Flow = new HScrollbar(x_scrollbars, height-space/2-space-
height_scrollbars, width_scrollbars, height_scrollbars, 2);

133 s_noCircles = new HScrollbar(x_scrollbars, height-space/2,
width_scrollbars, height_scrollbars, 2);

134 s_noCircles.spos = s_noCircles.xpos +30*width_scrollbars/100;

135 }

136

137 void updateScrollbars (){
138 s_VaryTheta.update () ;
139 s_VaryTheta2.update () ;
140 s_VaryPhi .update () ;

141 s_Spiral.update () ;

142 s_gamma_1.update () ;
143 s_gamma_2.update () ;
144 s_gamma_3.update () ;
145 s_Flow.update () ;

146 s_noCircles.update () ;

56

147
148
149
150
151
152
153
154

170

171

172

174

175

176

177

178

179

181

182

184
185

187
188
189
190

191
192

}

void displayScrollbars (){

}

s_VaryTheta.display () ;
s_VaryTheta2.display () ;
s_VaryPhi.display () ;
s_Spiral.display();
s_gamma_1.display () ;
s_gamma_2.display () ;
s_gamma_3.display () ;
s_Flow.display();
s_noCircles.display();
//add text

£i11 (200) ;

textSize (2xspace/3) ;
text ("#fibres", x_scrollbars - space*b5, height-space/4);

float scrollbarValue (HScrollbar bar, float maxValue){ //converts

position of scrollbar to float between O & maxValue

return (bar.spos-bar.xpos)*maxValue/(bar.swidth-bar.sheight);

}

void drawButtons (){

//draw buttons
£1i11(70,0,70) ;
strokeWeight (2) ;
stroke (255) ;
rect(x_scrollbars- height_scrollbars-space, y_VaryTheta- space/3,
height_scrollbars, height_scrollbars); //varyTheta
rect (x_scrollbars- height_scrollbars-space, y_VaryPhi- space/3,
height_scrollbars, height_scrollbars); //VaryPhi
rect (x_scrollbars- height_scrollbars-space, y_Spiral- space/3,
height_scrollbars, height_scrollbars); //Spiral
rect (width-space-height_scrollbars,y_lsectionStd,
height_scrollbars, height_scrollbars); //lsection
rect (width-space-height_scrollbars,y_lsection, height_scrollbars,
height_scrollbars); //lsection
rect (width-space-height_scrollbars,y_2section, height_scrollbars,
height_scrollbars); //2section

rect(x_scrollbars - space, y_gamma_1l - space/3, height_scrollbars
, height_scrollbars); //gamma_1

rect(x_scrollbars - space, y_gamma_2- space/3, height_scrollbars,
height_scrollbars); //gamma_2

rect (x_scrollbars - space, y_gamma_3- space/3, height_scrollbars,

height_scrollbars); //gamma_3

rect(x_scrollbars - space, height-space/2-4*space/3-
height_scrollbars, height_scrollbars, height_scrollbars);//flow

//add text

£111 (200) ;

textSize (2xspace/3) ;

text ("Vary Theta", x_scrollbars - space*6, y_VaryTheta + space/3)
text ("Vary Phi", x_scrollbars - spacex*5, y_VaryPhi+ space/3);
text ("Spiral", x_scrollbars - spacex*5, y_Spiral+ space/3);

o7

193 text("std l-section",width-space-height_scrollbars*4-space*3,
y_lsectionStd+space/2);

194 text ("1l-section",width-space-height_scrollbars*4-spacex*2,
y_lsection+space/2);

195 text ("2-section",width-space-height_scrollbars*4-space*2,
y_2section+space/2) ;

196 text ("\u03B3\u2081", x_scrollbars - space*2 - height_scrollbars,
y_gamma_1l+space/3);

197 text ("\u03B3\u2082", x_scrollbars - space*2- height_scrollbars,
y_gamma_2+space/3) ;

198 text ("\u03B3\u2083", x_scrollbars - space*2- height_scrollbars,
y_gamma_3+space/3) ;

199 text ("D-Section Flow", x_scrollbars - space*6.5, height-space
/2-3*xspace/4-height_scrollbars);

200 }

201

202 //__functions to check if mouse is over buttons__

203 boolean overVaryThetaButton() {

204 if (mouseX >= x_scrollbars-height_scrollbars-space && mouseX <=
x_scrollbars -space &&

205 mouseY >= y_VaryTheta && mouseY <= y_VaryTheta+
height_scrollbars) {

206 return true;

207 } else {

208 return false;

209 }

210 }

211
212 boolean overVaryPhiButton() {

213 if (mouseX >= x_scrollbars-height_scrollbars-space && mouseX <=
x_scrollbars-space &&

214 mouseY >= y_VaryPhi && mouseY <= y_VaryPhi+height_scrollbars)
{

215 return true;

216 } else {

217 return false;

218 }

219 }

220

221 boolean overSpiralButton() {

222 if (mouseX >= x_scrollbars-height_scrollbars-space && mouseX <=
x_scrollbars-space &&

223 mouseY >= y_Spiral && mouseY <= y_Spiral+height_scrollbars) {

224 return true;

225 } else {

226 return false;

227 }

228 }

229
230 boolean overlsection() {
231 if (mouseX >= width-space-height_scrollbars && mouseX <= width-

space &&

232 mouseY >= y_lsection && mouseY <= y_lsection+
height_scrollbars) {

233 return true;

234 } else {

235 return false;

236 }

28

237 }

238

239 boolean over2section() {

240 if (mouseX >= width-space-height_scrollbars && mouseX <= width-

space &&

241 mouseY >= y_2section && mouseY <= y_2section+
height_scrollbars) {

242 return true;

243 } else {

244 return false;

245 }

246 }

247
248 boolean overlsectionStd() {
249 if (mouseX >= width-space-height_scrollbars && mouseX <= width-

space &&

250 mouseY >= y_lsectionStd && mouseY <= y_1lsectionStd+
height_scrollbars) {

251 return true;

252 } else {

253 return false;

254 }

255 }

257 boolean overGammal (){

258 if (mouseX >= x_scrollbars - space && mouseX <= x_scrollbars -
spacetheight_scrollbars &&

259 mouseY >= y_gamma_1 - space/3 && mouseY <= x_scrollbars -
space+height_scrollbars) {

260 return true;

261 } else {

262 return false;

263 }

%4}

265
266 boolean overGamma?2 (){

267 if (mouseX >= x_scrollbars - space && mouseX <= x_scrollbars -
spacetheight_scrollbars &&

268 mouseY >= y_gamma_2 - space/3 && mouseY <= x_scrollbars -
space+height_scrollbars) {

269 return true;

270 } else {

271 return false;

272 i

273 }

274
275 boolean overGamma3 (){

276 if (mouseX >= x_scrollbars - space && mouseX <= x_scrollbars -
space+theight_scrollbars &&

277 mouseY >= y_gamma_3 - space/3 && mouseY <= x_scrollbars -
space+height_scrollbars) {

278 return true;

279 } else {

280 return false;

281 i

282 }

283
284 boolean overFlow(){

39

285 if (mouseX >= x_scrollbars - space && mouseX <= x_scrollbars -
space +height_scrollbars &&

286 mouseY >= height-space/2-4xspace/3-height_scrollbars &&
mouseY <= height-space/2-4*space/3-height_scrollbars+
height_scrollbars) {

287 return true;
288 } else {

289 return false;
290 }

201 }

60

© W N O s W N

=
o

11

Appendix G
Class HScrollbar

class HScrollbar {

boolean locked;
float ratio;

HScrollbar (float xp, float yp, int sw, int sh,

swidth = sw;
sheight = sh;
int widthtoheight

sSw - sh;

ratio = (float)sw / (float)widthtoheight;

Xpos = Xp;
ypos = yp-sheight/2;

spos = xpos + swidth/2 - sheight/2;
newspos = SpoOS;

sposMin = xpos;

sposMax = xpos + swidth - sheight;
loose = 1;

void update () {

if (overEvent ()) {
over true;

} else
over

I~

false;
}
if (mousePressed && over) {
locked = true;
}
if (!mousePressed) {
locked = false;
}
if (locked) {
newspos = constrain(mouseX-sheight/2,
}
if (abs(newspos - spos) > 1) {
spos = spos + (newspos-spos)/loose;

}

61

sposMin,

int swidth, sheight; // width and height of bar

float xpos, ypos; // x and y position of bar

float spos, newspos; // x position of slider

float sposMin, sposMax; // max and min values of slider
int loose; // how loose/heavy

boolean over; // is the mouse over the slider?

int 1) {

sposMax) ;

44
45 float constrain(float val, float minv, float maxv)

46 return min(max(val, minv), maxv);

a7 }

48

49 boolean overEvent () {

50 if (mouseX > xpos && mouseX < xpos+swidth &&
51 mouseY > ypos && mouseY < ypos+sheight) {
52 return true;

53 } else {

54 return false;

55 }

56 }

57

58 void display () {

59 noStroke () ;

60 £i11 (204) ;

61 rect(xpos, ypos, swidth, sheight);

62 if (over || locked) {

63 £fil11(0, 0, 0);

64 } else {

65 £fill1 (102, 102, 102);

66 }

67 rect (spos, ypos, sheight, sheight);

68 }

69

70 float getPos () {

71 // Convert spos to be values between

72 // 0 and the total width of the scrollbar
73 return spos * ratio;

74 }

75}

62

Appendix H

Rec Library

This library for recording the screen is from Tim Rodenbroeker [6].

© 0 N A W N

e
AW N R O

//For video Export add rec(); at the very end of draw!
final String sketchname = getClass () .getName () ;
import com.hamoid.x*;
VideoExport videoExport;
void rec (){
if (frameCount == 1){
videoExport = new VideoExport(this,"../"+sketchname+".mp4");
videoExport.setFrameRate (30) ;
videoExport.startMovie () ;
}
videoExport.saveFrame () ;
}

63

Bibliography

Peter Albers; Hansjorg Geiges; Kai Zehmisch. “A Symplectic Dynamics Proof
Of The Degree-Genus-Formula”. In: (2019). arXiv:1905.03054.

H. Geiges. “An Introduction to Contact Topology”. In: Cambridge Stud. Adov.
Math. 109, Cambridge University Press, Cambridge (2008).

Peter Lager. @QScript. http://www.lagers.org.uk/qscript/. Processing Library.

Peter Lager. Shapes3D. http://www.lagers.org.uk/s3d4p/index.html. Process-
ing Library.

Processing Foundation. HScrollbar. https://processing.org/examples/scrollbar.html.
Processing Library.

Tim Rodenbroeker. rec(). https://timrodenbroeker.de/processing-tutorial-video-
export/. Processing Library.

J. Noble. “Programming Interactivity”. In: (2012).
Niles Johnson. A visualization of the Hopf fibration. https://nilesjohnson.net /hopf.html.

Niles Johnson. Talk: What is a fibration? https://www.youtube.com/watch?v=QXDQsmL-
8Us.

Peter Albers. lecture notes: Kontaktgeometrie. Heidelberg University. (not pub-
lished). 2020.

64

